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ABSTRACT

A new variable selection method is considered in the setting of classification with
multivariate functional data (Ramsay and Silverman (2005)). The variable selec-
tion is a dimensionality reduction method which leads to replace the whole vec-
tor process, with a low-dimensional vector still giving a comparable classification
error. Various classifiers appropriate for functional data are used. The proposed
variable selection method is based on functional distance covariance (dCov) given
by Székely and Rizzo (2009, 2012) and the Hilbert-Schmidt Independent Criterion
(HSIC) given by Gretton et al. (2005). This method is a modification of the proce-
dure given by Kong et al. (2015). The proposed methodology is illustrated with a
real data example.

Key words: multivariate functional data, variable selection, dCov, HSIC, classifica-
tion.

1. Introduction

In recent years, much attention has been paid to methods for representing data
as functions or curves. Such data are known in the literature as functional data
(Ramsay and Silverman (2005), Horváth and Kokoszka (2012)). Applications of
functional data can be found in various fields, including medicine, economics, me-
teorology and many others. In many applications there is a need to use statisti-
cal methods for objects characterized by multiple variables observed at many time
points (doubly multivariate data). Such data are called multivariate functional data.
In this paper we focus on the classification problem for multivariate functional data.
In many cases, in the classification procedures, the number of predictors p is sig-
nificantly greater than the sample size n. Thus, it is natural to assume that only a
small number of predictors are relevant to response Y .

Various basic classification methods have also been adapted to functional data,
such as linear discriminant analysis (Hastie et al. (1995)), logistic regression (Rossi
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et al. (2002)), penalized optimal scoring (Ando (2009)), knn (Ferraty and Vieu
(2003)), SVM (Rossi and Villa (2006)), and neural networks (Rossi et al. (2005)).
Moreover, the combining of classifiers has been extended to functional data (Fer-
raty and Vieu (2009)). Górecki et al. (2016) adapted multivariate regression models
to the classification of multivariate functional data. Gretton et al. (2005) defined
the measure of dependence between random vectors XXX and YYY called the Hilbert-
Schmidt Independence Criterion (HSIC) and proved that this measure is equal to
zero if and only if XXX and YYY are independent to each other when using universal
kernels, such as the Gaussian kernels. Based on the idea of HSIC between two
random vectors, we introduced the HSIC between two random processes.

Székely et al. (2007), Székely and Rizzo (2009, 2012, 2013) defined the mea-
sures of dependence between random vectors: the distance covariance (dCov).
These authors showed that for all random variables with finite first moments, dCov
generalizes the idea of covariance in two ways. Firstly, this coefficient can be ap-
plied when XXX and YYY are of any dimensions and not only for the simple case where
p = q = 1. Secondly, dCov is equal to zero if and only if there is independence
between the random vectors. Indeed, the distance covariance measures a linear
relationship and can be equal to 0 even when the variables are related. Based on
the idea of the distance covariance between two random vectors, we introduced the
functional distance covariance between two random processes. We select a set of
important predictors with a large value of functional distance covariance or func-
tional Hilbert-Schmidt Independent Criterion. Our selection procedure is a modifi-
cation of the procedure given by Kong et al. (2015).

An entirely different approach to the variable selection in functional data classi-
fication is presented by Berrendero et al. (2016). It is clear that variable selection
has, at least, an advantage when compared with other dimension reduction meth-
ods (functional principal component analysis (FPCA), see Górecki et al. (2014),
Jacques and Preda (2014), functional partial least squares (FPLS) methodology,
see Delaigle and Hall (2012), and other methods) based on general projections:
the output of any variable selection method is always directly interpretable in terms
of the original variables, provided that the required number d of the selected vari-
ables is not too large.

The rest of this paper is organized as follows. In Section 2 we present the clas-
sification procedures used through the paper. In Section 3 we present the problem
of representing functional data by orthonormal basis functions. In Section 4, we
define a functional distance covariance. In Section 5 we define a functional HSIC.
In Section 6 we propose a variable selection procedure based on the functional dis-
tance covariance and on HSIC. In Section 7 we illustrate the proposed methodology
through a real data example. We conclude in Section 8.

2. Classifiers

The classification problem involves determining a procedure by which a given object
can be assigned to one of q populations based on observation of p features of that
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object.
The object being classified can be described by a random pair (XXX ,Y ), where

XXX = (X1,X2, . . . ,Xp)
> ∈Rp and Y ∈ {1, . . . ,q}. An automated classifier can be viewed

as a method of estimating the posterior probability of membership in groups. For a
given XXX , a reasonable strategy is to assign XXX to that class with the highest posterior
probability. This strategy is called the Bayes’ rule classifier.

2.1. Linear and quadratic discriminant classifiers

Now we make the Bayes’ rule classifier more specific by the assumption that all mul-
tivariate probability densities are multivariate normal having arbitrary mean vectors
and a common covariance matrix. We shall call this model the linear discriminant
classifier (LDC). Assuming that class-covariance matrices are different, we obtain
quadratic discriminant classifier (QDC).

2.2. Naive Bayes classifier

A naive Bayes classifier is a simple probabilistic classifier based on applying Bayes’
theorem with independence assumptions. When dealing with continuous data, a
typical assumption is that the continuous values associated with each class are dis-
tributed according to a one-dimensional normal distribution or we estimate density
by kernel method.

2.3. k-nearest neighbour classifier

Most often we do not have sufficient knowledge of the underlying distributions. One
of the important nonparametric classifiers is a k-nearest neighbour classifier (kNN
classifier). Objects are assigned to the class having the majority in the k nearest
neighbours in the training set.

2.4. Multinomial logistic regression

It is a classification method that generalizes logistic regression to multiclass prob-
lem using one vs. all approach.

3. Functional data

We now assume that the object being classified is described by a p-dimensional
random process XXX = (X1,X2, ...,Xp)

> ∈ Lp
2(I), where L2(I) is the Hilbert space of

square-integrable functions, and E(XXX) = 000.
Moreover, assume that the kth component of the vector XXX can be represented

by a finite number of orthonormal basis functions {ϕb}

Xk(t) =
Bk

∑
b=0

αkbϕb(t), t ∈ I, k = 1, . . . , p,
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where αk0,αk1, . . . ,αkBk are the unknown coefficients.
Let ααα = (α10, . . . ,α1B1 , . . . ,αp0, . . . ,αpBp)

> ∈ RK+p, K = B1 + · · ·+Bp

and

ΦΦΦ(t) =


ϕϕϕ>1 (t) 000 . . . 000

000 ϕϕϕ>2 (t) . . . 000
. . . . . . . . . . . .

000 000 . . . ϕϕϕ>p (t)

 ,

where ϕϕϕk(t) = (ϕ0(t), ...,ϕBk(t))
>, k = 1, ..., p.

Using the above matrix notation, the process XXX can be represented as:

XXX(t) =ΦΦΦ(t)ααα, (1)

where E(ααα) = 000. This means that the realizations of the process XXX are in finite
dimensional subspace of Lp

2(I). We will denote this subspace by L p
2 (I).

We can estimate the vector ααα on the basis of n independent realizations xxx1,xxx2, . . . ,xxxn

of the random process XXX (functional data). We will denote this estimator by α̂αα.
Typically data are recorded at discrete moments in time. Let xk j denote an

observed value of the feature Xk, k = 1,2, . . . , p at the jth time point t j, where j =
1,2, ...,J. Then our data consist of the pJ pairs (t j,xk j). These discrete data can
be smoothed by continuous functions xk and I is a compact set such that t j ∈ I, for
j = 1, ...,J.

Details of the process of transformation of discrete data to functional data can
be found in Ramsay and Silverman (2005) or in Górecki et al. (2014).

4. Distance covariance (dCov)

For the jointly distributed random process XXX ∈ Lp
2(I) and the random vector YYY ∈ Rq,

let
fXXX ,YYY (lll,mmm) = E{exp[i〈lll,XXX〉+ i〈mmm,YYY 〉q]}

be the joint characteristic function of (XXX ,YYY ), where

〈lll,XXX〉=
∫

I
lll′(t)XXX(t)dt

and
〈mmm,YYY 〉=mmm′YYY .

Moreover, we define the marginal characteristic functions of XXX and YYY as follows:
fXXX (lll) = fXXX ,YYY (lll,000) and fYYY (mmm) = fXXX ,YYY (000,mmm).

Here, for generality, we assume that YYY ∈ Rq, although the label Y in the classi-
fication problem is a random variable, with values in {1, . . . ,q}. Label YYY has to be
transformed into the label vector YYY = (Y1, . . . ,Yq)

′, where Yi = 1 for i = 1, . . . ,q if XXX
belongs to class i, and 0 otherwise.
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Now, let us assume that XXX ∈L p
2 (I). Then, the process XXX has the representation

(1).

In this case, we may assume (Ramsay and Silverman (2005)) that the vector
weight function lll and the process XXX are in the same space, i.e. the function lll can
be written in the form

lll(t) =ΦΦΦ(t)λλλ , (2)

where λλλ ∈ RK+p.

Hence
〈lll,XXX〉=

∫
I
lll′(t)XXX(t)dt = λλλ

′[
∫

I
ΦΦΦ
′(t)ΦΦΦ(t)dt]ααα = λλλ

′
ααα,

where ααα and λλλ are vectors occurring in the representations (1) and (2) of the pro-
cess XXX and function lll, and

fXXX ,YYY (lll,mmm) = E{exp[iλλλ ′ααα + immm′YYY ]}= fααα,YYY (λλλ ,mmm),

where fααα,YYY (λλλ ,mmm) is the joint characteristic function of the pair of random vectors
(ααα,YYY ).

On the basis of the idea of distance covariance between two random vectors
(Székely et al. (2007)), we can introduce functional distance covariance between
random process XXX and random vector YYY .

Definition 1. A nonnegative number dCov(XXX ,YYY ) defined by

dCov(XXX ,YYY ) = dCov(ααα,YYY ),

where

dCov2(ααα,YYY ) =
1

CK+pCq

∫
RK+p+q

| fααα,YYY (λλλ ,mmm)− fααα(λλλ ) fYYY (mmm)|2

‖λλλ‖K+p+1
K+p ‖mmm‖q+1

q
dλλλdmmm,

and |z| denotes the modulus of z ∈ C, ‖λλλ‖K+p, ‖mmm‖q the standard Euclidean norms
on the corresponding spaces V chosen to produce scale free and rotation invariant
measure that does not go to zero for dependent random vectors, and

Cr =
π

1
2 (r+1)

Γ( 1
2 (r+1))

is half the surface area of the unit sphere in Rr+1, is called a functional distance
covariance between the random process XXX and the random vector YYY .

We can estimate functional distance covariance using data set
SSS = {(α̂αα1,yyy1), . . . ,(α̂ααn,yyyn)}.
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Let

ᾱαα =
1
n

n

∑
i=1

α̂ααk, ȳyy =
1
n

n

∑
i=1

yyyk,

α̃ααk = α̂ααk−ᾱαα, ỹyyk = yyyk− ȳyy, k = 1, . . . ,n

and

AAA = (akl), BBB = (bkl),

ÃAA = (Akl), B̃BB = (Bkl),

where

akl = ‖α̂ααk−α̂αα l‖K+p, bkl = ‖yyyk−yyyl‖q,

Akl = ‖α̃ααk−α̃αα l‖K+p, Bkl = ‖ỹyyk− ỹyyl‖q, k, l = 1, . . . ,n.

Hence

ÃAA =HHHAAAHHH, B̃BB =HHHBBBHHH,

where

HHH = IIIn−
1
n

111n111′n

is the centring matrix.
On the basis of the result of Székely et al. (2007), we have

dCov(SSS) =
1
n2

n

∑
k,l=1

AklBkl .

5. Hilbert-Schmidt Independent Criterion (HSIC)

Let φφφ be a mapping from Lp
2 to an inner product feature space H , and ψψψ be a

mapping from Rq to an inner product feature space G .

Definition 2. The cross-covariance operator CCCXXX ,YYY : G →H is a linear operator de-
fined as

CCCXXX ,YYY = EXXX ,YYY [φφφ(XXX)⊗ψψψ(YYY )]−µXXX ⊗µYYY ,

for all f ∈H and g ∈ G , where the tensor product operator f ⊗g : G →H , f ∈H ,
g ∈ G , is defined as

( f ⊗g)h = f 〈g,h〉G , for all h ∈ G .

This is a generalization of the cross-covariance matrix between random vectors.
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Moreover, by the definition of the Hilbert-Schmidt (HS) norm, we can compute the
HS norm of f ⊗g via

‖ f ⊗g‖2
HS = ‖ f‖2

H ‖g‖2
G .

Gretton et al. (2005) defined the Hilbert-Schmidt Independence Criterion (HSIC)
in the following way:

Definition 3. Hilbert-Schmidt Independence Criterion (HSIC) is the squared Hilbert-
Schmidt norm of the cross-covariance operator

HSIC(XXX ,YYY ) = ‖CCCXXX ,YYY‖2
HS.

Now, let
k : Rp×Rp→ R

be a kernel function on Rp.

This raises an interesting question: given a function of two variables k(xxx,xxx′),
does there exist a function φφφ such that k(xxx,xxx′) = 〈φφφ(xxx),φφφ(xxx′)〉H ? The answer is pro-
vided by Mercer’s theorem (1909), which says, roughly, that if k is positive semi-
definite then such a φφφ exists.

Often, we will not know φφφ , but a kernel function k, which encodes the inner
product in H , instead.

Popular positive semi-definite kernel functions on Rp include the polynomial ker-
nel of degree d > 0, k(xxx,xxx′) = (1+xxx>xxx′)d , the Gaussian kernel k(xxx,xxx′) = exp(−λ‖xxx−
xxx′‖2), λ > 0, and the Laplace kernel k(xxx,xxx′) = exp(−λ‖xxx−xxx′‖), λ > 0. In this paper
we use, the Gaussian kernel.

A feature mapping φφφ is centred by subtracting from it its expectation, that is
transforming φφφ(xxx) to φ̃φφ(xxx) =φφφ(xxx)−EXXX [φφφ(XXX)]. Centring a positive semi-definite kernel
function k consists in centring in the feature mapping φφφ associated to k. Thus, the
centred kernel k̃ associated to k is defined by

k̃(xxx,xxx′) = 〈φφφ(xxx)−EXXX [φφφ(XXX)],φφφ(xxx′)−EXXX ′ [φφφ(XXX
′)]〉

= k(xxx,xxx′)−EXXX [k(XXX ,xxx′)]−EXXX ′ [k(xxx,XXX
′)]+EXXX ,XXX ′ [k(XXX ,XXX ′)],

assuming the expectations exist. Here, the expectation is taken over independent
copies XXX , XXX ′. We see that, k̃ is also a positive semi-definite kernel. Note also that for
a centred kernel k̃, EXXX ,XXX ′ [k̃(XXX ,XXX ′)] = 0, that is, centring the feature mapping implies
centring the kernel function.

Let {xxx1, . . . ,xxxn} be a finite subset of Rp. A feature mapping φφφ is centred by
subtracting from it its empirical expectation, i.e. leading to φ̄φφ(xxxi) = φφφ(xxxi)−φφφ , where
φφφ = 1

n ∑
n
i=1 φφφ(xxxi). The kernel matrix KKK = (Ki j) associated to the kernel function k

and the set {xxx1, . . . ,xxxn} is centred by replacing it with K̃KK = (K̃i j) defined for all i, j =
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1,2, . . . ,n by

K̃i j = Ki j−
1
n

n

∑
i=1

Ki j−
1
n

n

∑
j=1

Ki j +
1
n2

n

∑
i, j=1

Ki j,

where Ki j = k(xxxi,xxx j), i, j = 1, . . . ,n.

The centred kernel matrix K̃KK is a positive semi-definite matrix. Also, as with the
kernel function 1

n2 ∑
n
i, j K̃i j = 0.

Let 〈·, ·〉F denote the Frobenius product and ‖ · ‖F the Frobenius norm defined
for all AAA,BBB ∈ Rn×n by

〈AAA,BBB〉F = tr(AAA>BBB),

‖AAA‖F = (〈AAA,AAA〉F)1/2.

Then, for any kernel matrix KKK ∈Rn×n, the centred kernel matrix K̃KK can be expressed
as follows (Schölkopf et al.(1998)):

K̃KK =HHHKKKHHH,

where HHH ia a centering matrix.

Since HHH is the idempotent matrix (HHH2 = HHH), then we get for any two kernel ma-
trices KKK and LLL based on the subset {xxx1, . . . ,xxxn} of Rp and the subset {yyy1, . . . ,yyyn} of
Rq, respectively,

〈K̃KK,L̃LL〉F = 〈KKK,L̃LL〉F = 〈K̃KK,LLL〉F .

We may express HSIC in terms of kernel functions (Gretton et al. (2005)):

HSIC(XXX ,YYY ) = EXXX ,X ′X ′X ′,YYY ,Y ′Y ′Y ′ [k(XXX ,XXX ′)l(YYY ,YYY ′)]

+EXXX ,X ′X ′X ′ [k(XXX ,XXX ′)]EYYY ,Y ′Y ′Y ′ [l(YYY ,YYY
′)]

−2EXXX ,YYY [EX ′X ′X ′ [k(XXX ,XXX ′)]EY ′Y ′Y ′ [l(YYY ,YYY
′)]].

Here, EXXX ,X ′X ′X ′,YYY ,Y ′Y ′Y ′ denotes the expectation over independent pairs (XXX ,YYY ) and (XXX ′,YYY ′).

Let

k? : L p
2 (I)×L p

2 (I)→ R

be a kernel function on L p
2 (I). For the multivariate functional data the Gaussian

kernel has the form:

k?(xxx,xxx′) = exp(−λ‖xxx−xxx′‖2), λ > 0.
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From the orthonormality of the basis functions, we have:

‖xxx−xxx′‖2 =
∫

I
(xxx(t)−xxx′(t))>(xxx(t)−xxx′(t))dt

= ‖α̂αα−α̂αα
′‖2.

Hence

k?(xxx,xxx′) = k(α̂αα,α̂αα ′),

where α̂αα1, . . . ,α̂ααn are vectors occurring in the representation (1).

Definition 4. The empirical HSIC for functional data is defined as

HSIC(S?) =
1
n2 〈KKK

?,LLL?〉F ,

where S? = {(xxx1,yyy1), . . . ,(xxxn,yyyn)}, KKK? and LLL? are kernel matrices based on the sub-
sets {xxx1, . . . ,xxxn}, and {yyy1, . . . ,yyyn} of L p

2 (I) and Rq, respectively.

But KKK? = KKK, where KKK is the kernel matrix of size n× n, which has its (i, j)th
element Ki j given by Ki j = k(α̂αα i,α̂αα j). LLL is the kernel matrix of size n×n, which has
its (i, j)th element Li j given by Li j = l(yyyi,yyy j).

Hence

HSIC(S?) = HSIC(S),

where S = {(α̂αα1,yyy1), . . . ,(α̂ααn,yyyn)}.

6. Variable selection based on the fuctional dCov and the func-
tional HSIC

In this Section we propose the selection procedure built on the functional dCov
and the functional HSIC. Let YYY = (Y1, . . . ,Yq)

′, be the response vector, and XXX =

(X1, . . . ,Xp)
′ be the predictor p-dimensional process. Assume that only a small num-

ber of predictors are relevant to YYY . We will define an irrelevant variable to be one
whose value is statistically independent of label vector YYY and of the other variables
X1, . . . ,Xp.

We select a set of important predictors with large functional dCov(SSS) or with large
functional HSIC(SSS).

We utilize the functional dCov because it allows for arbitrary relationship be-
tween YYY and XXX , regardless of whether it is linear or nonlinear. We would like an
assurance that irrelevant variables do not increase dCov. Kong et al. (2015) proved
the following theorem.

Theorem 1. Let ZZZ = (XXX>,Xp+1)
>, where Xp+1 is an irrelevant variable. Then

dCov(ZZZ,YYY )≤ dCov(XXX ,YYY ).
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Gretton et al. (2005) proved that HSIC(XXX ,YYY ) = 0 if and only if XXX and YYY are
independent of each other. This is the direct motivation why we may also choose
HSIC to measure the dependence. For the Gaussian kernel the following result is
true.

Theorem 2. Let ZZZ = (XXX>,Xp+1)
>, where Xp+1 is an irrelevant variable. Then

HSIC(ZZZ,YYY )≤ HSIC(XXX ,YYY ).

Proof. Since the variable Xp+1 is independent of the label vector YYY and the other
variables X1, . . . ,Xp, functions of these variables are also independent.

Hence

HSIC(ZZZ,YYY ) = EXXX ,XXX ′,YYY ,YYY ′ [k(ZZZ,ZZZ
′)l(YYY ,YYY ′)]+EXXX ,XXX ′ [k(ZZZ,ZZZ

′)]EYYY ,YYY ′ [l(YYY ,YYY
′)]

−2EXXX ,YYY{EXXX ′ [k(ZZZ,ZZZ
′)]EYYY ′ [l(YYY ,YYY

′)]}
= EXXX ,XXX ′,YYY ,YYY ′ [k(XXX ,XXX ′)exp(−λ (Xp+1−X ′p+1)

2)l(YYY ,YYY ′)]

+EXXX ,XXX ′ [k(XXX ,XXX ′)]exp(−λ (Xp+1−X ′p+1)
2)EYYY ,YYY ′ [l(YYY ,YYY

′)]

−2EXXX ,YYY{EXXX ′ [k(XXX ,XXX ′)exp(−λ (Xp+1−X ′p+1)
2)]EYYY ′ [l(YYY ,YYY

′)]}
= HSIC(XXX ,YYY )exp(−λ (Xp+1−X ′p+1)

2)≤ HSIC(XXX ,YYY ),

because exp(−λ (Xp+1−X ′p+1)
2)≤ 1, for λ > 0.

The functional dCov and functional HSIC also permit univariate and multivariate
response. Thus, this procedure is completely model-free.

We implemented the above theorems as a stopping rule in the selections of
responses. The procedure took the following steps:

1. Calculate marginal functional dCov or functional HSIC for Xk, k = 1, . . . , p with
the response YYY .

2. Rank the variables in decreasing order of the selected measure. Denote the
ordered predictors as X(1),X(2), . . . ,X(p). Start with XXXS = {X(1)}.

3. For k from 2 to p, keep adding X(k) to XXXS if dCov(XXXS,YYY ) or HSIC(XXXS,YYY ) does
not decrease. Stop otherwise.

7. Example

The described method was employed here to select the variables (pillars) in the
classification problem of 115 countries in the period 2008-2017. Table 1 describes
the variables (pillars) used in the analysis.
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Table 1. Variables (pillars) used in analysis, 2008-2017
No. Variable (pillar)
1. Institutions
2. Infrastructure
3. Macroeconomic environment
4. Health and primary education
5. Higher education and training
6. Goods market efficiency
7. Labour market efficiency
8. Financial market development
9. Technological readiness
10. Market size
11. Business sophistication
12. Innovation

For this purpose, the use was made of data published by the World Economic
Forum (WEF) in its annual reports (http://www.weforum.org). Those are compre-
hensive data, describing exhaustively various socio-economic conditions or spheres
of individual states. WEF experts have divided discussed countries into five groups
(Figure 1).

Group

NA 1 2 3 4 5

Figure 1: 115 countries used in the analysis

The data were transformed into functional data. Calculations were performed
using the Fourier basis. In view of a small number of time periods, for each variable
the maximum number of basis components was taken to be equal to five.
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In the next step we applied the method of selecting variables described earlier
(we stopped the procedure if the increase in the selected measure was less than
0.05). In such a way we obtained 5 variables (Figure 2 and Figure 3).
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Figure 2: Variables selection for functional dCov

Next, we applied the described classifiers to reduced functional data and to
full functional data. To estimate the error rate of the classifiers we used LOO CV
(leave-one-out cross validation) method. The results are in Table 2.

Table 2. Classification accuracy (in %)
Classifier Selected variables (5) All variables (12)
LDC 71.30 66.09
kNN (k = 1, . . . ,8) 77.39 71.30
Naive Bayes (normal) 69.57 65.22
Naive Bayes (kernel) 67.83 62.61
Logistic regression 60.87 56.52

We can observe that the error rate decreases if we reduce our data set. We can
also notice that the order of classifiers stays unchanged (the best classifier for full
data is kNN, and the same is the best for reduced data).

During the calculations we used R (R Core Team (2018)) software and caret
(Kuhn (2018)), energy (Rizzo and Székely (2018)) and fda (Ramsay et al. (2018))
packages.



STATISTICS IN TRANSITION new series, June 2019 135

H
S

IC

0
.0

7
0

.0
8

0
.0

9
0

.1
0

Te
ch

no
lo

gi
ca

l r
ea

di
ne

ss

In
fra

st
ru

ct
ur

e
H
ig

he
r e

du
ca

tio
n 

an
d 

tra
in

in
g

H
ea

lth
 a

nd
 p

rim
ar

y 
ed

uc
at

io
n

B
us

in
es

s 
so

ph
is
tic

at
io

n

In
no

va
tio

n
G

oo
ds

 m
ar

ke
t e

ffi
ci
en

cy

In
st

itu
tio

ns

Fi
na

nc
ia

l m
ar

ke
t s

op
hi

st
ic
at

io
n

La
bo

r m
ar

ke
t e

ffi
ci
en

cy
M

ac
ro

ec
on

om
ic
 s

ta
bi

lit
y

M
ar

ke
t s

iz
e

Selected variables =  5

Selected HSIC =  0.09

Maximum HSIC =  0.09

Figure 3: Variables selection for functional HSIC

8. Conclusions

The paper introduces variable selection for classification of multivariate functional
data. The use of functional distance covariance or functional HSIC as a tool to
reduce dimensionality of data set suggests that the technique provides useful re-
sults for classification of multivariate functional data. For analysed data set only five
from twelve variables were included in the final model. We realize that the classi-
fication accuracy could drop slightly. However, we expect that this drop should be
reasonable and in return we could gain a considerable amount of computation time.

In practice, it is important not to depend entirely on variable selection criteria
because none of them works well under all conditions. So, our approach could
be seen as a competitive to other variable selection methods and the full model
without variables reduction. Finally, the researcher needs to evaluate the models
using various diagnostic procedures.
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GÓRECKI, T., KRZYŚKO, M., WOŁYŃSKI, W., (2016). Multivariate functional re-
gression analysis with application to classification problems, In: Analysis of
Large and Complex Data, Studies in Classification, Data Analysis, and Knowl-
edge Organization, Eds.: Wilhelm Adalbert F. X., Kestler Hans A., Springer
International Publishing, pp. 173–183.

GRETTON, A., BOUSQUET, O., SMOLA, A., SCHÖLKOPF, B., (2005). Measuring
statistical dependence with Hilbert-Schmidt norms. In: Algorithmic Learning
Theory (S., Jain, H. U., Simon and E., Tomita, eds.), Lecture Notes in Com-
puter Science, 3734, pp. 63–77, Springer, Berlin.

HASTIE, T. J., TIBSHIRANI, R. J., BUJA, A., (1995). Penalized discriminant anal-
ysis, Annals of Statistics, 23, pp. 73–102.

HORVÁTH, L., KOKOSZKA, P., (2012). Inference for Functional Data with Applica-
tions, Springer, New York.

JACQUES, J., PREDA, C., (2014). Model-based clustering for multivariate func-
tional data, Computational Statistics & Data Analysis, 71, pp. 92–106.



STATISTICS IN TRANSITION new series, June 2019 137

KONG, J., WANG, S., WAHBA G., (2015). Using distance covariance for improved
variable selection with application to learning genetic risk models, Statistics in
Medicine, 34, pp. 1708–1720.

KUHN, M., Contributions from Jed Wing, Steve Weston, Andre Williams, Chris
Keefer, Allan Engelhardt, Tony Cooper, Zachary Mayer, Brenton Kenkel, the
R Core Team, Michael Benesty, Reynald Lescarbeau, Andrew Ziem, Luca
Scrucca, Yuan Tang, Can Candan and Tyler Hunt, (2018), caret: Classifi-
cation and Regression Training. R package version 6.0-80, https://CRAN.R-
project.org/package=caret.

R Core Team (2018). R: A language and environment for statistical comput-
ing, R Foundation for Statistical Computing, Vienna, Austria, https://www.R-
project.org/.

RAMSAY, J. O., SILVERMAN, B.W., (2005). Functional Data Analysis, Springer,
New York.

RAMSAY, J. O., WICKHAM, H. GRAVES, S., HOOKER, G., (2018). fda: Functional
Data Analysis, R package version 2.4.8, https://CRAN.R-project.org/package=fda.

RIZZO, M. L., SZÉKELY, G. J., (2018). energy: E-Statistics: Multivariate In-
ference via the Energy of Data, R package version 1.7-5, https://CRAN.R-
project.org/package=energy.

ROSSI, F., DELANNAYC, N., CONAN-GUEZA, B., VERLEYSENC, M., (2005).
Representation of functional data in neural networks, Neurocomputing, 64,
pp. 183–210.

ROSSI, F., VILLA, N., (2006). Support vector machines for functional data classifi-
cation, Neural Computing, 69, pp. 730–742.

ROSSI, N., WANG, X., RAMSAY, J.O., (2002). Nonparametric item response
function estimates with EM algorithm, Journal of Educational and Behavioral
Statistics, 27, pp. 291–317.

SCHÖLKOPF, B., SMOLA, A. J., MÜLLER, K. R., (1998). Nonlinear component
analysis as a kernel eigenvalue problem, Neural Computation, 10, pp. 1299–
1319.

SZÉKELY, G. J., RIZZO, M. L., BAKIROV, N. K., (2007). Measuring and testing
dependence by correlation of distances, The Annals of Statistics, 35 (6), pp.
2769–2794.
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