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ABSTRACT 

The spatial autoregressive (SAR) models are widely used in spatial econometrics 
for analyzing spatial data involving spatial autocorrelation structure. The present 
paper derives a Generalized Bayes estimator for estimating the parameters of a 
SAR model. The admissibility and minimaxity properties of the estimator have 
been discussed. For investigating the finite sample behaviour of the estimator, the 
results of a simulation study have been presented. The results of the paper are 
applied to demographic data on total fertility rate for selected Indian states. 
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1.  Introduction 

Spatial data analysis has attracted considerable attention in econometrics 
literature for modelling data involving spatial dependence. The Spatial 
Autoregressive (SAR) models assume that the level of response variable 
depends on the levels of response variable in the neighbouring regions and thus 
models such spatial spillover effect. Anselin (1988) provided the theoretical 
aspects of spatial econometrics. Lesage and Pace (2009) discussed various 
spatial econometric models including SAR model, spatial Durbin model (SDM), 
and spatial error model (SEM), along with the classical and Bayesian inference 
procedures for these models and their various applications.  

The Bayesian approach involves combining the data distribution embodied in 
the likelihood function with prior distributions for the parameters assigned by the 
practitioner, to produce posterior distributions. However, a major drawback of 
Bayes procedures is lack of robustness with respect to underlying prior 
assumptions. As mentioned in Berger (1980), the Bayes estimator derived under 
normal prior has infinite Bayes risk when true prior is Cauchy distribution. One 
may consider pre-test estimators, but a serious problem with pre-test estimators 
is that these estimators provide improvement in specific region of parameter 
space but perform much worse than the usual maximum likelihood estimator 
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(MLE) or least squares estimator outside this region. Rubin (1977) and Berger 
(1980) demonstrated that the generalized Bayes estimators are a viable 
alternative to incorporate prior belief and are more robust with respect to 
underlying prior assumptions. These estimators provide uniform improvement 
over MLE/least squares estimator and satisfy minimaxity and admissibility 
properties. 

Stein (1973) considered the generalized Bayes estimator for the multivariate 
normal mean vector under a scale mixture of prior distributions and suggested 
that the estimator may dominate the James-Stein and positive part James-Stein 
estimators. Efron and Morris (1976) presented minimax family of estimators for 
matrix of multivariate normal means in MANOVA model. Berger (1980) provided 
robust generalized Bayes estimator for multivariate normal mean and obtained 
confidence region based on generalized Bayes estimator for the mean vector. 
Brown (1971) derived a powerful condition for the admissibility of generalized 
Bayes estimators. Berger (1976), and Maruyama (1998) developed classes of 
admissible minimax generalized Bayes estimators using Brown’s (1971) 
condition. Kubokawa (1991, 1994) showed that the generalized Bayes estimator 
dominates the usual James-Stein estimator and derived the sufficient dominance 
condition. Maruyama (1999) considered the extended Stein’s prior distribution, 
which is the scale mixture of multivariate normal distribution, and demonstrated its 
admissibility and minimaxity. He also showed that the estimator dominates 
positive part Stein rule estimator. Pal et al. (2016) proposed a family of shrinkage 
estimators for the coefficients vector of a SAR model and investigated its 
asymptotic properties. 

The present paper considers SAR model involving one period lag spatial 
dependent variable and derives a generalized Bayes estimator for the regression 
coefficients vector. The admissibility and minimaxity properties of the estimator 
are investigated. A simulation study has been carried out to assess the finite 
sample behaviour of the estimator. For illustration purpose, the results of the 
paper are applied to demographic data on total fertility rate for selected Indian 
states. 

2.  The SAR model and estimators 

Let us consider the SAR model: 

𝑦 = 𝜌𝑊𝑦 + 𝑋𝛽 + 𝑢 , 𝑢~𝑁(0, 𝜎2𝐼𝑛),       (2.1) 

where y is (𝑛 × 1) vector of the observations on a dependent variable collected at 

each of n locations, X is (𝑛 × 𝑝) matrix of observations on exogenous variables, 𝛽 
is (𝑝 × 1) vector of regression parameters, 𝜌 is the spatial autoregressive 

parameter, W is known 𝑛 × 𝑛 spatial weight matrix which indicate the potential 
interaction between contiguous positions and has been standardized to have row 
sum of unity. This model is termed as spatial autoregressive model as it combines 
the standard regression model with spatially lagged dependent variable. 
When 𝜌 is known, the ordinary least squares (OLS) estimator of 𝛽 is 

            𝑏(𝜌) = (𝑋′𝑋)−1𝑋′(𝑦 − 𝜌𝑊𝑦) 
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=   (𝑋′𝑋)−1𝑋′𝑦(𝜌),         (2.2) 

where 𝑦(𝜌)=𝑦 − 𝜌𝑊𝑦. 

The OLS estimator can alternatively be written as 

𝑏(𝜌) = 𝑏 − 𝜌𝑏𝑤 . 

Here 𝑏 = (𝑋′𝑋)−1𝑋′𝑦 and 𝑏𝑤 = (𝑋′𝑋)−1𝑋′𝑊𝑦. Further, the maximum 

likelihood estimator of 𝜎2 is 

�̃�2 =
𝑣

𝑛
 

where  

𝑣 = (𝑦(𝜌) − 𝑋𝑏(𝜌))
′
(𝑦(𝜌) − 𝑋𝑏(𝜌)) = [𝑦 − 𝜌𝑊𝑦]′𝑀[𝑦 − 𝜌𝑊𝑦]. 

Here 𝑀 = 𝐼𝑛 − 𝑋(𝑋′ 𝑋)−1𝑋′. When 𝜌 is unknown, we replace it by its estimator 

�̂� =
𝑦′𝑊′𝑀𝑦

𝑦′𝑊′𝑀𝑊𝑦
          (2.3) 

in (2.2) to obtain feasible least squares estimator of 𝛽 as 

𝑏(�̂�) = 𝑏 − �̂�𝑏𝑤. 

Then the estimator of 𝜎2 is 

�̂�2 =
�̂�

𝑛
, with �̂� = [𝑦 − �̂�𝑊𝑦]′𝑀[𝑦 − �̂�𝑊𝑦].      (2.4) 

3.  Generalized Bayes estimator 

For obtaining the Generalized Bayes estimator of regression coefficients 
vector 𝛽, let us write the model (2.1) as 

 𝑦(𝜌) = 𝑋𝛽 + 𝑢,         (3.1) 

where 𝑦(𝜌) = 𝑦 − 𝜌𝑊𝑦. Then the pdf of 𝑦(𝜌) is given by 

 𝑝(𝑦(𝜌)|𝛽, 𝜎2) =
1

(2𝜋)𝑛 2⁄ 𝜎𝑛 𝑒𝑥𝑝 {−
1

2𝜎2
(𝑦(𝜌) − 𝑋𝛽)′(𝑦(𝜌) − 𝑋𝛽)}.  (3.2) 

We assume that 𝛽 follows a g-prior 𝑁(0, 𝜎2𝑔𝑋′𝑋), (see Zellner, 1986) with 𝑔 =
𝜆−1(1 − 𝜆), 0 < 𝜆 < 1. Hence the pdf of prior distribution of 𝛽 is given by 

 𝑝(𝛽|𝜎2, 𝜆) ∝ 𝜎−𝑝 (
𝜆

(1−𝜆)
)

𝑝 2⁄

𝑒𝑥𝑝 {−
𝜆

2𝜎2(1−𝜆)
𝛽′𝑋′𝑋𝛽}.    (3.3) 

We take the prior distribution for 𝜆 as 

 𝑝(𝜆) ∝ 𝜆−𝑎(1 − 𝜆)𝑐𝐼(0,1)(𝜆).       (3.4) 

If c > -1, the prior distribution for 𝜆 is proper for 𝑎 < 1 and improper for 𝑎 ≥ 1. 

Let us assume 𝜎2 to be known. The joint density of (𝑦(𝜌), 𝛽, 𝜆) is 

𝑝(𝑦(𝜌), 𝛽, 𝜆) 

= 𝑝(𝑦(𝜌)|𝛽, 𝜎2)𝑝(𝛽|𝜎2, 𝜆)𝑝(𝜆) 
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∝ 𝜎−(𝑛+𝑝)𝑒𝑥𝑝 {−
1

2𝜎2
(𝑦(𝜌) − 𝑋𝛽)′(𝑦(𝜌) − 𝑋𝛽)} 𝜆

𝑝
2−𝑎(1 − 𝜆)−

𝑝

2
+𝑐

× 𝑒𝑥𝑝 {−
𝜆

2𝜎2(1 − 𝜆)
𝛽′𝑋′𝑋𝛽} 

∝ 𝜎−(𝑛+𝑝)𝜆
𝑝
2−𝑎(1 − 𝜆)−

𝑝

2
+𝑐𝑒−𝑣 2𝜎2⁄ 𝑒𝑥𝑝 {−

1

2𝜎2
𝑏(𝜌)′𝑋′𝑋𝑏(𝜌)}

× 𝑒𝑥𝑝 {−
1

2𝜎2(1 − 𝜆)
[𝛽′𝑋′𝑋𝛽 − 2(1 − 𝜆)𝛽′𝑋′𝑋𝑏(𝜌)]} 

∝ 𝜎−(𝑛+𝑝)𝜆
𝑝
2−𝑎(1 − 𝜆)−

𝑝

2
+𝑐𝑒−𝑣 2𝜎2⁄ 𝑒𝑥𝑝 {−

𝜆

2𝜎2
𝑏(𝜌)′𝑋′𝑋𝑏(𝜌)} × 

𝑒𝑥𝑝 {−
1

2𝜎2(1−𝜆)
[(𝛽 − (1 − 𝜆)𝑏(𝜌))

′
𝑋′𝑋(𝛽 − (1 − 𝜆)𝑏(𝜌))]}.      (3.5) 

Integrating (3.5) with respect to 𝛽, the joint density of (𝑦(𝜌), 𝜆) is obtained as 

𝑝(𝑦(𝜌), 𝜆) 

∝ 𝜎−(𝑛+𝑝)𝜆
𝑝
2−𝑎(1 − 𝜆)−

𝑝

2
+𝑐𝑒−𝑣 2𝜎2⁄ 𝑒𝑥𝑝 {−

𝜆

2𝜎2
𝑏(𝜌)′𝑋′𝑋𝑏(𝜌)} × 

∫ 𝑒𝑥𝑝 {−
1

2𝜎2(1 − 𝜆)
[(𝛽 − (1 − 𝜆)𝑏(𝜌))

′
𝑋′𝑋(𝛽 − (1 − 𝜆)𝑏(𝜌))]}

𝑅𝑝

𝑑𝛽 

∝ 𝜎−𝑛𝜆
𝑝
2−𝑎(1 − 𝜆)𝑐𝑒−𝑣 2𝜎2⁄ 𝑒𝑥𝑝 {−

𝜆

2𝜎2 𝑏(𝜌)′𝑋′𝑋𝑏(𝜌)}.    (3.6) 

Then the marginal density of 𝑦(𝜌) is 

𝑚(𝑦(𝜌)) ∝ 𝜎−𝑛𝑒−𝑣 2𝜎2⁄ ∫ 𝜆
𝑝
2−𝑎(1 − 𝜆)𝑐𝑒𝑥𝑝 {−

𝜆

2𝜎2 𝑏(𝜌)′𝑋′𝑋𝑏(𝜌)}
1

0
𝑑𝜆.  (3.7) 

Further, the posterior expectation of 𝜆 given 𝑦(𝜌) is obtained as 

𝐸(𝜆|𝑦(𝜌)) =
∫ 𝜆

𝑝
2−𝑎+1(1 − 𝜆)𝑐𝑒𝑥𝑝 {−

𝜆

2𝜎2 𝑏(𝜌)′𝑋′𝑋𝑏(𝜌)}
1

0
𝑑𝜆

∫ 𝜆
𝑝
2−𝑎(1 − 𝜆)𝑐𝑒𝑥𝑝 {−

𝜆

2𝜎2 𝑏(𝜌)′𝑋′𝑋𝑏(𝜌)}
1

0
𝑑𝜆

 

       = 𝜙𝑎,𝑐 (
𝑏(𝜌)′𝑋′𝑋𝑏(𝜌)

𝜎2 ),               (3.8) 

where 

𝜙𝑎,𝑐 (
𝑏(𝜌)′𝑋′𝑋𝑏(𝜌)

𝜎2
) 

  =
∫ 𝜆

𝑝
2

−𝑎+1
(1−𝜆)𝑐𝑒𝑥𝑝{−

𝜆

2𝜎2𝑏(𝜌)′𝑋′𝑋𝑏(𝜌)}
1

0 𝑑𝜆

∫ 𝜆
𝑝
2−𝑎(1−𝜆)𝑐𝑒𝑥𝑝{−

𝜆

2𝜎2𝑏(𝜌)′𝑋′𝑋𝑏(𝜌)}
1

0 𝑑𝜆
 

=
Γ[2−𝑎+

𝑝

2
]Γ[2−𝑎+𝑐+

𝑝

2
] 𝐹1 1[2−𝑎+

𝑝

2
,3−𝑎+𝑐+

𝑝

2
,−

𝑏(𝜌)′𝑋′𝑋𝑏(𝜌)

2𝜎2 ]

Γ[1−𝑎+
𝑝

2
]Γ[3−𝑎+𝑐+

𝑝

2
] 𝐹1 1[1−𝑎+

𝑝

2
,2−𝑎+𝑐+

𝑝

2
,−

𝑏(𝜌)′𝑋′𝑋𝑏(𝜌)

2𝜎2 ]
.          (3.9) 
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The Kummer confluent hypergeometric function 𝐹1 1[𝑎; 𝑐; 𝑧] used 
in expression (3.9) is defined as 

𝐹1 1[𝑎; 𝑐; 𝑧] = ∑
(𝑎)𝑘

(𝑐)𝑘

𝑧𝑘

𝑘!
 ∞

𝑘=0 ; 

where (𝑎)0 = 1, (𝑎)𝑘 = 𝑎(𝑎 + 1) … (𝑎 + 𝑘 − 1), is the rising factorial. 

Then, the generalized Bayes estimator of 𝛽 is 

�̂�(𝜌) = [1 − 𝜙𝑎,𝑐 (
𝑏(𝜌)′𝑋′𝑋𝑏(𝜌)

𝜎2 )] 𝑏(𝜌).       (3.10) 

If we substitute 

𝜙ℎ(𝑤) = 𝑤
∫ 𝜆

𝑝
2+1−𝑎1

0
(1 − 𝜆)𝑐𝑒−

𝜆𝑤
2 𝑑𝜆

∫ 𝜆
𝑝
2−𝑎1

0
(1 − 𝜆)𝑐𝑒−

𝜆𝑤
2 𝑑𝜆

= 𝑤𝜙𝑎,𝑐 (
𝑏(𝜌)′𝑋′𝑋𝑏(𝜌)

𝜎2
), 

then the generalized Bayes estimator �̂�(𝜌) can be represented as 

�̂�(𝜌)=[1 −
𝜎2

𝑏(𝜌)′𝑋′𝑋𝑏(𝜌)
𝜙ℎ (

𝑏(𝜌)′𝑋′𝑋𝑏(𝜌)

𝜎2 )] 𝑏(𝜌). 

Theorem 1: Under the loss function 

𝐿(�̂�, 𝛽) =
1

𝜎2 (�̂� − 𝛽)
′
𝑋′𝑋(�̂� − 𝛽)      (3.11) 

the GB estimator �̂�(𝜌) has finite risk. 

Proof: Let us write 

𝑍 =
1

𝜎
(𝑋′𝑋)

1
2𝑏(𝜌); 𝜃 =

1

𝜎
(𝑋′𝑋)

1
2𝛽. 

Then 

𝑅[�̂�(𝜌), 𝛽] =
1

𝜎2 𝐸 [(�̂�(𝜌) − 𝛽)
′
𝑋′𝑋(�̂�(𝜌) − 𝛽)]  

             = 𝐸 [(𝑍 − 𝜃)′(𝑍 − 𝜃) +
1

‖𝑍‖2 𝜙ℎ
2(‖𝑍‖2) − 2

(𝑍−𝜃)′𝑍𝜙ℎ(‖𝑍‖2)

‖𝑍‖2 ]. 

Since 𝑍~𝑁(𝜃, 𝐼𝑝), we have 

𝑅[�̂�(𝜌), 𝛽] = 𝑝 + 𝐸 [
1

‖𝑍‖2
𝜙ℎ

2(‖𝑍‖2) − 2
(𝑍 − 𝜃)′𝑍𝜙ℎ(‖𝑍‖2)

‖𝑍‖2
]. 

We observe that 0 ≤ 𝜙ℎ(𝑤) ≤ 𝑤, so that 

𝐸 [
1

‖𝑍‖2
𝜙ℎ

2(‖𝑍‖2)] ≤ 𝐸[‖𝑍‖2] = 𝑝 + 𝜃′𝜃 < ∞. 

Further by Schwarz’s inequality 

𝐸 [
(𝑍 − 𝜃)′𝑍𝜙ℎ(‖𝑍‖2)

‖𝑍‖2
] ≤ [𝐸(𝑍 − 𝜃)′(𝑍 − 𝜃)𝐸 {

𝜙ℎ(‖𝑍‖2)2

‖𝑍‖2
}]

1
2⁄
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        ≤ [𝑝𝐸[‖𝑍‖2]]
1

2⁄
 

       = [𝑝(𝑝 + 𝜃′𝜃)]2 < ∞. 

Hence the risk of �̂�(𝜌) is finite■ 

Theorem 2: The GB estimator is admissible if and only if 𝑎 ≤ 2. 

Proof: We have 

𝑓𝑅(‖𝑧‖2) = ∫ 𝑒−𝜆‖𝑧‖2 2⁄ 𝜆
𝑝
2−𝑎(1 − 𝜆)𝑐𝑑𝜆

1

0
   

      = 2
𝑝

2
−𝑎+1

∫ 𝑒−𝑡‖𝑧‖2
1
2

0
𝑡

𝑝

2
−𝑎(1 − 2𝑡)𝑐𝑑𝑡 

      = 2
𝑝

2
−𝑎+1

∫ 𝑒−𝑡‖𝑧‖2∞

0
𝑡

𝑝

2
−𝑎(1 − 2𝑡)𝑐𝐼(0,12)

(𝑡)𝑑𝑡. 

Using Tauberlian theorem (see Maruyama, 2000, p. 37), we observe that as 

𝑡 → 0,  𝑡
𝑝

2
−𝑎(1 − 2𝑡)𝑐𝐼(0,12)

(𝑡)~𝑡
𝑝

2
−𝑎

. Hence we have 

𝑓ℎ(‖𝑧‖2)~2
𝑝

2
−𝑎+1Γ (

𝑝

2
− 𝑎 + 1) ‖𝑧‖−2(

𝑝

2
−𝑎+1).     (3.12) 

Following Maruyama (2000), to show that the GB estimator is admissible it is 

necessary and sufficient to show that ∫ 𝑓ℎ
−1(𝑡)

∞

1
𝑡

𝑝

2𝑑𝑡 diverges. Using equation 

(3.12), we have 

∫ 𝑓ℎ
−1(𝑡)

∞

1

𝑡
𝑝

2𝑑𝑡~2
𝑝

2
−𝑎+1Γ−1 (

𝑝

2
− 𝑎 + 1) ∫ 𝑡(−𝑎+1)

∞

1

𝑑𝑡, 

which diverges as long as 𝑎 ≤ 2. This leads to the required result■ 

Theorem 3: The generalized Bayes estimator �̂�(𝜌) is minimax whenever 3 −
𝑝

2
≤

𝑎 ≤
𝑝

2
+ 1. 

Proof: Under the loss function (3.11) the difference between the risks of GB 

estimator �̂�(𝜌) and the OLS estimator 𝑏(𝜌) is given by 

𝑅[�̂�(𝜌), 𝛽] − 𝑅[𝑏(𝜌), 𝛽] = 𝐸 [
1

‖𝑍‖2 Φ2
ℎ(‖𝑍‖2) − 2

(𝑍−𝜃)′𝑍𝜙ℎ(‖𝑍‖2)

‖𝑍‖2 ]. 

Now 

𝐸 [(𝑍 − 𝜃)′𝑍
𝜙ℎ(‖𝑍‖2)

‖𝑍‖2 ] = 𝐸 [
𝜕

𝜕𝑍′ {𝑍
𝜙ℎ(‖𝑍‖2)

‖𝑍‖2 }] 

         = 𝐸 [𝑝
𝜙ℎ(‖𝑍‖2)

‖𝑍‖2 − 2
𝜙ℎ(‖𝑍‖2)

‖𝑍‖2 + 2𝜙′
ℎ

(‖𝑍‖2)]. 

Hence 

𝑅[�̂�(𝜌), 𝛽] − 𝑅[𝑏(𝜌), 𝛽] 
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= 𝐸 [
1

‖𝑍‖2 ϕ2
ℎ

(‖𝑍‖2) − 2(𝑝 − 2)
𝜙ℎ(‖𝑍‖2)

‖𝑍‖2 − 4𝜙′
ℎ

(‖𝑍‖2)]     (3.13) 

Now we have 

𝜙ℎ(𝑤)

𝑤
=

∫ 𝜆
𝑝
2+1−𝑎1

0
(1 − 𝜆)𝑐𝑒−𝜆𝑤

2 𝑑𝜆

∫ 𝜆
𝑝
2−𝑎1

0
(1 − 𝜆)𝑐𝑒−𝜆𝑤

2 𝑑𝜆
, 

so that 

𝜕

𝜕𝑤
[

𝜙ℎ(𝑤)

𝑤
] =

1

2

{∫ 𝜆
𝑝
2+1−𝑎1

0
(1−𝜆)𝑐𝑒

−
𝜆𝑤
2 𝑑𝜆}

2

−{∫ 𝜆
𝑝
2+2−𝑎1

0
(1−𝜆)𝑐𝑒

−
𝜆𝑤

2 𝑑𝜆}{∫ 𝜆
𝑝
2−𝑎1

0
(1−𝜆)𝑐𝑒

−
𝜆𝑤
2 𝑑𝜆}

{∫ 𝜆
𝑝
2−𝑎1

0
(1−𝜆)𝑐𝑒

−
𝜆𝑤
2 𝑑𝜆}

2    

(3.14) 
Let us write 

𝑓ℎ(𝜆) =
𝜆

𝑝
2−𝑎(1 − 𝜆)𝑐𝑒−𝜆𝑤

2

∫ 𝜆
𝑝
2−𝑎1

0
(1 − 𝜆)𝑐𝑒−𝜆𝑤

2 𝑑𝜆
, 0 < 𝜆 < 1. 

Then  

𝜕

𝜕𝑤
[
𝜙ℎ(𝑤)

𝑤
] = −

1

2
[𝐸𝑓ℎ(𝜆)(𝜆2) − {𝐸𝑓ℎ(𝜆)(𝜆)}

2
] ≤ 0. 

Again 

𝜙′
ℎ

(𝑤) =
𝜕

𝜕𝑤
{𝑤

𝜙ℎ(𝑤)

𝑤
}  

=
𝜙ℎ(𝑤)

𝑤
+ 𝑤

𝜕

𝜕𝑤
{

𝜙ℎ(𝑤)

𝑤
}  

= 𝐸𝑓ℎ(𝜆)(𝜆) −
1

2
𝐸𝑓ℎ(𝜆)(𝜆2) +

1

2
{𝐸𝑓ℎ(𝜆)(𝜆)}

2
  

≥
1

2
{𝐸𝑓ℎ(𝜆)(𝜆)}

2
≥ 0.  

Notice that 0 ≤ 𝜆 ≤ 1, so that 𝐸𝑓ℎ(𝜆)(𝜆) −
1

2
𝐸𝑓ℎ(𝜆)(𝜆2) ≥ 0. 

We also observe that 𝜙ℎ(𝑤) and 
𝜙ℎ(𝑤) 

𝑤
 are monotone in opposite directions. 

Therefore we obtain 

𝑅[�̂�(𝜌), 𝛽] − 𝑅[𝑏(𝜌), 𝛽] 

≤ 𝐸 [
𝜙ℎ(‖𝑍‖2)

‖𝑍‖2
] 𝐸[𝜙ℎ(‖𝑍‖2) − 2(𝑝 − 2)] − 4𝐸[𝜙′

ℎ
(‖𝑍‖2)] 

≤ 𝐸 [
𝜙ℎ(𝑤)

𝑤
] 𝐸[{𝜙ℎ(𝑤) − 2(𝑝 − 2)}], 

which is less than or equal to zero whenever 

0 ≤ 𝐸[{𝜙ℎ(𝑤)}] ≤ 2(𝑝 − 2).       (3.15) 
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When w is large, we may approximate 𝜙ℎ(𝑤) as  

𝜙ℎ(𝑤) ≈ 2 (
𝑝

2
− 𝑎 + 1). 

Further 𝜙ℎ(𝑤) is an increasing function of 𝑤. Hence, a sufficient dominance 
condition is 

0 ≤ 2 (
𝑝

2
− 𝑎 + 1) ≤ 2(𝑝 − 2), 

or 

3 −
𝑝

2
≤ 𝑎 ≤

𝑝

2
+ 1. 

This leads to the required result■ 

When 𝜌 and 𝜎2 are unknown, we replace them by their estimators �̂� and �̂�2 
defined in (2.3) and (2.4) respectively to obtain feasible generalized Bayes 
estimator of 𝛽. 

4.  Simulation study 

In this section we carry out a simulation study using R Software to assess the 
finite sample behaviour of proposed generalized Bayes estimator. The 
observations on response variable y are generated by using the model (2.1). 
In simulation study we compare the risks of the usual feasible least squares 
estimator 𝑏(�̂�) = (𝑋′𝑋)−1𝑋′(𝑦 − �̂�𝑊𝑦) with the following feasible version of GB 
estimator: 

�̂�(�̂�) = [1 − 𝜙𝑎,𝑐 (
𝑏(�̂�)′𝑋′𝑋𝑏(�̂�)

�̂�2
)] 𝑏(�̂�). 

The matrix X has been generated from multivariate normal distribution 
MVN[(1, 3, 5, 4, 7, 5, 6, 4, 7, 4), diag(0, 1.6, 0.7, 3.2, 1.5, 1, 2.8, 2, 1.4, 2.2)]. In 
the weight matrix W, the weights assigned to nearest neighbour values, say 
(𝑤1, 𝑤2), … , (𝑤𝑛−1, 𝑤𝑛), are double the weights assigned to the second nearest 

neighbour values, say, (𝑤1, 𝑤3), … , (𝑤𝑛−2, 𝑤𝑛) and other neighbour weights are 
taken as zero. The property of weight matrix to be row stochastic is also satisfied. 
Further, to ensure the stationarity, the values of 𝜌 are selected in the range 

(
1

𝑊𝑚𝑎𝑥
,

1

𝑊𝑚𝑖𝑛
), where 𝑊𝑚𝑎𝑥 and 𝑊𝑚𝑖𝑛 are, respectively, the maximum and minimum 

eigen values of W. We select c = 1, a = 0.5 and the results are depicted in figures 
1-6. Figures 1 and 2 plot the percentage gain in efficiency of GB estimator over 
feasible least squares estimator when we vary 𝜌 in the range (-0.95, 0.95). For 

p=5, 𝛽′𝛽=1.525 and for p=10 𝛽′𝛽=1.8819. Further figures 3-6 plot percentage 
gain in efficiency for variation in 𝛽′𝛽 and fixed 𝜌, n, and p. The selected values of 

𝜌 in figures 3-6 are 0.25 and 0.75, selected values of n are 20, 50, 100, 200 and 
those of p are 5 and 10. For each setting of parameters, the experiment is 

replicated 5000 times. We have used maximum likelihood estimator of 𝜌 for 
evaluating feasible least squares and feasible GB estimators. The percentage 
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gain in efficiency due to feasible GB estimator �̂�(�̂�) over feasible least squares 
estimator 𝑏(�̂�) is calculated using formula: 

% gain in efficiency GE(�̂�(�̂�)) = 
𝐸𝑅(𝑏(�̂�))−𝐸𝑅(�̂�(�̂�))

𝐸𝑅(𝑏(�̂�))
× 100. 

Empirical risk of the estimator �̂�(�̂�) based on 5000 replications has been 
evaluated as 

𝐸𝑅(�̂�(�̂�)) = 𝐸 ((�̂�(�̂�) − 𝛽)
′
(�̂�(�̂�) − 𝛽)) 

     ≈
1

5000
∑ (�̂�(�̂�)𝑟 − 𝛽)

′
(�̂�(�̂�)𝑟 − 𝛽)5000

𝑟=1 , 

where �̂�(�̂�)𝑟 is the estimated 𝛽 based on r-th replication. 

The main findings of the simulation are as follows: 

1. GB estimator performs better than the FLS estimator, in all the selected 
parametric settings. 

2. From Figures 1 and 2 we observe that the percentage gain in efficiency 
remains almost constant for 𝜌 < 0 and then it starts increasing gradually 
except for n= 20, where it increases for 𝜌 > −0.25. 

3. For n=20, p=5 and n=20, p=10, the gain in efficiency is maximum when 𝜌 is 

close to 0.6 and then again it starts decreasing with increasing 𝜌. 

4. For n= 50, p= 5, the gain in efficiency increases for 𝜌 > 0.25 and for n= 50,  

p= 10, it increases for 𝜌 > 0.5. 

5. For n= 100, p= 5, the gain in efficiency increases for 𝜌 > 0.35 and for n= 100, 
p= 10 it increases for 𝜌 > 0.5. 

6. For n= 200, both for p= 5, and p=10, the gain in efficiency usually keeps on 

increasing for 𝜌 > 0.5. 

7. For fixed n the gain in efficiency decreases as p increases from 5 to 10. 

8. Figures 3-6 show that the percentage gain in efficiency increases as the value 
of 𝜌 increases from 0.25 to 0.75. The gain in efficiency decreases with 

increasing 𝛽′𝛽. 

9. For n= 20, p= 5, 10, 𝜌 = 0.25 the percentage gain in efficiency is almost 
constant for 𝛽′𝛽 > 9. For 𝜌 = 0.75 it gradually decreases with increasing 𝛽′𝛽 

up to 𝛽′𝛽 = 20 and, after that, it remains almost constant. For all others 
combination of parameters the gain in efficiency remains almost constant as 
long as 𝛽′𝛽 > 3. 

5.  Application to TFR Data 

In this section we present an application of SAR model for modelling the total 
fertility rates (TFR) of selected Indian states. We use the causal variables Female 
literacy rate (FLIT), Headcount poverty ratio (HCPR), and Percentage of urban 
population (PUP), which control the socio economic conditions influencing TFR, 
see table 4. For incorporating the influence of spatial structure of states in India, 
first order spatial autoregressive term is also included. The spatial weight matrix is 



24                                                                      A. Chaturvedi, S. Mishra: Generalized Bayes… 

 

 

formed using spatial contiguity matrix. To form the contiguity matrix, define Vij =1 
for two spatial units (states in our example) that own a common border of non-
zero length, else equal to zero. Since an element is not contiguous or 
neighbouring to itself, the main diagonal elements of the matrix are zero. The 
matrix V is then scaled to make it row stochastic. Denoting such a standardized 

first order contiguity matrix by W, its (i,j)-th element, say 𝑊𝑖𝑗 is given by 

𝑊𝑖𝑗 =
𝑊𝑖𝑗

′

∑ 𝑊𝑖𝑗
′𝑛

𝑗=1

𝑖≠𝑗 

         (2.4) 

where 𝑊𝑖𝑗
′ = 1 if i is linked to j, and 0 otherwise. Moran’s I statistic for 𝑊 is 𝐼 =

𝑧′𝑊𝑧 𝑧′𝑧⁄ , where z is  𝑛 × 1 vector of variables expressed as deviations from the 
mean. The global Moran’s I statistic is used to examine the variables in our data 
set for global autocorrelation. If the observed value of I is greater than its 
expected value, then corresponding observation tend to be surrounded by 
neighbours with similar values. On the other hand if I is less than its expected 
value, the observation tend to be surrounded by dissimilar values, see 
Schabenberger and Gotway (2005) for details.  

The regression coefficients of fitted SAR model are estimated using feasible 
LS and feasible GB estimators. In sample predicted values of TFR for different 
states are also computed based on both the estimators, see table 5. Table 6 
gives the estimated coefficients using both of these estimators. The estimated 
values of spatial autocorrelation coefficient is 0.5923. Table 7 gives the observed 
and expected value of the Moran’s I for each of the variables considered in the 
analysis. We observe that HCPR shows the highest degree of spatial correlation, 
followed by the FLIT while the PUP shows the lowest degree of spatial 
autocorrelation among the independent variables. The results from the empirical 
investigation indicate that the feasible GB estimator performs better than FLS 
estimator of regression coefficients in terms of predictive efficiency. 

6.  Concluding remarks 

With the objective of achieving robustness with respect to prior distribution 
and satisfying admissibility and minimaxity properties, we have developed a 
family of generalized Bayes estimators for the regression coefficients vector of a 
SAR model. The simulation study has been carried out to examine the efficiency 
properties of GB estimator and it was observed that GB estimator provides 
improvement over the usual least squares estimator for a wide range of the 
parametric settings. 
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Figure 1. Percentage Gain in efficiency due to change in 𝜌 

 

 

     

    
 

Figure 2. Percentage Gain in efficiency due to change in 𝜌  
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Figure 3.  Percentage gain in efficiency due to change in length of parameter 

𝛽 i.e. 𝛽′𝛽 

 

 

    

    

Figure 4.  Percentage gain in efficiency due to change in length of parameter 

𝛽 i.e. 𝛽′𝛽  
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Figure 5.  Percentage gain in efficiency due to change in length of parameter 𝛽 

i.e. 𝛽′𝛽 

   

   

Figure 6. Percentage gain in efficiency due to change in length of parameter 𝛽 

i.e. 𝛽′𝛽  
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Table 1.  Percentage gain in efficiency due to 𝛽′𝛽 for p = 5 

𝝆 𝜷′𝜷 n=20 n=50 n=100 n=200 

0.25 

0.244 13.5009 11.08661 6.037487 2.837103 

0.976 5.328835 2.463001 1.107283 0.476686 

2.196 2.738421 0.815412 0.357004 0.135803 

3.904 1.454371 0.38847 0.158998 0.048988 

6.1 0.778182 0.226422 0.086162 0.019632 

8.784 0.459649 0.148478 0.052888 0.008067 

11.956 0.303455 0.104995 0.03536 0.002975 

15.616 0.216832 0.078216 0.025173 0.000648 

19.764 0.163445 0.060558 0.01869 -0.00044 

24.4 0.127986 0.048275 0.014404 -0.00647 

0.75 

0.244 26.1813 42.82635 40.14246 31.70275 

0.976 15.00917 17.25584 8.275401 3.31876 

2.196 10.36237 4.615964 1.276183 0.490065 

3.904 7.243892 1.117806 0.354763 0.144584 

6.1 4.940427 0.386443 0.140805 0.054013 

8.784 3.411094 0.190456 0.064894 0.020024 

11.956 2.426919 0.110726 0.031528 0.004777 

15.616 1.603265 0.071166 0.015088 -0.0027 

19.764 1.035082 0.049153 0.00642 -0.00648 

24.4 0.67636 0.035669 0.001649 -0.00831 

 

Table 2.  Percentage gain in efficiency due to 𝛽′𝛽 for p = 10 

𝝆 𝜷′𝜷 n=20 n=50 n=100 n=200 

0.25 

0.301104 12.03765 6.177598 3.646498 1.938245 

1.204416 5.176314 1.081055 0.63606 0.337801 

2.709936 2.276713 0.405873 0.226304 0.110739 

4.817664 0.912911 0.213313 0.112668 0.049924 

7.527600 0.387297 0.131917 0.067129 0.027217 

10.83974 0.213107 0.089933 0.044548 0.016788 

14.7541 0.137561 0.065157 0.031726 0.011300 

19.27066 0.097152 0.049539 0.023766 0.008085 

24.38942 0.072792 0.038788 0.018471 0.006074 

30.1104 0.056718 0.031372 0.014747 0.004733 

0.75 

0.301104 15.911 38.03073 33.88339 28.86204 

1.204416 8.84946 8.273935 2.498556 1.544655 

2.709936 6.279212 1.14234 0.438372 0.262278 

4.817664 4.539674 0.360881 0.16237 0.092256 

7.5276 3.2402 0.174061 0.079288 0.042532 

10.83974 2.208562 0.102341 0.044992 0.022133 

14.7541 1.409047 0.067498 0.02815 0.012272 

19.27066 0.867744 0.047913 0.018992 0.00696 

24.38942 0.524181 0.035872 0.01348 0.003907 

30.1104 0.299729 0.027958 0.010022 0.002106 
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Table 3.  Percentage gain in efficiency due to 𝜌 

p=5 

𝝆 n=20 n=50 n=100 n=200 

-0.95 1.091354 0.7822986 0.4439748 0.2370162 

-0.75 1.038856 0.7635631 0.4476627 0.2456971 

-0.55 1.030078 0.7567423 0.4588296 0.2617378 

-0.35 1.105928 0.7634651 0.4737263 0.2834117 

0.05 2.060012 0.9269042 0.4977228 0.2475341 

0.25 3.778747 1.3376279 0.5968474 0.2441839 

0.45 7.496059 2.5998401 0.9269096 0.3940382 

0.65 12.3777 6.0657974 1.8282938 0.7344557 

0.75 12.3601 9.2943542 3.0362531 1.1202461 

0.95 2.127767 9.4626555 9.7513806 4.6275375 

p=10 

-0.95 0.505288 0.4321381 0.2548265 0.1388775 

-0.75 0.509345 0.4270315 0.2572827 0.1424235 

-0.55 0.549603 0.4271182 0.2627093 0.1489208 

-0.35 0.667549 0.4339027 0.270695 0.1577049 

0.05 1.821497 0.5037863 0.3031573 0.1600749 

0.25 3.566544 0.6224854 0.3580659 0.1835203 

0.45 6.001154 0.8986891 0.4700185 0.2592248 

0.65 8.427731 1.6429605 0.6812483 0.4055339 

0.75 7.393491 2.8589676 0.8883084 0.5485187 

0.95 0.880642 9.2330294 3.3604948 1.7665873 

 

Table 4.  Total fertility rate, Female literacy rate, Headcount poverty ratio, and 
Percentage of urban population in major states of India 

STATE TFR FLIT PUP HCPR 

A.P. 1.8 50.4 27.3 15.8 

ASSAM 2.4 54.6 12.9 19.7 

BIHAR 4 33.1 10.5 41.4 

CHHATTISGARH 2.6 51.9 20.1 40.9 

GUJARAT 2.4 57.8 37.4 16.8 

HARYANA 2.7 55.7 28.9 10 

H.P. 1.9 67.4 9.8 14 

J&K 2.4 43 24.8 5.4 

JHARKHAND 3.3 38.9 22.2 40.3 

KARNATAKA 2.1 56.9 34 25 

KERALA 1.9 87.7 26 15 

M.P. 3.1 50.3 26.5 38.3 

MAHARASTRA 2.1 67 42.4 30.7 

ODISHA 2.4 50.5 15 46.4 

PUNJAB 2 63.4 33.9 8.4 

RAJASTHAN 3.2 43.9 23.4 22.1 

TAMIL NADU 1.8 64.4 44 22.5 

U.P. 3.8 42.2 20.8 32.8 

UTTARAKHAND 2.6 59.6 25.7 39.6 

W.B. 2.3 59.6 28 24.7 

Sources: (i) TFR from EPWRF (2010-11) (ii) URBAN and FLIT from Census of India (2001) 
and (iii) POV from Planning Commission (2011).  



STATISTICS IN TRANSITION new series, June 2019 

 

31 

Table 5.  Predicted TFR 

STATE OBSERVED PFLS PGB 

A.P. 1.8 2.49576 2.47243 

ASSAM 2.4 2.68139 2.65632 

BIHAR 4 3.60914 3.5754 

CHHATTISGARH 2.6 2.94126 2.91376 

GUJARAT 2.4 2.37845 2.35621 

HARYANA 2.7 2.3918 2.36944 

H.P. 1.9 2.17028 2.14999 

J&K 2.4 2.47091 2.44781 

JHARKHAND 3.3 3.39959 3.36781 

KARNATAKA 2.1 2.07161 2.05225 

KERALA 1.9 1.22177 1.21034 

M.P. 3.1 2.81993 2.79356 

MAHARASTRA 2.1 2.17079 2.1505 

ODISHA 2.4 3.04555 3.01708 

PUNJAB 2 2.10204 2.08239 

RAJASTHAN 3.2 2.81922 2.79286 

TAMIL NADU 1.8 1.81505 1.79808 

U.P. 3.8 3.11339 3.08428 

UTTARAKHAND 2.6 2.55796 2.53404 

W.B. 2.3 2.76707 2.7412 

 
 

Table 6.  FLS and GB Estimators of Coefficients 

Variable �̂�𝑭𝑳𝑺 �̂�𝑮𝑩 

Constants 2.42061 2.39798 

FLIT -0.0268 -0.0265 

PUP -0.0041 -0.0041 

HCPR 0.00688 0.00682 

 
 

Table 7.  Global Moran’s I values  

Variable Observed I E[I] 

TFR 0.4339011 -0.05263158 

FLIT 0.1637386 -0.05263158 

PUP 0.1379433 -0.05263158 

HCPR 0.3973285 -0.05263158 

 
 


