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FROM THE EDITOR   

This issue of the Statistics in Transition new series appears at a very special 
moment in its history, for two seemingly unrelated reasons which coincide in time: 
the 25th anniversary of the journal, and 100th anniversary of the Central 
Statistical Office, renamed recently on Statistics Poland, which sponsors the 
publication of this international journal of the Polish Statistical Association. As it 
was announced in the previous issues, there will be a special topical stream 
within the upcoming 2nd Congress of Polish Statistics (July10-12, 2018), 
envisaged as a way to celebrate this outstanding moment, and devoted to 
discussing the role of such a type of scientific (statistical) journals in promoting 
statistics as a discipline and as an instrument of creation and sustain community 
of specialists, and other stakeholders. Without falling into the tone of celebration, 
it seems worthwhile mentioning here the systematic progression of our journal in 
terms of its growing visibility in numerous international indexation bases, and of 
scores (impact factor) obtained from some of the most prestigious ones 
(for instance, above three times higher Scopus' CiteScore metrics for 2017 
compared to 2016). We are totally aware of the fact that the primary source of 
such recognition was an increasing quality of the journal's articles. I would like to 
take this opportunity to express my deep appreciation to authors and peer-
reviewers for their contributions to our joint efforts towards an excellence. Thanks 
to them the next quarter of a century of the Statistics in Transition new series 
looks optimistic and worth to support it. 

The structure of this issue follows its regular thematic frame, i.e., it contains 
four sections, starting with Sampling methods and estimation and closing up with 
Research Communicates and Letters.  

Carl-Erik Särndal's, Imbi Traat's and Kaur Lumiste's paper Interaction 
between data collection and estimation phases in surveys with 
nonresponse discusses approaches to deal with problems encountered in 
inference in surveys with nonresponse. The traditional focus on the estimation 
phase resulted in excelling some methods to reduce the nonresponse bias 
(propensity weighting and calibrated weighting) while the data collection phase 
has come into focus only recently. The authors take an integrated view where 
data collection and estimation are considered together. For a chosen auxiliary 
vector, they define the concepts incidence and inverse incidence and show their 
properties and relationship, showing that incidences are used in balancing the 
response in data collection; and that the inverse incidences are important for 
weighting adjustment in the estimation.  

The paper by Ceylan Talu Yozgatligil and H. Öztaş Ayhan, Univariate 
sample size determination by alternative components: issues on design 
efficiency for complex samples is focused on the sample size determination 
taking into account some desired objectives: the level of confidence of estimates 
and the desired precision of the survey results, and the cost of enumeration. 
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Recently, some international organizations have been using univariate sample 
size determination approaches for their multivariate sample designs. These 
approaches also included some design efficiency and error statistics for the 
determination of the univariate sample sizes. They should be used for 
determining the survey quality measures after the data collection, not before. The 
additional components of the classical sample size measure will create selection 
and representation bias of survey estimates, which is discussed in this article.  

Mir Subzar, Showkat Maqbool, Tariq Ahmad Raja, Surya Kant Pal and 
Prayas Sharma propose new estimators in the paper on Efficient estimators of 
population mean using auxiliary information under simple random 
sampling. An improved family of estimators for estimation of population mean is 
developed using the auxiliary information of median, quartile deviation, Gini’s 
mean difference, Downton’s Method, Probability Weighted Moments and their 
linear combinations with correlation coefficient and coefficient of variation. Their 
performance is analysed by mean square error and bias and compared with the 
existing estimators in the literature. By this comparison the authors go to 
conclusion that their proposed family of estimators is more efficient than the 
estimators offered in the literature. The theoretical results are supported by the 
empirical study.  

O. Olawale Awe's and A. Adedayo Adepoju's article Modified recursive 
Bayesian algorithm for estimating time-varying parameters in dynamic 
linear models starts with observation that Estimation in Dynamic Linear Models 
(DLMs) with Fixed Parameters (FPs) has been faced with considerable limitations 
due to its inability to capture the dynamics of most time-varying phenomena in 
econometric studies. Since an attempt to overcome this limitation resulted in the 
use of Recursive Bayesian Algorithms (RBAs) - which also suffers from increased 
computational problems in estimating the Evolution Variance (EV) of the Time-
Varying Parameters (TVPs) - the authors developed an alternative procedure. 
They propose a modified RBA for estimating TVPs in DLMs with reduced 
computational challenges. 

In the next paper, Generalized exponential type estimator of population 
mean in the presence of non-response, Siraj Muneer, Javid Shabbir and 
Alamgir Khalila propose a class of generalized exponential type estimators to 
estimate the finite population mean using two auxiliary variables under non-
response in simple random sampling. The proposed estimator under non-
response in different situations has been studied and gives minimum mean 
square error as compared to all other considered estimators. Usual exponential 
ratio type estimator, exponential product type estimator and many more 
estimators are also identified from the proposed estimator. They use three real 
data sets to obtain the efficiencies of estimators. 

The second section, Research articles, starts with Mauro Mussini's paper On 
measuring polarization for ordinal data: an approach based on the 
decomposition of the Leti index. The measurement of polarization for ordinal 
data - which occurs in the distribution of an ordinal variable – involves the 
decomposition of the Leti heterogeneity index. The ratio of the between-group 
component of the index to the within-group component is used to measure the 
degree of polarization for an ordinal variable. This polarization measure does not 
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require imposing cardinality on ordered categories to quantify the degree of 
polarization in the distribution of an ordinal variable. Author addresses the 
practical issue of identifying groups by using classification trees for ordinal 
variables. This tree-based approach uncovers the most homogeneous groups 
from observed data, discovering the patterns of polarization in a data driven way. 
An application to Italian survey data on self-reported health status is shown. 

Ujjwal Das and Nader Ebrahimi in the paper entitled New method for 
covariate selection in Cox model undertake the problem of selection right 
predictors starting with discussion of  the criterion of penalized regression, known 
as “least absolute shrinkage and selection operator" (LASSO). The LASSO 
regression involves a penalizing parameter (commonly denoted by l) which 
controls the extent of penalty and hence plays a crucial role in identifying the right 
covariates. The author's propose an information theory-based method to 
determine the value of l in association with the Cox proportional hazards model. 
Furthermore, an efficient algorithm is discussed in the same context. They 
demonstrate the usefulness of the proposed method through an extensive 
simulation study. Finally, the performance of it is compared with existing methods 
and the algorithm is illustrated using a real data set. 

In Wioletta Grzenda's and Ewa Frątczak's article Cohort patterns of 
fertility in Poland based on staging process – generations 1930-1980 
addressed is the problem of unprecedented changes in the fertility. Currently, the 
total fertility rate level is very low, about 1.3 children per woman, which is below 
the replacement level. Many studies have described changes in fertility based on 
the cross-sectional approach. In the authors' view, the changes of cohort fertility 
have been described not quite sufficiently. Therefore, they attempt to fill in this 
gap by the assessment of stochastic fertility tables, calculated for five-year 
generations of women born in the period 1930-1980. The main goal of this study 
is to analyse changes in the cohort patterns of female fertility in Poland. During 
the transformation period in Poland the model of nuclear family changed from 
two-child model into one-child model, with a high percentage of childless families 
in the general structure. More recent analysis of 15 Central and East European 
(CEE) countries, including Poland, confirms such tendencies and shows that 
despite the growth in fertility rates in the late 2000s, the fertility still remains at a 
low level. 

The section Other articles contains a paper based on presentation at the 2018 
Multivariate Statistical Analysis Conference in Łódź by Daniel Kosiorowski, 
Dominik Mielczarek, Jerzy P. Rydlewski and Małgorzata Snarska, 
Generalized exponential smoothing in prediction of hierarchical time series. 
The authors stars with presentation of a grouped functional time series 
forecasting approach being a combination of individual forecasts obtained using 
the generalized least squares method. They modify the Shang-Hyndman 
methodology using a generalized exponential smoothing technique for the most 
disaggregates functional time series in order to obtain a more robust predictor. 
They discuss some properties of their proposals based on the results obtained via 
simulation studies and analysis of real data related to the prediction of demand for 
electricity in Australia (in 2016). 
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The final section, Research Communicates and Letters, contains two articles. 
In the first, by Czesław Stępniak, entitled On a surprising result of two-
candidate election forecast based on the first leadership time, author 
presents "a simple but provocative note". He considers an election with two 
candidates, and under assumption that candidate A was the leader until counting 
n votes, and he asks the question "How to use this information in predicting the 
final results of the election?" According to the common belief the final number of 
votes for the leader should be a strictly increasing function of n. Assuming the 
votes are counted in random order, it is possible to derive the Maximum 
Likelihood predictor of the final number of votes for the future winner and loser 
based on the first leadership time. It appears that this time has little effect on the 
predicting. The first leadership time is informative for the final results of the 
election only in the trivial case. 

In the next paper, The wellbeing effect of community development. Some 
measurement and modeling issues, Włodzimierz Okrasa and Dominik 
Rozkrut discuss the interconnected methodological tasks, measurement and 
modeling, in the context of exploration of the cross-level interaction between the 
local community development and individual wellbeing. The preliminary results 
illustrate usefulness of an analytical framework aimed to assess an impact of the 
local development on individual wellbeing through multilevel modeling, accounting 
for spatial effects. To this aim, a dual measurement system is employed with data 
from two independent sources: (i) the Local Data Bank (LDB) for calculating a 
multidimensional index of local deprivation (MILD) and (ii) the Time Use Survey 
data to construct the U-index (‘time of unpleasant state’), considered as a 
measure of individual wellbeing. Since one of the implications of the main 
hypothesis on the interaction between community development and individual 
wellbeing is the importance of 'place' and 'space', a special emphasize has been 
put on spatial effects, i.e. geographic clusters and spatial associations 
(autocorrelation, dependence). The evidence that place and space matter for this 
relationship provides support for validity of both multilevel and spatial approaches 
(ideally, combined) to this type of problems. 

 
 
Włodzimierz Okrasa 

Editor  
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Statistics in Transition new series (SiT) is an international journal published 
jointly by the Polish Statistical Association (PTS) and the Central Statistical Office 
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2006 three times a year). Also, it has extended its scope of interest beyond its 
originally primary focus on statistical issues pertinent to transition from centrally 
planned to a market-oriented economy through embracing questions related to 
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wide.  

The SiT-ns seeks contributors that address the full range of problems involved 
in data production, data dissemination and utilization, providing international 
community of statisticians and users – including researchers, teachers, policy 
makers and the general public – with a platform for exchange of ideas and for 
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domain of informational infrastructure of the economy, society and the state – are 
appropriate for Statistics in Transition new series. 

Demonstration of the role played by statistical research and data in economic 
growth and social progress (both locally and globally), including better-informed 
decisions and greater participation of citizens, are of particular interest. 

Each paper submitted by prospective authors are peer reviewed by 
internationally recognized experts, who are guided in their decisions about the 
publication by criteria of originality and overall quality, including its content and 
form, and of potential interest to readers (esp. professionals). 

Manuscript should be submitted electronically to the Editor: 
sit@stat.gov.pl.,  
GUS / Central Statistical Office  
Al. Niepodległości 208, R. 287, 00-925 Warsaw, Poland 

It is assumed, that the submitted manuscript has not been published 
previously and that it is not under review elsewhere. It should include an abstract 
(of not more than 1600 characters, including spaces). Inquiries concerning the 
submitted manuscript, its current status etc., should be directed to the Editor by 
email, address above, or w.okrasa@stat.gov.pl. 

For other aspects of editorial policies and procedures see the SiT Guidelines 
on its Web site: http://stat.gov.pl/en/sit-en/guidelines-for-authors/ 
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INTERACTION BETWEEN DATA COLLECTION AND 
ESTIMATION PHASES IN SURVEYS WITH NONRESPONSE 

Carl-Erik Särndal1, Imbi Traat2, Kaur Lumiste3 

ABSTRACT 

Inference in surveys with nonresponse has been studied extensively in the 
literature with a focus on the estimation phase. Propensity weighting and 
calibrated weighting are among the adjustment methods used to reduce the 
nonresponse bias. The data collection phase has come into focus more recently; 
the literature on adaptive survey design emphasizes representativeness and 
degree of balance as desirable properties of the response obtained from a 
probability sample. We take an integrated view where data collection and 
estimation are considered together. For a chosen auxiliary vector, we define the 
concepts incidence and inverse incidence and show their properties and 

relationship. As we show, incidences are used in balancing the response in data 
collection; the inverse incidences are important for weighting adjustment in the 
estimation. 

Key words: adaptive survey design, auxiliary vector, incidence, inverse incidence, 

nonresponse adjustment, response imbalance.  

1.  Introduction 

Weighting techniques are important in producing statistics from sample 
surveys. Units under-represented in the sample ought to be given a higher weight 
in the estimation, those over-represented should get a lower weight. This intuitive 
understanding was probably practiced well before theoretical advancement in the 
1930’s made it formal: Unbiased estimation in stratified sampling calls for 
weighting units by the inverse of the stratum sampling rate; the rates may differ 
considerably between strata. Later and more generally, the Horvitz-Thompson 
estimator principle established that if the sampling design gives inclusion 
probability 𝜋𝑘 to unit k, then the weights 1/𝜋𝑘 will grant design unbiased 
estimation of a population total. That holds in the absence of nonresponse. This 
principle has had a great impact on survey methodology for at least 60 years, and 
continues to be a backbone for methodology, particularly in national statistical 
institutes, despite heavy unit nonresponse affecting many surveys today, 
especially those of individuals and households (Bethlehem et al., 2011).  

                                                           
1 Statistics Sweden. E-mail: carl.sarndal@telia.com. 
2 Institute of Mathematics and Statistics, University of Tartu, Estonia. E-mail: imbi.traat@ut.ee. 
3 Questro Analytics Ltd., Tartu, Estonia. E-mail: kaur.lumiste@eesti.ee. 
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When we come to surveys with nonresponse, specifically to NMAR (not 
missing at random) nonresponse, weighting techniques continue to be attractive 
and important, but are less successful in that estimates are no longer unbiased. 
An inspection of the realized set of respondents may reveal that certain types of 
sample units are markedly under- or over-represented. Weighting is used to 
compensate for this, then called “weighting adjustment”. Intuitively, this can 
reduce bias, perhaps considerably, compared with a passive attitude of a flat 
weighting, as when we simply use the respondent mean multiplied by the 
population size. But weighting adjustment will not fully eliminate the bias. 

A comprehensive review of nonresponse weighting adjustment was presented 
by Brick (2013). He identifies three major themes in nonresponse research: (a) 
Study of the response mechanism; (b) Data collection methods to reduce damage 
by nonresponse, (c) Adjustment of the survey weights to adjust for survey 
nonresponse. We are concerned in this article with (b) and (c), and more 
particularly with the interaction between them. As Brick (2013, p. 347) also notes, 
a deeper understanding of nonresponse in surveys is prevented by the complexity 
of the survey process; many unknown factors contribute to it. 

With the considerable attention paid recently to responsive (or adaptive) 
survey design, the practice of weighting comes into a new light. Such designs can 
bring a more appropriate final set of respondents, compared with a stationary 
design where the data collection obeys a fixed unchanging protocol from 
beginning to end. A better balanced response is, potentially, a better starting point 
for the weighting adjustment in the estimation phase. A review of the literature of 
adaptive and responsive survey designs is found in Tourangeau et al. (2017). 
They also suggest directions for further improvement of such designs, and for 
data collection management more generally. 

An adaptive data collection does not follow a stationary protocol. Interventions 
may take place during the data collection period. Representativeness and low 
imbalance are general objectives for the ultimate set of respondents. The R-
indicator of Schouten et al. (2009) is a measure of the former concept. In a similar 
vein, Särndal (2011), Särndal and Lundquist (2014) used the Imbalance statistic 
to monitor the data collection. Representativeness and balance are related. Both 
are measured with respect to an auxiliary vector composed of auxiliary variable 
values known at least for the sample units, possibly for all population units.  

Response propensity is another important concept for the data collection. It is 
a conditional response probability, given the auxiliary vector (Schouten et al., 
2011). It is thus a theoretical quantity, defined either at the population level or at 
the sample level. It can be estimated from a response set. In adaptive design, the 
response propensity of the sample units is evolving during the data collection 
period, in tune with of the recruitment protocol changes (Olson and Groves 2012, 
Schouten et al. 2011).  

Until recently, the data collection phase and the estimation phase have been 
seen largely as separate fields of research. Estimation under nonresponse has a 
long history and a large literature, namely, on how to apply statistical estimation 
theory to get the best possible – least biased – estimates, with the “frozen” set of 
respondents that the data collection happened to give, let alone how “good” or 
“representative” that set of respondents may be.  
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With the recent attention paid to adaptive design for the data collection, the 
need has arisen to know more about how a representative or well-balanced 
response may help the search for less biased estimates. Designs that optimize 
collection and adjustment simultaneously need to be developed (Kaminska 2013, 
p. 356). 

We discuss terminology and concepts important for the two phases, the data 
collection and the estimation. We focus on the interrelation of the two phases and 
explore the connections that exist, via a multivariate auxiliary vector, between a 
realized set of respondents and the full (unrealized) probability sample. We see 
the response not as fixed and frozen but as dynamic, subject to change through 
the adaptive data collection. Important concepts introduced and studied in 
Sections 2 and 3 of the paper are incidence (of different types of sample units) 
and inverse incidence. The former is used for balancing the response during the 
data collection period, see Section 4, the latter for weighting responding units at 
the estimation stage, see Section 5. The two concepts do not necessarily assume 
a probabilistic response mechanism. A concluding discussion is the topic in 
Section 6. 

2.  Response Set and Sample Set: One Reflected in the Other 

Suppose the survey data collection has resulted in a non-empty response set 
r, out of a probability sample s drawn from the population 𝑈 = {1, ⋯ , 𝑘, ⋯ , 𝑁}; 𝑟 ⊂
𝑠 ⊂ 𝑈. The response r is the set of units k having delivered the value 𝑦𝑘 of the 
study variable y. The survey may have several study variables; the discussion 
and the formulas will necessarily focus on one. The sample s is drawn from U so 

that unit k has the known inclusion probability 𝜋𝑘 > 0 and the sampling weight 

𝑑𝑘 = 1/𝜋𝑘. The mechanism that generates r from s is unknown. The (sample-

weighted) survey response rate is 𝑃 = ∑ 𝑑𝑘/ ∑ 𝑑𝑘𝑘∈𝑠𝑘∈𝑟 , where 0 1P   is 

assumed. 

2.1. The Auxiliary Vector  

In the nonresponse context, three types of variables play a role: The study 
variable (continuous or categorical) y has values 𝑦𝑘 observed for 𝑘 ∈ 𝑟 only, and 

used to estimate the population total 𝑌 = ∑ 𝑦𝑘𝑘∈𝑈 . The response indicator I   has 
value 𝐼𝑘 = 1  for 𝑘 ∈ 𝑟 and 𝐼𝑘 = 0 for  𝑘 ∈ 𝑠 − 𝑟.  

The auxiliary vector x with value x𝑘 is available at least for 𝑘 ∈ 𝑠, possibly for 

𝑘 ∈ 𝑈. The 𝐽 ≥ 1 variables in the vector x can be continuous or categorical. They 
are recorded from registers or available as paradata from the data collection 
process. An early use of the latter information is in Politz and Simmons (1949), a 
more recent one in Beaumont (2005).  

Since x𝑘 is known for 𝑘 ∈ 𝑠 we can note, in an ongoing data collection, which 

values x𝑘 of the sample units are over-represented (have high incidence) in the 
realized response r, and which are under-represented (have low incidence). At 
the end of data collection, we can analyse the final response outcome with 
respect the specified vector x. 

In an important special case, all auxiliary variables are categorical. We denote 
the number of distinct values x𝑘 by M, a number possibly different from the vector 
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dimension J. More particularly, x can be a group vector, that is, of the form x𝑘 =
(0, … , 1, … , 0)′ with a single entry “1” to indicate the group membership of k. Then 
𝐽 = 𝑀. For other kinds of x-vector, 𝐽 < 𝑀, where M may be considerably greater 
than J. 

To illustrate, if  x represents a crossing of 2 sexes, 3 exhaustive education 
categories and 4 exhaustive age categories, then x is a group vector with 
dimension 𝐽 = 2 × 3 × 4 = 24 and 𝐽 = 𝑀 = 24. If the same three variables are 
used to define instead the auxiliary vector x with sex and education crossed, while 
the categorical age is coded as one of (1,0,0), (0,1,0), (0,0,1) and (0,0,0), then the 
dimension is only 𝐽 = 2 × 3 + 3 = 9, but M is unchanged at 24.   

We assume that all x-vectors used here have the following feature: There 
exists constant vector  μ  (not depending on k) such that  

 μ′x𝑘 = 1 for all k.                                            (1) 

Most vectors of interest satisfy this requirement. When x is a group vector, the 
vector μ with all elements equal to “1” satisfies (1). In the example above, where x 
has sex and education crossed, and age contributing three more positions, the 
vector 𝜇 = (1,1,1,1,1,1,0,0,0)′ satisfies (1). The reason for the requirement is 
convenience in many derivations. 

2.2. The Response Described by the Incidence of the Sampled Units 

To say that the response r is a subset of the sample s, and to say, inversely, 
that the set s contains r, are weak and uninformative descriptions of the 
relationship between r and s. Their relationship is made more explicit through the 

intermediary of chosen vector x and its values x𝑘  known for 𝑘 ∈ 𝑠. No 
assumptions about the probabilistic nature of the response mechanism are 
needed in this description. 

Given r and an x-vector, we ask: What values 𝑓𝑘, attached to the sample units 

𝑘 ∈ 𝑠, will give agreement with the observed response mean x̅𝑟 = ∑ 𝑑𝑘x𝑘𝑘∈𝑟 /
∑ 𝑑𝑘𝑘∈𝑟 ? We seek 𝑓𝑘 for 𝑘 ∈ 𝑠 to satisfy 

∑ 𝑑𝑘𝑓𝑘x𝑘𝑘∈𝑠 / ∑ 𝑑𝑘 = x̅𝑟𝑘∈𝑠 .        (2) 

Further specification is needed to get a unique solution. One is obtained by 
letting 𝑓𝑘 be linear in the x-vector: 𝑓𝑘 = A′x𝑘 for some J-vector A. Inserting into (2), 

and solving, we get  A′ = x̅′𝑟Σ𝑠
−1, where the J J  matrix 

Σ𝑠 = ∑ 𝑑𝑘x𝑘x𝑘
′

𝑘∈𝑠 / ∑ 𝑑𝑘𝑘∈𝑠      (3) 

is assumed non-singular. Therefore,  

𝑓𝑘 = x̅𝑟
′ Σ𝑠

−1x𝑘 ,   𝑘 ∈ 𝑠.   (4) 

We call 𝑓𝑘 the incidence (factor) of unit k. The mean incidence over s, as a 

consequence of (1), is 𝑓�̅� = ∑ 𝑑𝑘𝑓𝑘𝑘∈𝑠 / ∑ 𝑑𝑘 = 1𝑘∈𝑠 . The variance over s, 

∑ 𝑑𝑘(𝑓𝑘 − 𝑓�̅�)2
𝑘∈𝑠 / ∑ 𝑑𝑘𝑘∈𝑠 , is minimal under the constraint in (2).  The proof is 

in the Appendix.  
Units with the same value of x𝑘 share the same incidence 𝑓𝑘. In the simple 

example where gender is the only x-variable, we have  𝐽 = 𝑀 = 2, x𝑘 = (1,0)′ for 
all men, x𝑘 = (0,1)′ for all women. Then (4) says that all sampled men have the 
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incidence 𝑓𝑘 = 𝑃men/𝑃, all sampled women have 𝑓𝑘 = 𝑃women/𝑃, where 𝑃men and 

𝑃women are the gender response rates and P  the overall rate. This crude kind of 
response analysis describes how the response for men differs from that of 
women. 

For x-vectors typically used in practice, the number M of distinct  values can 
be large. The response rate within groups of units with the same x𝑘-value is 

replaced by the wider concept generalized response rate, 𝑃𝑘 = 𝑃 × 𝑓𝑘, which can 
also be seen as an estimated response propensity for unit k characterized by x𝑘. 

The mean of  𝑃𝑘 over s is 𝑃𝑓�̅� = 𝑃, the overall response rate.  

2.3. The Sample Described by the Inverse Incidence of the Responding Units 

After a completed data collection, the composition of the response r can no 
longer be changed or influenced. We can describe the relationship between r and 
s by the inverse incidence. The direction here is to make the smaller set r conform 
to the larger set s, by weighting the units in r. 

We ask: What numbers 𝑔𝑘 applied to the responding units will reproduce the 
auxiliary sample mean x̅𝑠 = ∑ 𝑑𝑘x𝑘𝑘∈𝑠 / ∑ 𝑑𝑘𝑘∈𝑠 ? It is futile to ask that question for 

𝑦𝑘, because it is missing for 𝑘 ∈ 𝑠 − 𝑟. This is the inverse of the question in the 

preceding section. We seek 𝑔𝑘 for 𝑘 ∈ 𝑟 to satisfy 

∑ 𝑑𝑘𝑔𝑘x𝑘𝑘∈𝑟 / ∑ 𝑑𝑘 = x̅𝑠𝑘∈𝑟 .     (5) 

There is no unique solution. One solution is obtained by forming 𝑔𝑘 as a linear 

combination of the x-variables: For some J-vector B, set 𝑔𝑘 = B′x𝑘. Inserting 
into (5), solving for B, and assuming that 

Σ𝑟 = ∑ 𝑑𝑘x𝑘x𝑘
′

𝑘∈𝑟 / ∑ 𝑑𝑘𝑘∈𝑟      (6) 

is non-singular, we get  

𝑔𝑘 = x̅𝑠
′ Σ𝑟

−1x𝑘, 𝑘 ∈ 𝑟.   (7) 

We call 𝑔𝑘 the inverse incidence (factor), or weight, of unit 𝑘 ∈ 𝑟. The mean 

over r is �̅�𝑟 = ∑ 𝑑𝑘𝑔𝑘𝑘∈𝑟 / ∑ 𝑑𝑘 = 1𝑘∈𝑟 , using (1). The variance over r,  
∑ 𝑑𝑘(𝑔𝑘 − �̅�𝑟)2

𝑘∈𝑟 / ∑ 𝑑𝑘𝑘∈𝑟 , is minimal under the constraint in (5). The proof is 
analogous to the corresponding one for 𝑓𝑘, which is given in the Appendix. Note 

that 𝑔𝑘 is computable for all 𝑘 ∈ 𝑠, because x𝑘 is available for 𝑘 ∈ 𝑠. 

3.  Properties of Incidence and Inverse Incidence 

3.1. The Moments and the Interrelation 

The equation (2) makes a sample s conform to a realized response r through 
the incidence factor f  with values 𝑓𝑘 = x̅𝑟

′ Σ𝑠
−1x𝑘 given in (4) for 𝑘 ∈ 𝑠. The equation 

(5) makes an “upweighted” response r conform with a given sample s through the 

inverse incidence factor (or weight factor) 𝑔 with values 𝑔𝑘 = x̅𝑠
′ Σ𝑟

−1x𝑘 given in (7) 

for 𝑘 ∈ 𝑠. The values 𝑓𝑘 × g𝑘 for 𝑘 ∈ 𝑠 define the product factor.  

Example. Let x be a group vector of dimension J, x𝑘 = (0, … , 1, … , 0)′, coding 
the same number of different groups of sample units. Suppose that s is a self-

weighting fixed size n sample. Then 𝑑𝑘 = 𝑁/𝑛 for all k, and 𝑚�̅�𝑟 =
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(𝑚1, … , 𝑚𝑗 , … , 𝑚𝐽)′, where 𝑚𝑗 is the number of responding units in group j. 

Alternatively expressed, 𝑚𝑗 is the size of the j:th response group 𝑟𝑗, and 𝑚 =

∑ 𝑚𝑗
𝐽
𝑗=1   is the size of  r. From (4) and (7) we obtain 𝑓𝑘 = 𝑃𝑗/𝑃 , 𝑔𝑘 = 𝑃/𝑃𝑗 for all 

units k in the same sample group 𝑠𝑗, where 𝑃 = 𝑚/𝑛,  𝑃𝑗 = 𝑚𝑗/𝑛𝑗 is the group  j  

response rate and 𝑛𝑗 is the size of 𝑠𝑗, 𝑗 = 1, … , 𝐽.  Hence, when x is a group 

vector, 𝑔𝑘 is the inverse of 𝑓𝑘 in an exact numerical sense: 𝑓𝑘𝑔𝑘 = 1 for every k.   
In practice, the incidences 𝑓𝑘 for 𝑘 ∈ 𝑠 are used at the data collection phase, 

as tools for an adaptive data collection to create a well-balanced final response. 
This is reviewed in Section 4. The inverse incidences  𝑔𝑘 are used in the 
estimation phase for weighting adjustment. This is the topic of Section 5. Here we 
present general properties of 𝑓𝑘 and  𝑔𝑘. 

We derive mean and variance of 𝑓𝑘,  𝑔𝑘 and of their product 𝑓𝑘 × 𝑔𝑘, over the 

response and over the full sample. For the 𝑓 factor, these moments are defined 
as 

𝑓�̅� = mean𝑟(𝑓) = ∑ 𝑑𝑘𝑓𝑘𝑘∈𝑟 / ∑ 𝑑𝑘𝑘∈𝑟 , 𝑓�̅� = mean𝑠(𝑓) = ∑ 𝑑𝑘𝑓𝑘𝑘∈𝑠 / ∑ 𝑑𝑘𝑘∈𝑠 ,     (8) 

var𝑟(𝑓) = ∑ 𝑑𝑘(𝑓𝑘 − 𝑓�̅�)2
𝑘∈𝑟 / ∑ 𝑑𝑘𝑘∈𝑟 ,  var𝑠(𝑓) = ∑ 𝑑𝑘(𝑓𝑘 − 𝑓�̅�)2

𝑘∈𝑠 / ∑ 𝑑𝑘𝑘∈𝑠 .  (9) 

For the corresponding moments of the 𝑔 factor, replace 𝑓 by 𝑔. For the 

product factor, replace 𝑓 by 𝑓 × 𝑔 and 𝑓𝑘 by 𝑓𝑘 × 𝑔𝑘 in (8) and (9).  
The moments of the three factors are shown in Table 1 for an arbitrary vector x. 
Some of the table entries involve quadratic forms in the vector difference x̅𝑟 − x̅𝑠: 

𝑄𝑠 = (x̅𝑟 − x̅𝑠)′Σ𝑠
−1(x̅𝑟 − x̅𝑠);       𝑄𝑟 = (x̅𝑟 − x̅𝑠)′Σ𝑟

−1(x̅𝑟 − x̅𝑠),        (10) 

where the J J  weighting matrices Σ𝑠 and Σ𝑟 (non-singular) are given by (3) and 

(6). Four of the variances have less transparent expressions and are shown only 
as concepts. 

Table 1.  Mean and variance of f, 𝑔 and 𝑓 × 𝑔. The quantities 𝑄𝑟 and 𝑄𝑠 are given 
in (10). 

Factor mean in s mean in r variance in s variance in r 

f 1 1 + 𝑄𝑠  𝑄𝑠  var𝑟(𝑓) 

𝑔 1 + 𝑄𝑟  1 var𝑠(𝑔) 𝑄𝑟  

𝑓 × 𝑔 1 1 var𝑠(𝑓 × 𝑔) var𝑟(𝑓 × 𝑔) 

 

The properties in Table 1, used in later sections, follow from the definitions in 
(8) and (9) by standard matrix and vector manipulations, using also x̅𝑠

′ Σ𝑠
−1x𝑘 =

x̅𝑟
′ Σ𝑟

−1x𝑘 = 1 for all k, and x̅𝑟
′ Σ𝑠

−1�̅�𝑠 = x̅𝑠
′ Σ𝑟

−1�̅�𝑟 = 1; these follow from (1).  

By Table 1, 𝑓�̅� = 1 + 𝑄𝑠 ≥ 1 = 𝑓�̅�. Equality holds only for 𝑄𝑠 = 0, implying x̅𝑟 =
x̅𝑠. In general 𝑓𝑘 × 𝑔𝑘 ≠ 1 for any particular unit k , but Table 1 shows that the 

mean of the products 𝑓𝑘 × 𝑔𝑘 is 1, over s as well as over r.  This interesting 
property says that one factor is the inverse of the other, in a generalized sense. In 
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the group vector case the inverse relationship holds in an exact numerical sense, 
𝑓𝑘𝑔𝑘 = 1 for every k. 

The covariances are 

cov𝑠(𝑓, 𝑔) = mean𝑠(𝑓 × 𝑔) − 𝑓�̅��̅�𝑠 = 1 − 1 × (1 + 𝑄𝑟) = −𝑄𝑟 < 0,       (11) 

cov𝑟(𝑓, 𝑔) = mean𝑟(𝑓 × 𝑔) − 𝑓�̅��̅�𝑟 = 1 − (1 + 𝑄𝑠) × 1 = −𝑄𝑠 < 0        (12) 

Hence, 𝑓𝑘 and 𝑔𝑘 are negatively correlated, over s as over r. More specifically, 
the coefficient of correlation over s is usually large negative, not far from  -1. This 
claim is justified by an approximation shown in the Appendix, whereby 

 corr𝑠(𝑓, 𝑔) ≈ −1/(1 + 𝑄𝑠).                                     (13) 

The right-hand side is greater than -1, but not far from -1, because compared 
with 1, 𝑄𝑠 is small positive. The approximation in (13) may not be highly accurate 
for all outcomes r, given s, but a large negative correlation is indicated. 

The covariances with the auxiliary vector are 

 cov𝑠(𝑓, x) = ∑ 𝑑𝑘(𝑓𝑘 − 1)(x𝑘 − x̅𝑠𝑘∈𝑠 )/ ∑ 𝑑𝑘𝑘∈𝑠 = (x̅𝑟 − x̅𝑠),         (14) 

cov𝑟(𝑔, x) = ∑ 𝑑𝑘(𝑔𝑘 − 1)(x𝑘 − x̅𝑟)𝑘∈𝑟 / ∑ 𝑑𝑘𝑘∈𝑟 = −(x̅𝑟 − x̅𝑠).      (15) 

It is interesting to note that cov𝑠(𝑓, x) = −cov𝑟(𝑔, x).  

The fit of a linear regression with intercept of 𝑔𝑘 on 𝑓𝑘 over 𝑘 ∈ 𝑠 gives the 

slope coefficient 𝑏 = cov𝑠(𝑓, 𝑔)/var𝑠(𝑓) = −𝑄𝑟/𝑄𝑠 and the intercept 𝑎 = �̅�𝑠 −
𝑏𝑓�̅� = 1 + 𝑄𝑟 + 𝑄𝑟/𝑄𝑠. The predicted 𝑔𝑘-value from this linear fit is �̂�𝑘 = 𝑎 + 𝑏𝑓𝑘, 
so for every 𝑘 ∈ 𝑠 we have the equation 

(�̂�𝑘 − 1)/𝑄𝑟 + (𝑓𝑘 − 1)/𝑄𝑠 = 1.     (16) 

3.2. Empirical Illustration of the Relationship 

Figure 1 illustrates the relationship between the 𝑓- and 𝑔-factors in a specific 
experiment. From a data set collected in an Estonian household survey a simple 
random sample s of 700 households (HH) was drawn and then kept fixed. A 
number of characteristics of each household and head of household (HD) were 
recorded. Response probabilities 𝜙𝑘 (where k designates a household) were then 
computed for 𝑘 ∈ 𝑠 by the model 

logit(𝜙) = 5 – 4 × HD sex + 2 × HD employment status – 0.0004 × HH income. 

Here, HD sex (1 for woman, 0 for man) and HD employment status (1 for 
employed, 0 for unemployed) are dichotomous; HH income is continuous. The 
model deliberately assigns lower response probability to high income households 
where the head is unemployed female. One single response set r, with response 

rate 𝑃 = 60%, was realized by giving household k the response probability 𝜙𝑘. 
Given that set r, computations were carried out with the vector 

x = (HD education, HD sex, HH size, HH children, HD employment status, HH 
expenditure). 
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Here, HD education, with 3 exhaustive categories, was coded as (1,0,0), 
(0,1,0) and (0,0,1). The variables HH size and HH children (the number of 
children in household) are discrete univariate; HH expenditure is continuous. The 
dichotomous HD sex and HD employment status are as explained earlier. This x 

is not a group vector, so the inverse relationship 𝑔𝑘 = 1/𝑓𝑘 will not hold with 
exactness for all k, but it does so to the degree of approximation that Figure 1 
illustrates. The dimension of x is 8: The first variable occupies 3 positions, the 
other 5 variables one position each. The response set r has considerable 
imbalance; IMB = 0.055, computed by (17) below. 

The 𝑓- and 𝑔-factors were computed on the realized r and s. The 700 points 

(𝑓𝑘, 𝑔𝑘) for 𝑘 ∈ 𝑠 are plotted (as hollow small circles) in Figure 1. The figure 

illustrates that 𝑓𝑘 can be negative for a small number of units 𝑘 ∈ 𝑠. In the figure, 
none of the points with 𝑓𝑘 < 0  belong to r. Consequently, the linear approximation 

of 𝑔𝑘 through 𝑓𝑘 works quite well in the response set r. The solid line is the linear 

regression line 𝑔 = 𝑎 + 𝑏𝑓,  with  𝑎 = 1 + 𝑄𝑟 + 𝑄𝑟/𝑄𝑠= 3.145 and 𝑏 = −𝑄𝑟/
𝑄𝑠=−1.863. The dashed curve is 𝑔 = 1/𝑓. We verified empirically, for the group 
vector x = (HD education × HD employment status), with 3×2 = 6 groups, that 

𝑔𝑘 = 1/𝑓𝑘  holds exactly for all k, as it should. 

 

Figure 1. Relationship between 𝑓- and 𝑔-factors for a sample of size 700. Each 
circle represents a sample element. 

4.  Achieving Low Imbalance in the Data Collection  

The incidences 𝑓𝑘 are important for the data collection. They are used for 
creating a well balanced response set. The response r is called perfectly 

balanced with respect to the vector x if x̅𝑟 = x̅𝑠 (Särndal, 2011). It follows from (2) 
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that the equality in means is achieved if 𝑓𝑘 = 1 for all k. The equality x̅𝑟 = x̅𝑠 also 

holds if 1kg   for all k, as seen from (5). To get a perfectly balanced response r 

is a distant possibility in a survey data collection, especially for a long  x vector. 
We can strive to come close. But ordinarily, a perfect balance is not achieved. 
Since x̅𝑟 − x̅𝑠 is a vector, a scalar measure of the difference is created, called the 
imbalance of the response r with respect to the vector x for the given sample  s,  

IMB(𝑟, x|𝑠) = 𝑃2𝑄𝑠,  (17) 

where 𝑃 is the response rate and 𝑄𝑠 is given in (10) (Särndal, 2011; Lundquist 
and Särndal, 2013; Särndal and Lundquist, 2014). Although IMB(𝑟, x|𝑠) is more 

descriptive, we shall use for simplicity the notation IMB. For any r, s and vector x, 

0 ≤ IMB ≤ 𝑃(1 − 𝑃) ≤ 0.25. For most survey data, IMB does not come close to 

the upper bound  𝑃(1 − 𝑃); typical values are in the range 0.03 to 0.06.  
A measure related to IMB is the R-indicator, with R for “representativeness” 

(Bethlehem et al., 2011). It is different in its background, which is estimation of 
response probabilities assumed to exist for all population units. 

The incidences 𝑓𝑘, computable for all 𝑘 ∈ 𝑠, are tools for an adaptive data 
collection aiming at an ultimate response set r with low imbalance. A property 
making this possible is that the variance (computed over s) of the (estimated) 

propensities 𝑃𝑘 = 𝑃𝑓𝑘 is equal to the imbalance, IMB = 𝑃2𝑄𝑠  (see Table 1).  The 
𝑃𝑘 can be computed continuously during an ongoing data collection period. 
Therefore, an avenue to low imbalance in the final response  r is to manage the 

data collection to achieve in the end a low variance of 𝑃𝑘, and therefore low IMB. 
There may be several ways to accomplish this. One is the threshold method 
proposed in Särndal and Lundquist (2014), which we now describe. 

The data collection, which may last several days or weeks, is seen as a 
dynamic process where inspections and change of protocol may take place, at 
specified points. For example, one may decide, at a certain point, to focus the 
continued data collection on specific types of units, say those that are so far 
underrepresented. 

In the threshold method, the propensities 𝑃𝑘 = 𝑃𝑓𝑘 are computed for 𝑘 ∈ 𝑠 at 
several points, say four to six, in the data collection period, and with a “monitoring 
vector” x designated for this purpose.  

At the first inspection point, units with propensity greater than a fixed 
threshold, say 0.60, are set aside and not further contacted during the period. 
Contact attempts continue with the remaining non-responding sample units; as a 
result more units join the response set. At the second inspection point, 𝑃𝑘 is 

computed again for all 𝑘 ∈ 𝑠, and some more units, those with the new propensity 
𝑃𝑘 greater than 0.60, join those already set aside. This pattern is repeated at each 
remaining inspection point; at each of these some more units are set aside. Non-
responding units remaining at the last inspection point are pursued until the very 
end of the data collection period. By the mechanics of this procedure, the 
variability of the propensities - and therefore the imbalance IMB - is more and 

more reduced. In the end, the imbalance IMB can be quite low. Alternative 
adaptive designs can be constructed with a similar objective. 
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5.  The Estimation Stage 

After a completed data collection, it remains to produce estimates of important 
finite population parameters, such as the population total 𝑌 = ∑ 𝑦𝑘𝑘∈𝑈 , using the 

values 𝑦𝑘 available for 𝑘 ∈ 𝑟. The estimates are design biased, more or less.  

If individual response probabilities 𝜙𝑘 were known, then �̂�2ph = ∑ 𝑑𝑘𝑘∈𝑟 𝜙𝑘
−1𝑦𝑘 

would be unbiased for the total 𝑌 = ∑ 𝑦𝑘𝑘∈𝑈 . This claim derives from design-based 
theory for two-phase selection: First a probability sample s from U, then a 

response r from the given s. Since 𝜙𝑘 is unknown, �̂�2ph should be adjusted. Brick 

(2013) reviews three types of weighing adjustment procedures in surveys with 
nonresponse. In the first of these, the unknown individual response probabilities 

𝜙𝑘 in �̂�2ph are replaced by estimates �̂�𝑘. This results in   

�̂�ADJ = ∑ 𝑑𝑘�̂�𝑘
−1𝑦𝑘𝑘∈𝑟  ,  (18) 

also referred to  as “quasi-randomization” estimators. Access to suitable auxiliary 
variables and the choice of the model for the response mechanism play an 
important role in (18).  

Brick’s (2013) second type is the weighting class estimator. It is a special 

case of (18), where �̂�𝑘
−1 is equal to the inverse of a group response rate. That is, 

if the sample s is divided into J mutually exclusive and exhaustive subgroups 𝑠𝑗 

with 𝑟𝑗 as the responding subset of 𝑠𝑗, 𝑗 = 1, … , 𝐽, then �̂�𝑘
−1 = ∑ 𝑑𝑘/𝑘∈𝑠𝑗

∑ 𝑑𝑘𝑘∈𝑟𝑗
, 

common to all units k in a group. 
The third weighting adjustment estimator in Brick’s (2013) review is the 

calibration estimator. It differs in its construction from (18) but is still unmistakably 
design-based in its orientation. All three weighting adjustment procedures are 
imperfect under nonresponse because they fail to meet the design-based criterion 
of unbiased estimation.  

Here, we distinguish three arguments for constructing an estimator for 𝑌 =
∑ 𝑦𝑘𝑘∈𝑈 . They are: Weighting by inverse incidence (Section 5.1), calibration 
estimation (Section 5.2) and estimation by explicit modelling/prediction (Section 
5.3). 

5.1. Weighting by Inverse Incidence 

Weighting by inverse incidence does not require any response model. It 
reflects the intuitive idea that units in r with low incidence get relatively higher 
weight, and vice versa.   

The incidence factor 𝑓𝑘 is given in (4), the inverse incidence factor 𝑔𝑘 in (7). 
Now put 

 𝑃𝑘 = 𝑃𝑓𝑘;  𝜈𝑘 = 𝑃−1𝑔𝑘 ,                                               (19) 

where 𝑃 is the overall response rate. 𝑃𝑘 and 𝜈𝑘 are each other’s inverse, in that 

the mean of their product, 𝑃𝑘𝜈𝑘 = 𝑓𝑘𝑔𝑘, is equal to one, over r and over s (see 
Table 1). The inverse incidence weighting estimator of 𝑌 = ∑ 𝑦𝑘∈𝑈 𝑘

 is then given 

by  

 �̂�WEI = ∑ 𝑑𝑘𝜈𝑘𝑦𝑘𝑘∈𝑟 .                                           (20) 
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This is weighting adjustment as in (18), if we let  �̂�𝑘
−1 = 𝜈𝑘. Moreover, 𝑃𝑘 is 

reminiscent of a second phase inclusion probability for unit k, that is, in “drawing” 

the response set r  from s. The sample mean of 𝑃𝑘 is �̅�𝑠 = ∑ 𝑑𝑘𝑃𝑘𝑘∈𝑠 / ∑ 𝑑𝑘𝑘∈𝑠 =
𝑃𝑓�̅� = 𝑃, the overall response rate.  

The weighting in (20) is motivated purely by inverse incidence, based on a 
given x-vector, with no particular variable y in mind. The same weights are 
applied to all variables y, whatever their special characteristics. This is appealing 
in surveys where many y-variables require estimation, none of them deemed to 
be truly more important or different in nature. Implicit in the inverse incidence 
weighting is a relationship between the 0/1 indicator of the response and the 
auxiliary vector x that determines the incidence 𝑓𝑘.  

5.2. Calibration Estimation 

A well-known weighting adjustment estimator is the calibration estimator. 
Weighting is based on x with implicit y-to-x relationship. Still, all y-variables are 
typically given the same weighting. For comparability reasons, we consider 

calibration up to s. Weight factors ku  are calibrated “from r up to s”, to satisfy the 

calibration equation 

∑ 𝑑𝑘𝑢𝑘x𝑘𝑘∈𝑟 = ∑ 𝑑𝑘x𝑘𝑘∈𝑠 .                                          (21) 

The resulting calibration estimator is then 

�̂�CAL = ∑ 𝑑𝑘𝑢𝑘𝑦𝑘𝑘∈𝑟 .    (22) 

If we choose 𝑢𝑘 to be linear in x𝑘, 𝑢𝑘 = λ′x𝑘, it follows from the derivation in 
Section 2.3 that  𝑢𝑘 = 𝑃−1𝑔𝑘, where 𝑔𝑘 is the inverse incidence given in (7). Then, 

(22) is the linear calibration estimator, �̂�CALlin, which we can express in several 
ways: 

�̂�CALlin = ∑ 𝑑𝑘𝜈𝑘𝑦𝑘𝑘∈𝑟 = 𝑃−1 ∑ 𝑑𝑘𝑔𝑘𝑦𝑘𝑘∈𝑟 = ∑ 𝑑𝑘�̂�𝑘𝑘∈𝑠 = �̂� x̅𝑠
′ b𝑟,      (23) 

where  �̂�𝑘 = x𝑘
′ b𝑟 and b𝑟 is the regression coefficient vector in a linear regression 

fit of y  on x over r, 

b𝑟 = (∑ 𝑑𝑘x𝑘x𝑘
′

𝑘∈𝑟 )−1 ∑ 𝑑𝑘𝑘∈𝑟 x𝑘𝑦𝑘.      (24)  

Hence, the inverse incidence weighting estimator �̂�WEI in (20) has a double 
identity: It is at the same time a (linear) calibration estimator.  

The purely mechanical aspect of the calibration approach is to deliver weights 
to satisfy (21) – which has an unbiased Horvitz-Thompson estimator on the right 
hand side – and to apply these weights in the estimation. But the purpose is also 
to explain the y-variable through the auxiliary vector x. The calibration approach is 
thus double-natured: The weighting aspect is combined with implicit relationship 

y-to-x. This can be seen when we examine the deviation of �̂�CALlin from the 

unbiased estimator requiring full response, �̂�FUL = ∑ 𝑑𝑘𝑦𝑘𝑘∈𝑠 . This deviation can 
be written as  

�̂�CALlin − �̂�FUL = − ∑ 𝑑𝑘𝑒𝑘𝑘∈𝑠                                           (25) 



194                                   Särndal C. E., Traat I., Lumiste K.: Interaction between data… 

 

 

with the residual 𝑒𝑘 = 𝑦𝑘 − x𝑘
′ b𝑟, where b𝑟 is the regression vector given in (24). If 

the model fits well in the response set, the residuals are small, and �̂�CALlin based 

on the response is close to the unbiased �̂�FUL.  
Calibration estimators have been extensively studied for the last 20 years. 

One direction is to use information both in the sample and population levels. 
Another direction is to use non-linear forms of calibration. Some references are 
Deville (1998), Deville and Särndal (1992), Folsom and Singh (2000), Estevao 
and Särndal (2000), Montanari and Ranalli (2003, 2005, 2012), Särndal and 
Lundström (2005), Chang and Kott (2008), Kott and Chang (2010), Kott and Liao 
(2012). 

5.3. Estimation by Explicit Modelling/Prediction  

The modelling/prediction approach  is based on replacing missing y-values by 
the best possible substitutes that statistical theory can offer. This argument is, on 
surface at least, very different from both incidence weighting and calibration 
weighting. Its importance is illustrated by Little’s (2013) discussion of Brick (2013). 

This approach focuses directly on one y-variable at a time. From an explicitly 
formulated (linear or non/linear) model for the y-to-x relationship, and a fit of that 
model based on (𝑦𝑘 , x𝑘) for 𝑘 ∈ 𝑟, predicted values are obtained for the non-

observed 𝑦𝑘, using the values x𝑘 known for 𝑘 ∈ 𝑠 − 𝑟. Observed 𝑦𝑘 together with 

predictions �̂�𝑘 are used to build the estimator of the population y-total, 

�̂�PRED = ∑ 𝑑𝑘𝑦𝑘𝑘∈𝑟 + ∑ 𝑑𝑘�̂�𝑘𝑘∈𝑠−𝑟 .                           (28) 

Examination of the design-based behaviour of �̂�PRED has shown that strong 
regression relationship holds good prospects for a considerable reduction of the 
(design-based) nonresponse bias. Early references are Bethlehem (1988) and 
Cassel et al. (1983).   

A variety of models and methods can be entertained to get the predicted 
values �̂�𝑘. A simple application is by ordinary linear regression fit of y on x, 

resulting in the regression vector b𝑟 in (24) and predicted values �̂�𝑘 = x𝑘
′ b𝑟 for 𝑘 ∈

𝑠. Note that ∑ 𝑑𝑘(𝑦𝑘 − �̂�𝑘)𝑘∈𝑟 = 0 because of (1). Then 

�̂�PREDlin = ∑ 𝑑𝑘𝑦𝑘𝑘∈𝑟 + ∑ 𝑑𝑘�̂�𝑘𝑘∈𝑠−𝑟 = ∑ 𝑑𝑘�̂�𝑘𝑘∈𝑠 = �̂�CALlin = �̂�WEI.     (29) 

It can also be seen as a result of the linear generalized regression (GREG) 
construction; 

�̂�GREG = ∑ 𝑑𝑘�̂�𝑘𝑘∈𝑠 + ∑ 𝑑𝑘(𝑦𝑘 − �̂�𝑘)𝑘∈𝑟 = ∑ 𝑑𝑘�̂�𝑘𝑘∈𝑠 .                   (30) 

Hence the inverse incidence weighting estimator �̂�WEI in (20) has multiple 
identities: It is at the same time (a) a calibration estimator, (b) a prediction 
estimator, and (c) a GREG estimator. It is important to note that this equivalence 
happens under the linear formulation, and under the x-vector condition in (1).  

We can link the bias to the tendency of nonresponse to misrepresent the 
regression relationship:  Denote by b𝑠 = (∑ 𝑑𝑘x𝑘x𝑘

′
𝑘∈𝑠 )−1 ∑ 𝑑𝑘𝑘∈𝑠 x𝑘𝑦𝑘 the 

regression coefficient vector in the linear fit of y on x over s. Then, by (1), 

�̂� x̅𝑠
′ b𝑠 = �̂��̅�𝑠 = ∑ 𝑑𝑘𝑘∈𝑠 𝑦𝑘 = �̂�FUL and the deviation from the unbiased estimation 

can be written as 

 �̂�PREDlin − �̂�FUL = �̂�CALlin − �̂�FUL = �̂� x̅𝑠
′ (b𝑟 − b𝑠),                      (31) 
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where b𝑟 is given in (24). As is well known from regression theory, the selection 
effect is likely to distort an estimated regression relationship, that is, to make the 

regression vectors b𝑟 and b𝑠 differ considerably, and thus �̂�PREDlin to differ from 

the unbiased �̂�FUL. Särndal et al. (2016) evaluate the deviation Δ = (�̂�CALlin −
�̂�FUL)/�̂� =  x̅𝑠

′ (b𝑟 − b𝑠) under certain assumptions, and find potential for improved 
accuracy under adaptive design. Expressions for the design-based bias have 
been derived for some types of regression-based estimators (Fuller et al. 1994, 
Särndal and Lundström 2005, Brick and Jones 2008).  

In the model-based version of the modelling/prediction approach, the 
sampling design and the sampling weights 𝑑𝑘 may not enter at all. A 
comprehensive coverage is found in books such as Valliant et al. (2000) and 
Chambers et al. (2012). Other recent contributions are Breidt and Opsomer 
(2000), Breidt et al. (2005), Little (1986).  

6.  Conclusion 

We have examined a survey setting where nonresponse is occurring in a 
probability sample from the finite population. We emphasized an integrated view, 
in which the data collection and the estimation stage can benefit from each other, 
and support each other, in making inference about the population. 

We have assumed that an appropriate auxiliary vector was formulated, from 
the available supply of auxiliary variables, categorical or continuous. We 
discussed the auxiliary vector’s important role in forming a bridge between a 
realized set of respondents and the full probability sample. To that end, we 
formulated the concepts of incidence and inverse incidence of the sample units. A 
realized response set can be described by the (computable) incidences of the 
sample units; vice versa, the drawn sample can be described by the (also 
computable) inverse incidences of the responding units. 

As we showed, the incidences are used in an adaptive data collection to 
realize a final response set with low imbalance. The inverse incidences are used 
at the estimation stage, for building a weighted estimator. It is one that does not 
use any assumptions about a probabilistic response mechanism. We pointed out 
that it coincides, in the special case of a “linear formulation”, with estimators 
derived by other approaches: Calibration, modelling/prediction and GREG. These 
approaches have branched out in their own directions and have generated a 
stream of literature that we do not review here. 

To a considerable degree, this article has dealt with concepts and principles. 
This has left unanswered a number of other important aspects. Among these is 
the question whether a reduced imbalance in the ultimate response set will lead 
to reduced bias in the estimates, over and beyond what (weighting) adjustment 
alone can accomplish at the estimation stage. There is some positive evidence in 
this direction in the recent literature. A relationship between auxiliary vector x and 
survey variable y is implicitly assumed; one can say that balancing the survey 
response gives some added protection against large nonresponse bias. Recent 
articles in this direction are Schouten et al. (2016) and Särndal et al. (2016). Also, 
Tourangeau et al. (2017) confirm that a bias reduction, although perhaps 
marginal, can be realized by balancing, and these authors claim that further 
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improvement may be possible, through alternative and better adaptive designs. 
These and other recent contributions to the literature underline the need for an 
integrated view, one where data collection and estimation are considered 
together; in this article, we have also taken a step in that direction. 
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APPENDIX 

Proof that the incidence factors 𝒇𝒌 in (4) have minimal variance subject 
to (2): 

Using the Lagrange multiplier method, we seek the minimum of 

 ∑ 𝑑𝑘(𝑓𝑘 − 𝑓�̅�)2
𝑘∈𝑠 − 2λ′(∑ 𝑑𝑘𝑓𝑘x𝑘𝑘∈𝑠 − (∑ 𝑑𝑘𝑘∈𝑠 )x̅𝑟).          (32) 

Setting the derivative with respect to 𝑓𝑘 equal to zero gives  

 2𝑑𝑘(𝑓𝑘 − 𝑓�̅�) − 2𝑑𝑘λ′x𝑘 = 0 ;   𝑓𝑘 − 𝑓�̅� = λ′x𝑘.                 (33) 

Determine λ from the condition in (2): λ′ = x̅𝑟
′ Σ𝑠

−1 − 𝑓�̅�x̅𝑠
′ Σ𝑠

−1. Post-multiply by x𝑘 

and note that x̅𝑠
′ Σ𝑠

−1x𝑘 = 1 by (1). This gives  λ′x𝑘 = x̅𝑟
′ Σ𝑠

−1x𝑘 − 𝑓�̅� and 𝑓𝑘 = 𝑓�̅� +
λ′x𝑘 = x̅𝑟

′ Σ𝑠
−1x𝑘, as given in (4). 

Derivation of the approximation in (13): 

By definition, corr𝑠(𝑓, 𝑔) = cov𝑠(𝑓, 𝑔)/(var𝑠(𝑓)var𝑠(𝑔))1/2. First use var𝑠(𝑔)/
�̅�𝑠

2 ≈ var𝑟(𝑔)/�̅�𝑟
2, assuming that the coefficient of variation of 𝑔 (standard 

deviation divided by mean) is roughly the same over r as over s. Then by Table 1, 

var𝑠(𝑔) ≈ 𝑄𝑟(1 + 𝑄𝑟)2, and var𝑠(𝑓) = 𝑄𝑠. Both 𝑄𝑟 and 𝑄𝑠 are small compared to 1 
and not greatly different, so (1 + 𝑄𝑟)/(1 + 𝑄𝑠) = 1 + 𝛿 for some small 𝛿. Then 

 corr𝑠(𝑓, 𝑔) =
−𝑄𝑟

(𝑄𝑠𝑄𝑟)1/2(1+𝑄𝑟)
= −

1

1+𝑄𝑠
ℎ(𝛿),                    (34) 

where ℎ(𝛿) = (1 + (1 + 𝑄𝑠
−1)𝛿)1/2/(1 + 𝛿). Now, for small 𝛿, ℎ(𝛿) ≈ 1. The 

formula in (13) follows. 
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UNIVARIATE SAMPLE SIZE DETERMINATION BY 
ALTERNATIVE COMPONENTS: ISSUES ON DESIGN 

EFFICIENCY FOR COMPLEX SAMPLES 

Ceylan Talu Yozgatligil1, H. Öztaş Ayhan2 

ABSTRACT 

Sample size determination for any sample survey can be based on the desired 
objectives of the survey as well as the level of confidence of the desired estimates 
for some survey variables, the desired precision of the survey results and the size 
of the population. In addition to these, the cost of enumeration can also be 
considered as an important criterion for sample size determination. Recently, 
some international organizations have been using univariate sample size 
determination approaches for their multivariate sample designs. These 
approaches also included some design efficiency and error statistics for the 
determination of the univariate sample sizes. These should be used for 
determining the survey quality measures after the data collection, not before. The 
additional components of the classical sample size measure will create selection 
and representation bias of survey estimates, which is discussed in this article.  

Key words: univariate sample size, representation bias, sample allocation, error 

statistics, design efficiency measures. 

1.  Introduction 

Sample size determination for univariate cases has been commonly used for 
many years. Surveys which are based on large population sizes require other 
sample size determination methodologies than the univariate cases, because 
they are based on criteria for multivariate observations. Therefore, univariate 
sample size determination methodologies cannot satisfy the multivariable criteria. 
Recently, some national and international survey organizations have been using 
some modified univariate sample size determination formulas which have low 
efficiency. As a result, this can lead to under- or overrepresentation of the 
population by the selected sample. These modified formulas contain unnecessary 
components, such as design effect and response or nonresponse rates, etc. This 
article highlights the components which create selection and representation bias 
of survey estimates. Therefore, the methodological problem is not the concern of 
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this article. The main aim is to emphasize the correct usage of the sample size 
determination formulas for the multivariable case. Some researchers may want to 
follow the methodology (or formula) used by the respectful organizations, which 
may not fully (or correctly) represent the target population. 

2.  Classical Univariate Sample Size Measures 

Sample size determination is an important aspect of the representativeness of 
the survey results. There are many approaches which can be taken. Generally, all 
surveys utilize too many variables. Some of these variables may be more 
important than others for decision-makers. The researcher generally wishes to 
satisfy the representation of several survey variables, which are important. 

There are many studies on determination of sample size in different 
disciplines. Some of them propose a new methodology and some others gather 
the existing ones and compare their performances. Dell et al. (2002) discussed 
simple methods of estimating the number of animals needed for various types of 
variables and experiments. They showed that it is crucial to choose the power, 
the significance level, and the size of the effect to be detected, and to estimate 
the population variability of the variable being studied, and using a complicated 
design and statistical analysis usually results in the highest power to detect any 
difference. Shore (2008) addressed sample size determination relating to 
hypothesis testing, parameter estimation, relational modelling and optimal 
sampling. Sathien et al. (2010) gave a few suggestions regarding the methods to 
determine an optimum sample size in descriptive and analytical studies. Marshall 
et al. (2013) described basic requirements for sample size determination and the 
sample size determination methods to estimate a normal distribution mean, 
standard deviation, quantile, binomial proportion and Poisson occurrence rate. In 
his book, Ryan (2013) discussed many sample size calculation techniques with 
applications using software. Siddiqui (2013) presented the guidelines described in 
the literature as to determine the appropriate sample size for the various 
statistical techniques. Safo et al. (2015) compared the performance of the existing 
sample size method and the sample size method developed by the authors for 
lasso logistic regression. Placzek and Friede (2017) proposed methods for 
planning and analysing a multiple nested subgroups design and described 
sample size determination prior to the trial and sample size recalculation via a 
blinded review in an internal pilot study.  

For the representation of survey results, a very important single survey 
variable (univariate case) can be chosen and the sample size only for this 
variable can be evaluated. Alternatively, two variables (bivariate case) may affect 
one another and the sample size determination may be based on the presence of 
these. Finally, several variables (multivariate case) may become very important to 
determine the minimum sample size, by utilizing multivariate information. One of 
the common and most practical solution to these problems is to select several 
independent variables (univariate case) and compute sample sizes for each of 
these separately and choose the largest computed sample size to satisfy all 
variables.  

The use of several survey variables one at a time has some practical 
conveniences. On the other hand, the type of measurement scale of the survey 
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variable also leads to the use of different test statistics as input information for the 
sample size determination model. Here, the case of the proportion and another 
case of the sample mean for the determination of sample size will be illustrated. 

2.1. Determination of Sample Size for Proportion 

For the test of the following hypothesis; 
00 :  H  versus 11 :  H , the 

sample proportion (p) of success is distributed asymptotically as 

  nN  1,
 

with the requirement that   .1|Pr   dp  This 

leads to the sample size estimation as:   22

),1(1 dn   , where  is the 

level of significance and d is the level of tolerance of the estimate. For the 

unknown population proportion, we take  = 0.5 and the sample size estimate will 

be: 
22

),1(25.0 dn  . This naturally represents the worst case, which creates 

the maximum variance, to be on the safe side as the sample designer. If we have 
prior information about the population proportion, then consequently we can have 
relatively smaller sample size estimation. 

Hence, the sample size can be determined as: 
22

),1(25.0 dn  . The 

overall sampling fraction for this design will be, f = n/N = 1/F. Here, (N) is the total 
number of Housing Units (HUs) in the population, and (n) is the total number of 
Housing Units (HUs) in the selected sample. For self-weighting sample designs, 
the sampling fraction for any domain will be the same as any other domain in the 
design. Furthermore, this will also be equal to one another within any prefecture 
as well as the total population. 

2.2. Determination of Sample Size for Frequency Type Variable 

The frequentist case of sample size determination is concerned with the 
normal distribution with known variance. When the random variable X  is 

distributed as  2,N , the mean   may be estimated with absolute error (d) 

and probability 1 – α by the sample mean (m) if   

  .1|Pr   dm  

Since     1,0~ Nmn  , it follows that the above inequality is 

satisfied when the sample size (n) satisfies 
22

2

2 dZn  . Here, tolerance 

level refers to  nZd 
ˆ

2 . We can also easily create an application for this 

case just like the previous one. If we take the same element variance value and 
the same tolerance level for this case, then the estimated sample size will be the 
same as before. Hence, the sample size is determined by 

22

2

2 dZn   
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formula, which is affected by the level of confidence, level of tolerance (desired 
error variance) and the element variance. Due to changes in these parameters 
will consequently result in differing outcomes. 

3.  Sample Design for the Survey 

The sample design for the survey will be based on the latest available 
information on the population. The population will be stratified into domains 
(prefectures) and self–weighting samples will be selected for each domain. 

3.1. Sampling Frame and Stratification 

The latest population figures are based on the population projections for the 
survey time. The aggregated data from the urban–rural information for the 
available districts will be aggregated into several prefectures within a nested 
structure in defined geographic areas. Dividing the total urban and rural 

population  hM  for each domain (prefecture) by their Population Census 

average household size  hH  of each prefecture, we can compute the number of 

urban and rural Housing Units  hhh HMN   for the survey date. This 

calculation is based on the assumption that: the average household size does not 
change significantly over the years. This assumption is verified and used in many 
countries of the world. 

In summary, Desu and Raghavarao (1990) and Adcock (1997) proposed the 
following measures for frequentist methods. 

22

2

2

0 dZn    where d  is the absolute error;  
n

Zd




ˆ
2 . 

Alternatively, for studies aiming at the hypothesis testing 

  22

2

2* dZZn   . 

For the studies with binary response, i.e. binomial distribution, 

  22

),1(0 1 dn   . 

The ultimate sample size is adjusted for the known population size as: 

N

n

n
n

0

0

1

 . 

3.2. Measures of Design Efficiency 

The following measures of the design efficiency are commonly used for many 
surveys, after the data collection. There are several measures of design efficiency 
in survey research. Basically, it is the ratio of sampling variances, which is based 
on two different sample designs. The comparison of the two variances has to be 
based on the same sample sizes for both designs. 
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i. Design efficiency 

Design efficiency is the ratio of two sampling variances for given sample 
designs (Di; i=1,2). 

)var()var( 21 DD yyDesEff   

where D2 is not based on Simple Random Sample (SRS) design. 

ii. Design effect 

A design effect (deff) measures the relative increase or decrease in the 
variance of an estimator due to departures from simple random sampling. Kish 
(1965) presented deff as a convenient way of gauging the effect of clustering on 
an estimator of a mean (Henry and Valliant, 2015). Later work by Rao and Scott 
(1984) and others found that more complicated versions of deff’s were useful to 
adjust inferential statistics calculated from complex survey data (Sirken, 2002). 

A specialized version of deff was proposed in Kish (1965), who addressed 
only the effect of using weights that are not all equal. Kish derived the “design 
effect due to weighting” for a case in which weights vary for reasons other than 
statistical efficiency (Henry and Valliant, 2015). There are also sample designs 
and estimators where having varying weights can be quite efficient. 

Design effect is the ratio of two sampling variances for given sample designs. 

)(var)(var 1 SRSD yydeff   

where Design 2 is based on SRS only (Kish, 1965 & 1982). The original definition 
of the design effect is based on the sampling variance of a given complex design, 
which is compared with the SRS sampling variance of the same sample size. 
Theoretically, SRS has to be taken as an independent sample from the same 
population rather than adjusting the complex sample design boundaries as if it 
was selected as a SRS.  

The efficient sample size calculations assume simple random sampling. If the 
sample design deviates from SRS, the efficient sample size will also vary. deff is 
a measure for the relative efficiency of an estimator under a studied sampling 
design. It is the direct way of measuring the effect of design on sampling 
variability. The planned sample size computation for the univariate case naturally 
corresponds to the “gross sample size”. After the data collection “net sample size” 
will be achieved. The difference can be reflected through the computation of the 
nonresponse amount. On the other hand, the deff computation will be based on 
the sampling variance of the existing data, which is collected from the net sample 
size. Naturally, this will not include the planned inclusion probabilities and the 
clustering for the complex sample design in particular. 

iii. Design factor 

Design factor is the ratio of two standard errors for given sample designs 
(Kish, 1965). 

)()( 1 SRSD yseysedeft   

where Design 2 is based on SRS only. Here, deffdeft   and deffdeft 2
. 
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deft is a measure of efficiency of a given sample design compared to a direct 
simple random sampling of individuals, defined as the ratio between the standard 
error using the given sample design and the standard error that would result if a 
simple random sample was used. A deft value of 1.0 indicates that the sample 
design is as efficient as the simple random sample. 

3.3. Computed Error Statistics for the Analysis of Design Efficiency 

The sample design efficiency for a given design will be compared with some 
error statistics, in order to show the data quality measures. These measures are 
based on the error statistics which are based on the complex multivariate designs 
when compared with the base design, which is SRS with replacement. The basic 
error statistics which are obtained for this comparison will be: standard error, 
design factor, design effect, rate of homogeneity, cluster size, etc.  Some 
examples of these statistics are given in Table 1 below, which is based on the 
“2013 Turkey: Population and Health Survey” (HÜNEE, 2014). It is based on the 
complex sample survey design, which has 14,496 target sample households. The 
total sample household population was 41,476 persons. The household 
population consists of 78% urban and 22% rural domains. The aim of the 
presentation of these figures is merely to highlight the importance and usage of 
these error statistics. Here, the interpretation of the survey results is not intended 
to be the main purpose of this study. 

Table 1. Sampling Related Error Statistics for Selected Survey Variables     
Turkey 2013 

Survey Variables 
Ratio mean 

r = y/x 

Standard 
error 

se(r) 

Design 
factor 

deft 

Relative 
error 

se(r)/r 

Never married women 0.275 0.006 1.277 0.021 

Currently married women 0.683 0.006 1.276 0.009 

Number of live births 1.667 0.020 1.133 0.012 

Number of living children 2.919 0.050 1.252 0.017 

Wants no children 0.474 0.007 1.202 0.015 

Ideal number of children 2.721 0.019 1.507 0.007 

Total fertility rate (3 years) 2.258 0.069 1.360 0.031 

Infant mortality rate  
   (5 years) 

13.282 2.345 1.111 0.177 

  Source: HÜNEE (2014). 

The purpose of computing these statistics is to compare the efficiency of the 
latest design used. On the other hand, some survey institutions are mistakenly 
proposing to include these error statistics into their selection procedures. They 
are utilizing a univariate sample size formula, which is combined with some of 
these error statistics as well as response or nonresponse rate components, in 
order to pre-adjust the sample size. This article has shown that the use of 
additional unrelated components will create the selection and representation bias 
for the estimation of selected population parameters.  
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4.  Some Modified Sample Size Estimators 

For large scale surveys, an ideal way of obtaining the required sample size 
should be based on multivariate sample size determination. Some international 
organizations are insisting on using univariate sample size determination methods 
with some modifications to the formulae in place. For this case, their argument is 
based on using the univariate sample size methodology for several design 
variables separately. Then, they intend to compensate for the missing 
components by adding some error statistics (deff, nonresponse, etc.) in advance 
which are based on complex sample designs. They also argue that adding these 
statistics to their modified sample size formulae will solve their methodological 
bias. 

These error statistics are theoretically used for measuring the design 
efficiencies of their complex sample designs, when compared with the 
unrestricted design (i.e. SRS-WR). However, they are not proposed to be used 
prior to sample selection as an additional design component. Another important 
point is when these additional components are used within the desired sample 
selection formulae, they will naturally effect the overall sample selection 
probabilities in an undesired way, which will create sample selection bias. 
Consequently, it is not advised to use the modified univariate sample size 
determination formulas of this type. We would like to justify our argument by 
giving two different modified formulas in the following subsections. 

Survey sampling statisticians are responsible for designing sample surveys 
and determining the ideal and unbiased sample results for their surveys. When 
they are comparing their survey results with several internationally organized 
surveys, where their sample selection was biased due to the use of undesired 
sample size formulation, which created biased results. Consequently, these 
methodological problems naturally concern survey sampling statisticians overall. 
In addition, naturally these issues have to be brought to the attention of survey 
methodology community. 

4.1. Demographic and Health Surveys (DHS) 

The DHS (2012) has used the following formula for calculating the final 
sample size in terms of the number of households while taking design effect and 
non-response into account in advance, and is given by: 

 
 dRR

P
deftn hiDHS 2

2 11




 . 

The formula in terms of our notation is given by 

 
 eRR

d

p
deftn hiDHS 2

2 11 
  

where  

n is the sample size in households; 

deft* is the design effect (a default value of 1.5 is used for deft if not specified);  

p is the estimated proportion; 
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d is the desired relative standard error,   pnpp /1 ; 

Ri is the individual response rate; 

Rh is the household gross response rate; and 

e is the number of eligible individuals per household. 

(*): The symbol deft actually denotes the design factor, not the design effect. 
(Default value of deft=1.5 is recommended in DHS manual as a special case. 
Naturally, this corresponds to deff=2.25). In practice, this can be an acceptable 
threshold value for complex clustered sample designs. 

The household gross response rate is the number of households interviewed 
over the number selected. DHS reports the net household response rate, which is 
the number of households interviewed over the number valid households found in 
the field (i.e. excluding vacant and destroyed dwellings). The practical aspects of 
Rh and Ri rates are discussed in Ayhan (1981) for the Turkish Fertility survey 
data. Ayhan (1981) has used the WFS (1975) recommendations that the first visit 
to the household (or individual) plus the number of re-calls constitute total calls. 
For a household survey, 1 + 3 = 4 total calls, and for individual survey, 1 + 2 = 3 
total calls are proposed as threshold values. 

For a required precision with a relative standard error α, the net sample size 
(number of completed interviews) needed for a simple random sampling (SRS) is 
given by: 

 
.

11
2




p
nSRS

 

Since a simple random sampling is not feasible for DHS, the sample size for a 
complex survey with clustering such as DHS can be calculated by inflating the 
above calculated sample size by using a design effect (deff=deft2).  

A simple random sample would be a random selection of individuals or 
households directly from the target population. This is not feasible for DHS 
surveys because a list of all eligible individuals or households is not available. 

4.2. Multiple Indicator Cluster Surveys (MICS) 

Another survey which is based on the complex sample design is the MICS 
(2006). Methodological manuals of the United Nations Children’s Fund (UNICEF), 
Statistics and Monitoring Division, propose using the modified univariate sample 
selection formulae for their multivariable surveys. 

The sample size calculating formula for MICS is given by 

   

  h

MICS
npr

deffrr
n

.12.0

1.114
2


 . 

The formula in terms of our notation is given by 

     

  h

MICS
nkp

rdeffpp
n

.12.0

1
2

2

,1 



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where 
nMICS is the required sample size, expressed as number of households 

 
2

,1   is a factor to achieve the (1−) per cent level of confidence 

p is the predicted or anticipated prevalence (coverage rate) for the indicator 
being estimated 

r is the factor necessary to raise the sample size for nonresponse. 
(for example, for 10% nonresponse rate r should be 1.1.) 

deff is the design factor 

0.12p is the margin of error to be tolerated at the 95 per cent level of 
confidence, defined as 12 per cent of p (12 per cent thus represents the 
relative sampling error of p) 

k is the proportion of the total population upon which the indicator p is based, 
and 

nh is the average household size. 

 
For the Multiple Indicator Cluster Surveys (MICS), UNICEF proposes r = 1.1 

as an early compensation for the nonresponse amount. This will correspond to 
10% increase in the sample size before the data collection, which intends to 
compensate the same amount of loss in the collected sample following the data 
collection. This approach cannot be accepted due to several bias producing 
aspects. Firstly, nonresponse rate is a part of survey error, which should not be 
included as the sample selection component. Secondly, 10% nonresponse rate 
can be a lower bound threshold value for this error statistics. For many surveys, 
the nonresponse rates are higher than this in the literature. Recently, there has 
been even a tendency of increase in nonresponse rates for the sample surveys of 
some developed countries. 

For the MICS methodology, relative sampling error (value of 0.12p) has been 
used for margin of error in the previous formulae because it scales the margin of 
error to result in comparable accuracy regardless of whether a high coverage 
indicator or low coverage indicator is chosen as the key one for sample size 
determination.  

Recently, UNICEF, Statistics and Monitoring Section has decided not to clarify 
the sample selection formulae by removing the related methodology from their 
website. Instead, they provided a “sample size determination” template 
electronically. This template is naturally based on the previously discussed 
methodology for a univariate sample size determination algorithm, for a 
multivariate complex sample design. 

5. Design Efficiency of Alternative Sample Sizes 

This section clearly shows the partition of the components which are based on 
the modified sample size formulas of the two international institutions. The bias 
which will be created for the estimation by using the unrelated sample size 
formulae is given for the examined two large scale surveys. 
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The formula proposed by DHS is: 

eRR

d

p
deff

n
hi

DHS

2

11 






 

  

where 
DHSn  is the sample size in HH’s offered by DHS. 

The formula used in this study is 

  
eRR

deff

d

pp
n

hi

DHS
..

/1
2


 . 

The formula proposed by MICS is 

     

  h

MICS
nkp

rdeffpp
n

.12.0

1
2

2

,1 



 

where 
MICSn  is the sample size in HH’s offered by MICS. 

The formula used in this study is 

      

h

MICS
nk

rdeff

d

pp
n

.

1
2

2

,1 



. 

The relationship between the classical sample size formulization and DHS’s 
sample size formulization can be given as 

  eRR

deff

p
nn

hi

CDHS
..

1
22

,1 
  , 

where 
Cn  is the classical sample size formula for the binary response. 

The relationship between the classical sample size formulization and MICS’s 
sample size formulization can be given as 

 

h

CMICS
nk

rdeff
nn

.

.
 . 

6.  Issues on Selection Bias Representation 

A comparison of the outcomes for the classical sample size determination 
methods and modified sample size determination methods provides information 
on the population representation and related biases. If we compare the results, in 
terms of overall sampling fractions, the following comparison can be used. 

Overall sampling fraction of the classical estimate: 

    
N

d

pp

FN

n
f SRS

SRS 2

2
,1 11 




. 

Overall sampling fraction of the modified estimate of DHS: 
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Overall sampling fraction of the modified estimate of MICS: 

   
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Selection bias of the estimates for DHS: 

 
 














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p
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, 

where bias will be 0 if and only if 

 

1
..

1
22

,1


eRR
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p hi
. 

Selection bias of the estimates for MICS: 

   










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where bias will be 0 if and only if 
 

1
.

.


hnk

rdeff
. 

Selection bias formulas show that the sample size calculation used by the 
surveys affect the overall sample selection probabilities. Accordingly, it is not 
recommended to use the modified univariate sample size determination formulas 
of this type for the complex sample designs. 

Sample size determination for a two stage cluster sampling is proposed by 
Desu and Raghavarao (1990), and Aliaga and Ren (2006). Hansen et al. (1953) 
has evaluated the general cost function model for the complex sample designs. 
For the multivariable designs, there is no established standard computation 
formula for sample sizes. Depending on the type of design, the related 
parameters constitute variables for complex sample designs. 

7.  Weighting Adjustment Procedures 

After the determination of the univariate sample size, the actual SRS sample 
is selected from the population by using a randomization process. For the 
purpose of the allocation of complex sample survey designs, the selected sample 
is then reallocated to the proposed new sample design. The proposed design can 
be allocated to complex designs, which may be based on equal allocation, 
proportional allocation, probability proportional to size (PPS) allocation, weighted 
PPS allocation, optimum allocation, and clustering. A comparison of the sample 
allocation methods is summarized by Ayhan and Islam (2005). Under this 
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approach, the following adjustment methodologies can be used after the data 
have been collected from a complex sampling plan. 

7.1. Weighting Independent Stages 

Data weighting methods have been covered by Kish (1992), Kalton and 
Flores-Cervantes (2003), and Ayhan (2003), and Alkaya et al. (2017) in detail. 
Several alternative approaches, such as cell weighting, ranking, linear weighting, 
GREG weighting and several others can be proposed (Vaillant et al., 2013; Brick, 
2013). 

7.1.1. Adjustments for Design Weights 

For complex or stratified sample designs, design weights have to be used for 
the adjustment of the sample selection probabilities if the sample design is not 
self-weighting. For self-weighting sample designs selection probabilities of each 

domain will be the same as the overall, that is if
N

n

N

n
f i

i

i  . Then, the 

design weights are given by 
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where
ip  is the selection probability of the domain and nwi  . 

 

7.1.2. Adjustments for Non-Response Weight 

 
Non-response weights should be used as an error correction component after 

the data collection, not before. Non-response adjustment weights are used to 
compensate for the losses of non-response amounts when the overall non-
response rate is greater than 10 per cent and the domain non-response rates are 
more than 5 per cent for any domain (WFS, 1977). Sample design outcomes 
other than the above restrictions do not require any weighting adjustments for the 
sample outcomes. Hence, the non-response weights are for each domain given 
by 

jj RRw  , ,2,1j , 

here 
 



jj

j

Rn

n
R , where jR  is the non-response rate for the domain (or 

strata), R  is the average non-response rate overall domains, and jn  is the 

domain size. These rates ( jR  and R ) are recommended by WFS (1977) and 

has been used in 42 WFS country surveys, including Turkish Fertility Survey 1980 
(Ayhan, 1981). 
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7.1.3. Adjustments for Post-Stratification Weights 

Computation of the post-stratification weights is required for each domain in 
order to avoid bias due to cross-tabulation of the data. Kalton and Flores-
Cervantes (2003) have proposed an alternative combined adjustment 
methodology for sample surveys. 

This procedure adjusts the sample weights so that the sample totals conform 
to the population totals on a cell-by-cell basis. The weights for each respondent 
(typically, the inverse of the probability of the case) in a weighting cell (or post-
stratum) is multiplied by an adjustment factor (Tourangeau et al., 2013). Then, the 
weight formula is given as 

,1

1

2 ijn

ij

j

ij w

w

N
w

j



  

in which ijw2  is the adjusted or post-stratified weight, ijw1  is the unadjusted 

weight, and the adjustment factor is the ratio between the population total for cell j 
(Nj) and the sum of the unadjusted weights for the respondents in that cell. 

Rather than using independent weighting and adjustment procedures for each 
stage of the weighting, alternative approaches can also be used. This is based on 
combined weighting methods, which take into account the conditional probability 
approach for the previous stages. As an alternative to the weighting independent 
stages, the combined weighting methods can be proposed to avoid bias for the 
sample estimates. 

7.2. Combined Weighting Methods 

Ayhan (2003) and Alkaya et al. (2017) have proposed the following combined 
weighting procedure for sample surveys. These weighting procedures are used in 
a sequential manner for each weighting component. The weights are proposed as 
products for each weighting stage in a combined way. Sample design may be 
self-weighting or non-self-weighting. Design weights have to be introduced for 
non-self-weighting designs in the following way. 

The probability of selection of the overall sample is obtained simply by the 

sampling fraction of the selected sample FXxf 1  for the total sample. 

On the other hand, after using some method of stratification, the sampling fraction 

of any strata is  .1 iiii FXxf   

7.2.1. Design Weights 

Design weights (Ayhan, 1991; Verma, 1991) for non-self-weighting sample 
designs can be computed for each domain i with the same probability of selection 

ip (Ayhan, 2003).  
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Here, 
0P has been computed to adjust the overall weighted and unweighted 

sample to be the same.  

 

7.2.2. Combined Weighting for Nonresponse 

In addition, a weighting procedure for nonresponse is also essential for self-
weighting and non-self-weighting sample design outcomes. The non-response 
rate is calculated as 

ii RRW 0

*   

where iii xxR * is the response rate in domain i. 

The overall response rate )( 0R for the design can be computed as  
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where 
0R is used to adjust the sample sizes to be the same,   xxWW

I

i
iii 

1

*
. 

7.2.3. Combined Weighting for Post-Stratification 

Finally, post-stratification of a complex sampling scheme requires additional 
weighting procedures for independent subclasses. The combined weight can be 
calculated by using the following weights: 

  XXWWW iiii
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ii RRW 0
*  , 

where iW  is the post-stratification weight, iW is the design weight, *
iW is the 

non-response weight,    


I

i
iii

I

i
ii RxWxWR

11
0 / and .*

iii xxR   

Consequently,   xxWWW
I

i

iiii 
1

*
 is the overall sample adjustment 

procedure for the combined weighted estimator. This is naturally provides the 
adjustment to the base variable x (Ayhan, 2003; Alkaya et al., 2017). 

Alternative weighting adjustment procedures in multistage complex sample 
surveys are proposed by Ayhan et al. (2000) for adjusting the original selection 
probabilities by PPS procedures. 

The next step in the analysis of the collected data is to compute the following 
error statistics for the proposed sampling design. This will provide information on 
how efficient the designed sample was when compared with the basic standard, 
which is SRS. 

8. Discussion and Conclusions 

In a multivariable survey design, the determination of the sample size is an 
important concept that has to be answered. Although there is no settled 
methodology, some prestigious organizations modify the formula for univariate 
sample size determination to be able to use it in the multivariable case. For this 
purpose, they included some factors such as deff or non-response rate in their 
sample size formulas. These factors have to be calculated after the sample has 
been collected as a data quality measure, not before. Hence, the modified 
univariate sample size methodologies of several survey institutions do not 
represent the corresponding population. The amount of bias involved in the 
formulas is clearly identified during the previous formulations. This paper 
highlights the importance of sample selection in a representative manner, to avoid 
the selection bias. 

The ideal approach should be not to determine the sample size of the 
complex survey design as if it was based on the univariate case and use SRS 
assumptions. Consequently, representation bias enables the survey results not 
representing the corresponding population parameters. 

For the complex designs, the suggested alternative strategy is to use 
weighting after SRS. For the purpose of allocation, the selected sample is 
reallocated to the proposed new sample design. As an alternative to the weighting 
independent stages, the combined weighting methods can be proposed to avoid 
bias for the sample estimates. 

International survey organizations should be responsible for following recent 
developments in survey sampling theory and methods, in order to maintain 
themselves as reliable institutions. 
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EFFICIENT ESTIMATORS OF POPULATION MEAN USING 
AUXILIARY INFORMATION UNDER  

SIMPLE RANDOM SAMPLING  
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ABSTRACT 

In the present study we have proposed an improved family of estimators for 
estimation of population mean using the auxiliary information of median, quartile 
deviation, Gini’s mean difference, Downton’s Method, Probability Weighted 
Moments and their linear combinations with correlation coefficient and coefficient 
of variation. The performance of the proposed family of estimators is analysed by 
mean square error and bias and compared with the existing estimators in the 
literature. By this comparison we conclude that our proposed family of estimators 
is more efficient than the existing estimators. To support the theoretical results, we 
also provide the empirical study.  

Key words: Auxiliary information, Bias, Mean Square Error, Simple Random 
Sampling, Efficiency. 

AMS Subject Classification: 62D05 

1. Introduction 

Since last few decades statisticians have proposed estimators for the 
population parameters. The concept of efficiency is a vital key word for an 
estimator and it depends on the Mean Square Error (MSE), thus we should know 
the fundamental of MSE in statistics. Therefore, according to the estimation 
theory the estimators with the mean square error or variance than lower that of 
other estimators are said to be efficient estimators and the estimators with the 
bias lower than that of other estimators are said to be good estimators. Hence, 
this efficiency in estimation theory is achieved by using the auxiliary information at 
the design or estimation stage or at both stages. The use of such auxiliary 
information is made through different methods of estimation such Ratio, 
Regression and Product methods. So, Cochran (1977) initiated the use of 
auxiliary information at estimation stage and proposed ratio estimator for 
population mean. It is a well-established fact that ratio type estimators provide 
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better efficiency in comparison to simple mean estimator if the study variable and 
auxiliary variable are positively correlated and the regression line  pass through 
origin, and if on the other side the correlation between the study variable and 
auxiliary variable is positive and does not pass through origin but makes an 
intercept, in that case the regression method provides better efficiency than ratio, 
simple mean and product type estimator, and if the correlation between the study 
variable and auxiliary variable is negative, product estimator given by Robson 
(1957) is more efficient than simple mean estimator.  

Further improvements are also achieved on the classical ratio estimator by 
introducing a large number of modified ratio estimators with the use of known 
parameters as coefficient of variation, coefficient of kurtosis, coefficient of 
skewness and population correlation coefficient. For more detailed discussion, 
one may refer to Cochran (1977), Kadilar and Cingi (2004, 2006), Koyuncu and 
Kadilar (2009), Murthy (1967), Sharma and Singh (2013), Prasad (1989), Rao 
(1991), Singh and Tailor (2003, 2005), Singh et al. (2004), Sisodia and Dwivedi 
(1981), Upadhyaya and Singh (1999) and Yan and Tian (2010).  

Further, Subramani and Kumarapandiyan (2012) have taken initiative by 
proposing modified ratio estimator for estimating the population mean of the study 
variable by using the population deciles of the auxiliary variable. 

Recently, Subzar et al. (2016) have proposed some estimators using 
population deciles and correlation coefficient of the auxiliary variable, also Subzar 
et al. (2017) have proposed some modified ratio type estimators using the quartile 
deviation and population deciles of auxiliary variable, and Subzar et al. (2017) 
have also proposed an efficient class of estimators by using the auxiliary 
information of population deciles, median and their linear combination with 
correlation coefficient and coefficient of variation.  

In this paper we have envisaged a new class of improved ratio type 
estimators for estimation of population mean of the study variable using the 
information of quartile deviation, median, non-conventional measures of 
dispersion and their linear combination with correlation coefficient and coefficient 

of variation. Let }...,,,,{ 321 NGGGGG   be a finite population of N distinct and 

identifiable units. Let y and x denote the study variable and the auxiliary variable 

taking values iy and ix  respectively on the ith unit (i = 1, 2,…,N). Before 

discussing the proposed estimators, we will mention the estimators in the 
literature using the notations given in the next sub-section. 

1.1. Notations 

  Population size 

  Sample size                                                                              

   Sampling fraction 

 Y   Study variable 

  Auxiliary variable 

  Population means 

N

n

Nnf 

X

YX ,
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  Sample means 

  Sample totals 

 Sx, Sy
 Population standard deviations 

  Population covariance between variables 

 Cx, Cy
 Population coefficient of variation 

  Population correlation coefficient 

  Bias of the estimator                

   Mean square error of the estimator 

  Existing modified ratio estimator of  

  Proposed modified ratio estimator of  
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 Subscript 

     For existing estimators  

  For proposed estimators 

1.2. Estimators in the literature 

Kadilar and Cingi (2004) have suggested ratio type estimators for the 
population mean in the simple random sampling using some known auxiliary 
information on coefficient of kurtosis and coefficient of variation. They showed 
that their suggested estimators are more efficient than traditional ratio estimator in 
the estimation of the population mean. 
Kadilar & Cingi (2004) estimators are given by 
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The biases, related constants and the MSE for Kadilar and Cingi (2004) 
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Kadilar and Cingi (2006) developed some modified ratio estimators using 
known value of coefficient of correlation, kurtosis and coefficient of variation as 
follows: 
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The biases, related constants and the MSE for Kadilar and Cingi [6] 
estimators are respectively given by 
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Abid et al. (2016) suggested the following ratio estimators for the population 

mean Y in simple random sampling using non-conventional location parameters 
as auxiliary information. Estimators suggested by Abid et al. (2016) are given as: 
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The biases, related constants and the mean square error (MSE) for Abid et al. 
(2016) estimators are respectively given by: 
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Abid et al. (2016) suggested the following ratio estimators for the population 

mean Y in simple random sampling using Decile mean, with linear combination of 
population correlation coefficient and population coefficient of variation as 
auxiliary information. Estimators suggested by Abid et al. (2016) are given as: 
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The biases, related constants and the mean square error (MSE) for Abid et al. 
(2016) estimators are respectively given by:  
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2. Improved ratio estimators 

Motivated by the estimators mentioned in Section 1.2, in this section we 
suggest some improved class of estimators by using the auxiliary information 
median, quartile deviation, Gini’s mean difference, Downton’s Method, Probability 
Weighted Moments and their linear combinations with correlation coefficient and 
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coefficient of variation in survey sampling, and the suggested estimators are 
given below as:
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where )(1 GM d  , )(2 DM d  , )(3 pwd SM  , )(4 GQD  ,

)(5 DQD  and )(6 pwSQD   

The bias, related constant and the MSE for the first proposed estimator can 
be obtained as follows:  

MSE of this estimator can be found using Taylor series method defined as 
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As shown in Wolter (1985), (2.1) can be applied to the proposed estimator in 
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Thus, the bias and MSE of the proposed estimator is given below: 
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Similarly we can obtain the bias, constant and mean square error for the other 
proposed estimators as follows:  
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3. Efficiency comparisons 

From the expressions of the MSE of the proposed estimators and the existing 
estimators, we have derived the conditions for which the proposed estimators are 
more efficient than the usual and existing modified ratio estimators. They are 
given as follows. 

3.1 Comparison with the classical ratio estimator  

Modified proposed ratio estimators are more efficient than that of the classical 
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3.2 Comparisons with existing ratio estimators 
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where 18,....,2,1j and .22,....,2,1i  

4. Empirical study 

The performances of the proposed ratio estimators are evaluated and 
compared with the mentioned ratio estimators in Section 1.2 by using the data of 
the three natural populations. For the population I and II we use the data of Singh 
and Chaudhary (1986) page 177 and for the population III we use the data of 
Murthy (1967) page 228, in which fixed capital is denoted by X (auxiliary variable) 
and output of 80 factories is denoted by Y (study variable). We apply the 
proposed and existing estimators to these data sets and the statistics of these 
populations are given in Table 1. 

From Table 2a and Table 2b, we observe that the proposed estimators are 
more efficient than all of the estimators in the literature as their Bias, Constant 
and Mean Square error are much lower than the existing estimators. 
The percentage relative efficiency (PRE) of the proposed estimators (p), with 

respect to the existing estimators (e), is computed by 

                                          

These PRE values are given in Table 3, for the population I. From this table, it 
is clearly evident that the proposed estimators are quiet efficient with respect to 
the estimators in the literature. Similarly, we can calculate the PRE values for 
population II and population III respectively by using the same formula mentioned 
above. 

Table 1. Characteristics of the populations 

Parameters Population 1 Population 2 Population 3 

N  34 34 80 

n  20 20 20 

Y  856.4117 856.4117 5182.637 

X  199.4412 208.8823 1126.463 

 

100
estimatorpropoesdofMSE

EstimatorExistingofMSE
PRE
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Table 1. Characteristics of the populations  (cont.) 

Parameters Population 1 Population 2 Population 3 

  0.4453 0.4491 0.941 

yS  733.1407 733.1407 1835.659 

yC  0.8561 0.8561 0.354193 

xS  150.2150 150.5059 845.610 

xC  0.7531 0.7205 0.7506772 

2  1.0445 0.0978 -0.063386 

1  1.1823 0.9782 1.050002 

dM
 

142.50 150 757.5 

TM
 

89.375 162.25 931.562 

MR
 

165.562 284.5 1795.5 

HL
 

320 190 1040.5 

QD  184 80.25 588.125 

G
 

162.996 155.446 901.081 

D
 

144.481 140.891 801.381 

pwS
 

206.944 199.961 791.364 

DM  206.944 234.82 1150.7 

 

Table 2a. The Statistical Analysis of the Estimators for the Populations 

Estimators 

Population I Population II Population III 

Constant Bias Constant Bias Constant Bias 

rY


 4.294 4.940 4.100 4.270 4.601 60.877 

1Y


 4.294 10.0023 4.100 9.1539 4.601 36.5063 

 4.278 9.9272 4.086 9.0911 4.598 36.4577 

 4.272 9.8983 4.098 9.1454 4.601 36.5104 

 4.279 9.9303 3.960 8.5387 4.650 37.2861 

 4.264 9.8646 4.097 9.142 4.601 36.5117 

 4.284 9.9578 4.091 9.1147 4.597 36.4453 

 4.281 9..9432 4.088 9.0995 4.596 36.4251 

2Y


3Y


4Y


5Y


6Y


7Y

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Table 2a. The Statistical Analysis of the Estimators for the Populations  (cont.) 

Estimators 

Population I Population II Population III 

Constant Bias Constant Bias Constant Bias 

 4.258 9.8348 4.069 9.0149 4.598 36.4546 

 4.285 9.9597 4.011 8.763 4.662 37.4882 

10Y


 4.244 9.7711 4.096 9.1349 4.601 36.5106 

11Y


 2.3463 2.986 2.3076 2.9 2.518 32.81 

12Y


 2.0427 2.263 1.973 2.12 2.189 24.79 

13Y


 1.4993 1.219 1.5021 1.229 2.449 31.03 

14Y


 1.6487 1.475 1.7358 1.641 1.774 16.23 

15Y


 1.3718 1.021 1.4185 1.096 1.473 11.23 

16Y


 0.9329 0.472 1.0167 0.563 1.708 15.10 

17Y


 2.233 2.706 2.147 2.51 2.392 29.59 

18Y


 1.930 2.021 1.812 1.788 2.063 22.01 

19Y


 1.398 1.060 1.355 1.980 2.322 27.90 

20Y


 2.107 2.137 1.9301 2.2087 2.276 26.800 

21Y


 1.806 1.483 1.6013 1.3964 1.949 19.650 

22Y


 1.289 0.800 1.1703 0.7459 2.206 25.188 

1pY


 1.6960 1.5604 1.6651 1.5098 1.9813 20.312 

 1.7606 1.6815 1.7136 1.599 2.0598 21.953 

 1.5602 1.3205 1.5324 1.2788 2.0681 22.129 

 1.8955 1.9490 1.9263 2.0207 1.8608 17.916 

 1.9764 2.1191 1.9915 2.1598 1.9299 19.271 

 1.7274 1.6187 1.751 1.6696 1.9371 19.416 

 0.9671 0.5074 0.9633 0.5053 1.7938 16.650 

8Y


9Y


2pY


3pY


4pY


5pY


6pY


7pY

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Table 2a. The Statistical Analysis of the Estimators for the Populations  (cont.) 

Estimators 

Population I Population II Population III 

Constant Bias Constant Bias Constant Bias 

 1.0148 0.5586 0.9997 0.5443 1.8622 17.942 

 0.8701 0.4107 0.8666 0.409 1.8693 18.079 

10pY


 1.1177 0.6777 1.1672 0.7419 1.9130 18.936 

11pY


 1.1818 0.7577 1.2211 0.8121 1.9909 20.508 

12pY


 0.9902 0.5318 1.0283 0.5758 1.9991 20.677 

13pY


 1.4153 1.0866 1.3533 0.9973 1.5540 12.495 

14pY


 1.4752 1.1806 1.3979 1.0642 1.6184 13.552 

15pY


 1.2908 0.9038 1.2329 0.8278 1.6252 13.666 

16pY


 1.6021 1.3923 1.5977 1.3901 1.6667 14.373 

17pY


 1.6793 1.5298 1.6603 1.5011 1.7410 15.684 

18pY


 1.4444 1.1317 1.4326 1.1176 1.7489 15.825 

 

Table 2b. The Statistical Analysis of the Estimators for the Populations 

 
Estimators 

 

Pop I Pop II Pop III 
Estimators 

Pop I Pop II Pop III 

MSE MSE MSE MSE MSE MSE 

rY


 10960.76 10539.27 189775.1 
21Y


 10386.83 10030.11 116239.3 

1Y


 17437.7 16673.5 193998.1 
22Y


 9644.04 9472.95 144936.7 

 17373.3 16619.6 193746.2 
1pY


 10208.16 10333.07 119741.5 

 17348.6 16666.1 194019.4  10311.83 10203.59 128249.9 

 17376.0 16146.6 198039.9  10002.72 9929.39 129161.3 

 17319.8 16663.3 194026.4  10540.91 10564.74 107326.5 

 17399.5 16639.9 193682.3  10686.6 10683.87 114349.5 

8pY


9pY


2Y


3Y


2pY


4Y


3pY


5Y


4pY


6Y


5pY

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Table 2b. The Statistical Analysis of the Estimators for the Populations  (cont.) 

 
Estimators 

 

Pop I Pop II Pop III 
Estimators 

Pop I Pop II Pop III 

MSE MSE MSE MSE MSE MSE 

 17387.1 16626.9 193577.6  10258.09 10264.06 115098.9 

 17294.2 16554.4 193730.5  9306.32 9266.94 100762.1 

 17401.1 16338.7 199087.0  9350.19 9300.31   107457.3 

10Y


 17239.7 16654.2 194020.7  9223.53 9184.47 108172.8 

11Y


 11429.08 11317.28 184446.20 
10pY


 9452.18 9469.56 112609.8 

12Y


 10809.99 10649.40 142903.20 
11pY


 9250.7 9529.64 120761.3 

13Y


 9915.81 9886.21 175238.70 
12pY


 9327.27 9327.31 121636.1 

14Y


 10134.39 10239.11 98755.61 
13pY


 9802.37 9688.30 79228.58 

15Y


 9745.79 9772.39 72582.52 
14pY


 9882.86 9745.56 84709.31 

16Y


 9275.87 9316.02 92644.60 
15pY


 9645.86 9543.10 85298.12 

17Y


 11189.04 10983.77 167778.60 
16pY


 10064.19 10024.69 88963.27 

18Y


 10602.02 10365.55 128487.60 
17pY


 10181.93 10119.77 95756.01 

19Y


 9779.43 9690.50 158990.7 
18pY


 9841.01 9791.32 96489.39 

20Y


 10934.74 10571.58 153292.6 
 

   

 

Table 3.  PRE of the Proposed Estimators with the Estimators in the Literature for 
Population I. 

 
 

        

rY


 107.372 106.293 109.578 103.983 102.565 106.85 117.778 117.225 118.835 

1Y


 170.821 169.103 174.329 165.428 163.173 169.991 187.381 186.495 189.056 

 170.190 168.479 173.685 164.817 162.570 169.363 186.689 185.806 188.358 

 169.948 168.239 173.438 164.583 162.339 169.122 186.423 185.542 188.090 

 

7Y


6pY


8Y


7pY


9Y


8pY


9pY


1pY


2pY


3pY


4pY


5pY


6pY


7pY


8pY


9pY


2Y


3Y

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Table 3.  PRE of the Proposed Estimators with the Estimators in the Literature for 
Population I.  (cont.) 

 
 

        

 170.216 168.505 173.712 164.843 162.596 169.389 186.718 185.835 188.387 

 169.666 167.960 173.150 164.310 162.070 168.841 186.114 185.234 187.778 

 170.447 168.733 173.947 165.066 162.816 169.618 186.970 186.087 188.642 

 170.325 168.613 173.823 164.948 162.700 169.498 186.837 185.954 188.508 

 169.415 167.712 172.895 164.067 161.830 168.592 185.839 184.960 187.500 

 170.462 168.748 173.963 165.081 162.831 169.634 186.988 186.104 188.659 

10Y


 168.881 167.183 172.350 163.550 161.320 168.061 185.253 184.378 186.910 

11Y


 111.960 110.834 114.259 108.425 106.947 111.416 122.814 122.233 123.912 

12Y


 105.895 104.831 108.070 102.552 101.154 105.381 116.161 115.612 117.200 

13Y


 97.1361 96.1595 99.1311 94.0697 92.7873 96.6641 106.552 106.049 107.505 

14Y


 99.2773 98.2792 101.316 96.1434 94.8326 98.7949 108.901 108.387 109.875 

15Y


 95.4705 94.5107 97.4314 92.4568 91.1963 95.0067 104.725 104.230 105.662 

16Y


 90.8672 89.9536 92.7334 87.9987 86.7990 90.4257 99.6762 99.2051 100.567 

17Y


 109.608 108.506 111.860 106.148 104.701 109.076 120.234 119.666 121.309 

18Y


 103.858 102.814 105.991 100.579 99.2085 103.353 113.926 113.388 114.945 

19Y


 95.8001 94.8370 97.7677 92.7759 91.5111 95.3346 105.087 104.590 106.027 

20Y


 107.117 106.040 109.317 103.736 102.322 106.597 117.502 116.946 118.552 

21Y


 101.750 100.727 103.840 98.5382 97.1949 101.255 111.614 111.086 112.612 

22Y


 94.4738 93.5240 96.4141 91.4915 90.2442 94.0148 103.632 103.142 104.559 

1pY


2pY


3pY


4pY


5pY


6pY


7pY


8pY


9pY


4Y


5Y


6Y


7Y


8Y


9Y

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Table 3.  PRE of the Proposed Estimators with the Estimators in the Literature for 
Population I.  (cont.) 

 
 11pY


 12pY


 13pY


 14pY


 15pY


 16pY


 17pY


 18pY


 

rY


 115.96 118.486 117.513 111.817 110.907 113.632 108.909 107.649 111.378 

1Y


 184.483 188.501 186.954 177.893 176.444 180.779 173.265 171.261 177.194 

 183.802 187.805 186.264 177.236 175.792 180.111 172.625 170.629 176.540 

 183.541 187.538 185.999 176.984 175.542 179.855 172.379 170.386 176.289 

 183.831 187.834 186.292 177.263 175.820 180.139 172.652 170.655 176.567 

 183.236 187.227 185.690 176.690 175.251 179.557 172.093 170.103 175.996 

 184.079 188.088 186.544 177.503 176.057 180.383 172.885 170.886 176.806 

 183.948 187.954 186.411 177.376 175.932 180.255 172.762 170.764 176.680 

 182.965 186.950 185.415 176.429 174.992 179.291 171.839 169.852 175.736 

 184.096 188.106 186.562 177.519 176.074 180.400 172.901 170.902 176.822 

10Y


 182.389 186.361 184.831 175.873 174.440 178.726 171.297 169.317 175.182 

11Y


 120.915 123.548 122.534 116.595 115.645 118.487 113.562 112.249 116.137 

12Y


 114.365 116.856 115.897 110.279 109.381 112.069 107.410 106.168 109.846 

13Y


 104.905 107.190 106.310 101.157 100.333 102.799 98.5257 97.3864 100.760 

14Y


 107.217 109.553 108.653 103.387 102.545 105.065 100.698 99.5331 102.981 

15Y


 103.106 105.352 104.487 99.4228 98.6131 101.036 96.8363 95.7165 99.0324 

16Y


 98.1347 100.272 99.4489 94.6288 93.8582 96.1643 92.1671 91.1013 94.2573 

17Y


 118.375 120.953 119.961 114.146 113.217 115.998 111.177 109.891 113.698 

18Y


 112.165 114.608 113.667 108.158 107.277 109.913 105.344 104.126 107.733 

19Y


 103.462 105.716 104.848 99.7660 98.9534 101.385 97.1706 96.0469 99.3743 

20Y


 115.685 118.204 117.234 111.552 110.643 113.362 108.650 107.394 111.114 

21Y


 109.888 112.282 111.360 105.962 105.099 107.682 103.206 102.012 105.546 

22Y


 102.030 104.252 103.396 98.3848 97.5835 99.9811 95.8253 94.7172 97.9985 

10pY


2Y


3Y


4Y


5Y


6Y


7Y


8Y


9Y

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5. Conclusion 

From the present study we conclude that our proposed estimators perform 
better than the existing estimators in the literature as their mean square error and 
bias are much lower than that of the existing estimators. Hence, we strongly 
recommend that our proposed estimators are preferred over the existing 
estimators in practical applications. 
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MODIFIED RECURSIVE BAYESIAN ALGORITHM FOR
ESTIMATING TIME-VARYING PARAMETERS

IN DYNAMIC LINEAR MODELS

O. Olawale Awe1, A. Adedayo Adepoju2

ABSTRACT

Estimation in Dynamic Linear Models (DLMs) with Fixed Parameters (FPs) has been
faced with considerable limitations due to its inability to capture the dynamics of
most time-varying phenomena in econometric studies. An attempt to address this
limitation resulted in the use of Recursive Bayesian Algorithms (RBAs) which is also
affected by increased computational problems in estimating the Evolution Variance
(EV) of the time-varying parameters. In this paper, we propose a modified RBA for
estimating TVPs in DLMs with reduced computational challenges.

Key words: discounted variance, dynamic models, granularity range, estimation
algorithm.

1. Introduction

Generally speaking, a model is dynamic each time the variables (or parameters) are
indexed by time or appear with different time lags (Ravines et al., 2006). In recent
times, estimation of time-varying parameters in econometric models has become
more relevant especially as the length of the observed time series increases and
the series itself is subject to changes in the dynamic structure. Particular examples
can be found in world economic time series where key monthly, quarterly or annual
economic indicators are commonly available from the 1950s and cover periods of
different economic conditions. For example, the periods of strong economic growth
in the 1950s and 1960s, periods with oil crises in the 1970s, periods of major mon-
etary policy changes in the 1980s, rapid changes of financial markets in the 1990s
and the collapse of the financial and banking systems more recently (Doh and Con-
nolly, 2013). Although, not all economic structures are subject to changes due to
these developments, it is expected that the dynamic properties of longer time series
require parameters that are allowed to change over time. Models with fixed param-
eters have been found to perform poorly for analysis of these kinds of data because
basic econometric time series analysis lies in the possibility of finding a reasonable
regularity in the phenomenon under study (Petris, 2010). In a dynamic economy,
for instance, the relations between economic agents are subject to change. As the

1Department of Mathematical Sciences, Anchor University Lagos, Nigeria. E-mail: oawe@aul.edu.ng
2Department of Statistics, University of Ibadan, Nigeria. E-mail: pojuday@yahoo.com
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knowledge of production techniques improved, as the means of transportation al-
low for long-distance trade, and as the society changed its preferences for certain
goods or services, the structure of the economy varies accordingly. It is also natural
to think that as time changes, information decays thereby necessitating the need
for discounting the variance of the underlined evolution of the dynamic parameter
as adopted in this work.
In a surprisingly short period of time, Markov chain Monte Carlo (MCMC) algo-
rithms, especially the Metropolis-Hastings algorithm (Hastings, 1970) and the Gibbs
sampling algorithm (Geman and Geman, 1984; Gelfand et al., 1990) have emerged
as extremely popular tools for the analysis of complex statistical and economet-
ric models. Bayesian analysis requires the evaluation of complex and often high-
dimensional integrals in order to obtain posterior distributions for the unobserved
quantities of interest in the model. In many such settings, alternative methodolo-
gies such as asymptotic approximation and non-recursive Monte Carlo algorithms
are either infeasible or fail to provide sufficiently accurate results. Properly defined
and implemented, MCMC methods enable the user to successively sample values
from a Markov chain process. Important features of MCMC methods that enhance
their applicability include their ability to reduce complex multidimensional problems
to a sequence of much lower-dimensional ones. While MCMC algorithms allow an
enormous expansion of the class of candidate models for a given data, they also
suffer from a well-known and potentially serious problem: it is often difficult to de-
cide when it is safe to terminate them and conclude their "convergence" (Zellner,
2009).
The algorithms for recursive estimation and Kalman filtering are being used increas-
ingly in applied econometrics, but econometricians have been slower than other
statisticians to explore them (Pollock, 2003). In recursive estimation, the knowl-
edge about the parameters of a model is updated continuously as new measure-
ments are collected. It is suitable in problems where the parameters have dynamic
properties that make them change with time. Several measurements y1,y2, ...,yn

are considered alongside their joint probability density function f (θ ,y1,y2,y3, ...,yn).
New measurements are received and estimation done one at a time. After measur-
ing y1, we construct an estimate θ̂i, when yi+1 is received again, parameter θ̂i would
be updated. This process continues recursively. To initiate the recursion, we need
an initial estimate of the parameter θ and its variance-covariance matrix.
Another reason for the burgeoning popularity of the recursive approach in econo-
metrics is the increased importance of numerical simulations in statistics and econo-
metrics, hence, most computational algorithms rely on recursive methods . A sig-
nificant breakthrough in the application of recursive methods in econometrics was
achieved by several researchers including Cooley and Prescott (1973, 1976); Bert-
sekas (1976); Spear and Srivastava (1987); Blanchard and Fischer (1989); Abreu
et al. (1990), Ng and Young (1990); Pollock (2003); Young (2011). Although,
economic theory rarely provides a useful guide to distinguish between fixed and
time-varying parameters, estimation of Dynamic Linear Models (DLMs) with Fixed
Parameters (FPs) has been faced with considerable limitations due to its inability
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to capture the dynamics of most time-varying phenomena in econometric studies.
This is because the classical linear regression model with fixed parameters pre-
sumes that the relationship between the explanatory and the explained variable re-
mains constant through the estimation period. However, there are situations when
this kind of assumption becomes unreasonable and totally non-implementable be-
cause assuming time-invariant parameters and variances turn out to be quite re-
strictive in capturing the evolution dynamics of most economic time series. For
instance, business cycle dynamics and monetary policy in United States and other
major economies of the world has changed substantially over the post-war period.
In addition, the introduction of time-varying parameters in linear models can lead to
different levels of complexities including the fact that they gain new evolution vari-
ance parameters which are also time-varying and, in turn, need to be estimated. In
literature, the choice of the evolution variance (say Ωt ) has been found to be com-
plex and usually difficult to characterize because of a number of practical problems
associated with it which includes:

1. it varies with the measurement scale of regressor variables as specified in the
observation equation of DLM.

2. it can be ambiguous i.e there may not be an optimal value of Ωt suitable for
all times.

3. it is often grossly mis-specified because most modellers have great difficulty
in directly quantifying its variance and covariance elements.

4. the predictive performance of the dynamic linear model depends on the choice
of the evolution variance Ωt (West and Harrison, 1997).

An attempt to address these problems resulted in the use of Recursive Bayesian Al-
gorithms (RBAs) which is also affected by increased computational problems in es-
timating the Evolution Variance (Ωt ) of the Time-Varying Parameters (TVPs). Con-
sequently, researchers require a better way of structuring the evolution variance
which previous studies have failed to effectively address. The aim of this study,
therefore, was to modify an existing RBA of Fúquene et al. (2015) for estimating
TVPs in DLMs. Discounting is proposed as an alternative way of coping with the
system evolution variance of economic series in order to portray a clearer picture
of the volatility of the parameters in the model under study over time.

The proposed recursive Bayesian estimation algorithm will be useful for proper
choice of discount values to represent the evolution variance which is inevitable
in order to address problems (2) and (3) above with reduced computational chal-
lenges.

2. Dynamic Linear Models with Time-Varying Parameters

It has been argued severally in literature that the parameters in econometric models
cannot, in general, be expected to remain constant and hence Time-Varying Pa-
rameter (TVP) models should be considered in almost all circumstances (Soloviev
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et al., 2011; Primiceri, 2005; Doh and Connolly, 2013). The difficulty in estimat-
ing such models is however often exacerbated by the fact that the econometrician
would have only some idea regarding the most likely value that a parameter may
assume (as indicated by, say, the Ordinary Least Squares (OLS) and maximum
likelihood estimators); with a range of uncertainty surrounding this nominal value
and consequently, misleading policy prescriptions are likely to arise from a straight-
forward optimization exercise based on such a set of nominal values especially in
the presence of structural breaks in the underlying economic, technological, be-
havioural and institutional patterns. However, because discontinuities are a crucial
feature of modern economic systems, there is the need to consider models with
time-varying parameters. According to literature, such TVP models can be classi-
fied into three types:
First, the parameters can vary across subsets of observations within the sample
but be non-stochastic. Examples of such models include the general systematically
varying parameter model of Belsley and Kuti (1973) and a variety of switching re-
gression models with either known joint points (see McZgee and Carleton (1970);
Hinkley (1971); Goldfeld and Quandt (1973)) or unknown joint points of Gallant and
Fuller (1973). A second class of models is where the parameters are stochastic,
and are assumed to be generated by a stationary stochastic process. Examples
of such models include the pure random coefficient model of Harvey and Phillips
(1982) which includes the adaptive and varying-parameter regression models of
Cooley and Prescott (1973) and the stochastically convergent parameter model of
Rothenberg (1973). Finally, the third class of models consists of those where the
stochastic parameters are generated by a process that is not stationary. These
include the mixed estimation model of Cooper (1972), the Kalman filter model
of Athans (1974), the stochastic variations model of Cooley and Prescott (1976),
the systematically varying parameter model of Kalaba and Tesfatsion (1980) which
was then extended to the flexible least squares (FLS) approach Kalaba and Tes-
fatsion (1988), the recursive and optimal control model of Ng and Young (1990)
which have gained tremendous popularity in literature and become more relevant
in recent times. Some of the rationale behind time-varying parameter models are
documented in Sarris (1973). The archetypical (existing) dynamic linear model in
literature with fixed variances has the following general form:

yt = F ′βt + vt vt ∼ N(0,V ) (1)

βt = Gβt−1 +wt wt ∼ Np(0,Ω) (2)

β0 ∼ Np(m0,C0) (3)

where yt is a vector of dimension m×1

Equation (1) is known as the observation equation while equation (2) is a first
order Markov process called the evolution equation.
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The matrices F , V , G and Ω are known as the system matrices and contain non-
random elements. If they do not depend deterministically on t, the model is time
invariant, otherwise it is time varying. The initial state distribution is assumed to be
Normally distributed with parameters m0 and C0 as shown in (3) where E(vtβ

′
t ) =

0,E(wtβ
′
t ) = 0 for t = 1, ...,T .

The dynamic linear model with state space approach offers attractive features
with respect to their generality, flexibility and transparency. The lack of publicly
available software to estimate these models has been the main reason why only
relatively few economic and finance related problems have been analyzed with dy-
namic linear models so far. Basically, the estimation of DLM involves three stages:
prediction, filtering and smoothing. Prediction has to do with forecasting future val-
ues of the time-varying state parameters. Filtering makes the best estimate of the
current values of the time-varying state parameter from the record of observations
including the current observation. Smoothing involves making the best estimate of
past values of the states given the record of observations.

3. Model Specification and Methodology

A typically difficult problem in econometrics is to formulate a stationary model that
best resembles the model dictated by economic theory, but which does not pose
serious problems of estimation (Chetty, 1971). This section, lays out the speci-
fied dynamic linear model proposed in this work. It also contains details of the
developed recursive Bayesian algorithm. Remove (RBA) employed for the poste-
rior estimation of the specified dynamic linear model in the presence of discounted
evolution variance.

A concrete mathematical formulation of the proposed dynamic linear model
specification in this work takes the form of the two equations:

yt = Xtθt + vt vt ∼ N(0,ϕ), (4)

θt = Gtθt−1 +wt wt ∼ N(0,Ωt), (5)

θ0 ∼ N(m0,C0).

where equation (4) is known as the observation equation while equation (5) is the
evolution equation. Gt is a known transition matrix of order p× p that determines
how the observation and evolution equations evolve in time. Since each parameter
at time t only depends on results from time t − 1, the state parameters are time-
varying and constitute a Markov chain. Xt is a matrix of observed time series of
known order. θt is the time-varying parameter associated with the predictor matrix
Xt . It is assumed that information decays arithmetically through the addition of fu-
ture evolution error variance which we estimate with discount values. Parameters
of interest to be estimated are the time-varying parameter θt , the error variances ϕ

and Ωt , and the one-step-ahead forecasts error ft . ϕ is assumed to be distributed
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inverse-gamma a priori, while we estimate Ωt via discounting method which is ex-
plained later in this section. The difference between this model and the one stated
in Fuquene et al. (2013) is that the observational variance is presumed to be fixed
and the evolution variance is estimated by the method of discounting unlike the use
of Wishart prior which is common in literature. Also, in contrast to the Box-Jenkins
methodology, which still plays an important role in time series analysis today, the
specified dynamic linear model approach allows for structural analysis of univariate
as well as multivariate problems without initial differencing or log transformation of
the observed series. The different components of a series, such as trend and sea-
sonality, as well as the effects of explanatory variables can be modelled explicitly.
They do not have to be removed prior to the main analysis as is the case in the
Box-Jenkins methodology.

3.1. Existing Recursive Bayesian Algorithm (RBA) and Gibbs Sampler for Es-
timating TVPs

The recursive Bayesian algorithms in literature usually takes the following form: Let
Θt = [θ0,θ1, ...,θt ], θt is estimated from the conditional density p(Θt |yT ) which is
denoted by

p(Θt ,yT ) = p(YT |ΘT )p(ΘT )

where p(yT |ΘT ) and p(ΘT ) are given by

p(yT |ΘT ) =
T

∏
t=1

p(yt |θt) (6)

and

p(ΘT ) = p(θ0)
T

∏
t=1

(θt |θt−1), (7)

where p(yt |θt) and p(θt |θt−1) were derived from the observational and evolution
equations (4) and (5) specified above to give

p(yt |θt) = (2πσ
2)−

1
2 exp

(
− 1

2σ2 (yt − xtθt)
2
)

where V = σ2,

p(θt |θt−1) = (2π)−
k
2 |Ωt |−

1
2 exp

(
− 1

2
(θt −Gtθt−1)

′
Ω
−1
t (θt −Gtθt−1)

)
The recursive algorithm alternatively compute the densities of the current and

the future parameter θ conditional on all available observations. Using the notation
yt = y1:t , the prediction equation is given by

p(θt+1) =
∫

p(θt+1,θt |yt)dθt (8)
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=
∫

p(θt+1|θt)p(θt |yt)dθt .

Applying Bayes’ rule, the filtering equation gives

p(θt |y1:t) =
p(yt |θt)p(θt |θt−1,y1:t−1)

p(yt |y1:t−1)
(9)

∝ p(yt |θt)p(θt |θt−1,y1:t−1)

The denominator, p(yt |y1:t−1) is constant relative to θt and thereby ignored. These
recursive equations were initialized with the density of the initial parameter

p(θ1|y0) = p(θ1).

This posterior is then used to update the prior recursively until convergence is
achieved. The forward filtering step is the standard Kalman filtering analysis to give
p(θt |Dt) at each t, for t = 1, ...,n. The backward sampling step uses the Markov’s
property to sample θ ∗T from p(θT |DT ) and then for t = 1, ...,T − 1, sample θ ∗t from
p(θt |Dt ,θ

∗
t+1) in order to generate samples from the posterior parameter structure.

In particular, denote

p(θ0, ...,θT |yT ) =
T

∏
t=0

p(θt |θt+1, ...,θT ,yT )

and note that, by the Markov’s property,

p(θt |θt+1, ...,θt ,yt) = p(θt |θt+1,yt) (10)

and
p(θt |yt) =

∫
p(θt ,θt+1|yt)dθt+1

=
∫

p(θt+1|yt)p(θt |θt+1,yt)dθt+1

= p(θt |yt)
∫ p(θt+1|yt)(p(θt+1|θt)dθt+1

p(θt+1|yt)
(11)

which follows again from the recursive application of Bayes’ rule and Markov
property of θt .

Since the sampling is done from t = T to t = 0, recursively, this procedure is
referred to as recursive backward sampling.

In particular, Fuquene et al. (2013) proposed a dynamic linear model which
is specified by a normal prior distribution for the p-dimensional state vector for
macroeconomic modeling with prior θ0) as follows: θ0 ∼ Np(m0,C0) with the set
of equations

yt = Ftθt + vt ,vt ∼ Nm(0,Vt) (12)

θt = Gtθt + vt ,wt ∼ Nm(0,Wt) (13)
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with t = 1 : T where Ft and Gt are known matrices of order p× p and m× p, respec-
tively. Let θ ∼ Student− t(µ,τ,ν) where ν is the degree of freedom, µ and τ are the
location and scale parameters of the student-t density respectively. Then,

π(θ |τ2) =
k1

τ

(
1+

1
ν

(
θ −µ

τ

)2)−v+1
2

(14)

where ν > 0, −∞ < µ < ∞, −∞ < θ < ∞, and

k1 = Γ

(ν+1)
2

Γ
(
ν

2)
√

νπ
we have that π(θ) =

∫
∞

0 π(θ |τ2)π(τ2)dτ2 Let Wt,i denote the ith diag-

onal element of the evolution variance Wt,i, i = 1, ...,n, the observation and evolution
variances were given as V−1

t = λywy, t
and W−1

t,i = λθ , iwθ , ti
In order to obtain posterior inference on the time-varying parameter, θt , they

used the recursive Forward Filtering Backward Sampling (FFBS) algorithm which
proceeds as follows

1. Use the Kalman filter equations for (14) above.
Let m0 C0 be known with (θ0|D0)∼ N(m0,C0) and θt |y1:t−1 ∼ N(mt−1,Ct−1),

The one-step predictive distribution of θt given y1:t−1 is Gaussian i.e θt |Dt−1 ∼
N(at ,Rt) with parameter at = Gtmt−1, Rt = GtCt−1G′t .
The one step ahead predictive distribution of yt given y1:t−1 is Normally dis-
tributed as (yt |Dt−1)∼ N( ft ,Qt) with parameters ft = F ′t at , Qt = F ′t RtFt +Vt .
The filtering distribution of θt given y1:t−1 is (θt |Dt)∼N(mt ,Ct) with parameters
mt = at +Atet , Ct = Rt −AtQtA′t where At = RtFtQ−1

t and et = yt − ft .

2. At time t = T , sample θT from N(θT |mt ,CT )

3. For t = T −1, sample θt from N(θt |m∗t ,C∗t ) where m∗t = mt +bt(θt+1−at+1) C∗t =

Ct −btRt+1b′t where bt =CtGt+1R−1
t+1

This algorithm does not specify a block for the evolution variance of the time-varying
parameter θt which is often difficult to characterize. Additionally, the algorithm pre-
sented in this work specifies a sub-algorithm for optimal selection of Average Gran-
ularity Range (AGR) of the discounting parameter λ which also plays an important
role in determining convergence of the parameters. First, the observational vari-
ance ϕ, was specified as constant and estimated via Gibbs sampling as presented
in the next section.

3.2. Recursive Estimation of Time-Varying Parameters in the Presence of Dis-
counted Evolution Variance

In this section, we propose an algorithm to estimate the time-varying parameters in
dynamic linear models in the presence of discounted evolution variance. This ap-
proach makes use of the Recursive Forward Filtering Backward Sampling algorithm
within the Kalman filter framework to improve the efficiency of the adapted Gibbs
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sampler by discounting the evolution variance. The main idea of this procedure is
to make use of Markov’s property of the specified evolution equation so that

P(θt |θt+1,Dt) = P(θt+1|θt ,Dt) (15)

where θt denotes the time-varying parameters at time t and Dt = (y1, ...,yt ,x1, ...,xt).
Due to the Markovian structure of the time-varying parameter θt , it is estimated by
computing the predictive and filtering distributions of θt recursively starting from the
prior θ0 ∼N(m0,C0). This recursive method allows us to draw the parameter vectors
jointly. Consider a vector of unknown time-varying slope parameters θt = (θ1, ...,θp),
the Gibbs sampling algorithm employed proceeds by sampling recursively the con-
ditional posterior distribution where the most recent values of the conditioning pa-
rameters are used. Following the Bayesian paradigm, the specification of the model
is complete only after specifying the prior distribution of all the unknown quantities
of interest in the model. We assign a distribution to θt at time t=0, conditional on all
the information available before any observation is made. Let D0 be the set contain-
ing all this information, then the prior distribution is θ0|D0 ∼ N(m0,C0) where m0 and
C0 are known vector and matrix respectively. Next, an update is made for θ1 and
D0 which is also normally distributed. Based on this update, the one step-ahead
forecast follows from the conditional distribution y|θ0,D0. Once the value of y1 at
time t = 1 is known, the posterior distribution of θ1 is obtained recognizing that the
information available at time t = 1 is D1 = y1,D0. The inference is made in this re-
cursive fashion for every time t. The Kalman filter was used to calculate the mean
and variance of the parameter θt , given the observations Dt . It is a recursive algo-
rithm because the current best estimate is updated whenever a new observation is
obtained. This recursive Bayesian technique of model estimation can be stated in
form of prediction, filtering and update equations. The prediction and update step
requires a few basic calculations of which only the conditional means and variances
of the filtering and prediction density is stored in each step of the iteration.
To describe the filtering procedure, let

mt = E(θt |Dt) (16)

be the optimal estimator of θt based on Dt and let

Ct = E((θt −mt)(θt −mt)
′|Dt) (17)

be the mean square error matrix of mt . Let θt−1|y1:t−1 ∼ N(mt−1,Ct−1), where y1:t−1

denote all observations up to time t−1. Then the one-step-ahead predictive density
θt |y1:t−1 is Gaussian with parameters:

E(θt |y1:t−1) = mt−1 ≡ At(say) (18)

Var(θt |y1:t−1) =Ct−1 +Ωt ≡ Rt(say) (19)
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The one-step-ahead predictive density of yt |y1:t−1 is Gaussian with parameters:

ft = E(yt |y1:t−1) = XtAt (20)

Qt =Var(yt |y1:t−1) = XtRtX
′
t +V (21)

The filtering density of θt given y1:t is Gaussian with parameters:

mt = E(θt |y1:t) = At +RtX
′
t Q−1

t et (22)

Ct =Var(θt |y1:t) = Rt −RtX
′
t Q−1

t XtR′t (23)

where et = yt − ft is the forecast error.

3.2.1 Posterior Estimation of Unknown Observational Variance (ϕ) with In-
dependent Priors

In the simulation excercise for estimating the static observational variance, ϕ, the
following Gibbs sampler of Nakajima et al. (2011) was adopted with slight modifi-
cations: Consider the linear equation which is the observational equation specified
in (4) above

yt = Xtθt + vt ,vt ∼ N(0,ϕ), (24)

let ϕ ≡ σ2 and θt = θ

and assume a normal prior for the parameter θ and inverse gamma prior for the
parameter σ2, to sample from ϕ|θ we impose a gamma prior on ϕ−1 and derive the
posterior hyperparameters. Let ϕ−1 ∼ Gamma(a0,b0), then

ϕ
−1|θ ∼ Gamma(a0 +

T
2
,b0 +

1
2

T

∑
t=1

(yt −Xtθt)
2)

We start with

p(y|θ ,X) = (2π)−
n
2 exp(− 1

2σ2 (y−Xθ)′(y−Xθ)) (25)

The priors are given as follows:

p(θ ,ϕ) = p(θ)p(ϕ)

where
θ ∼ N(µ0,ϕ0) (26)

and
ϕ ∼ IG(ν0,τ0) (27)
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µ0 is the prior mean for θ and ϕ0 is the prior variance- covariance matrix for θ

with
E(ϕ) =

τ0

ν0−1
(28)

V (ϕ) =
τ2

0
(ν0−1)2(ν0−2)

(29)

We chose the form given in Gelman (2004) where ν0 and τ0 are the shape and
scale parameters respectively. Using Bayes rule to combine the priors (26) and
(27) above with the likelihood and dropping all unrelated terms to the parameters of
interest yields the following posterior kernels:

p(θ ,ϕ|y,X) ∝ (σ2)
−n−2ν0−2

2 exp(− 1
2σ2 (2τ0))

× exp
(
−1

2
(

1
σ2 (y−Xθ)′(y−Xθ)+(θ −µ0)

′
ϕ
−1
0 (θ −µ0))

)
(30)

First, we find the posterior density of θ , conditional on ϕ while treating ϕ as a
constant.
This leaves us with the posterior kernel:

p(θ |ϕ,y,X) ∝

exp(−1
2
(

1
ϕ
(y−Xθ)

′
(y−Xθ)+(θ −µ0)

′
(ϕ0)

−1(θ −µ0))). (31)

Transformations

Let
ϕ1 = (ϕ−1

0 +
1
ϕ

X ′X)−1

and
µ1 = ϕ1(ϕ

−1
0 µ0 +

1
ϕ

X ′Xb) = ϕ1(ϕ
−1
0 µ0 +

1
ϕ

X ′y)

Then from (3.34),

1
ϕ
(y−Xθ)′(y−Xθ)+(θ −µ0)

′
ϕ
−1
0 (θ −µ0)
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=
1
ϕ

y′y+θ
′ 1
ϕ

X ′Xθ − 1
ϕ

y′Xθ −θ
′ 1
ϕ

X ′y+θ
′
ϕ
−1
0 θ

− µ
′
0ϕ
−1
0 θ −θ

′
ϕ
−1
0 µ0 +µ

′
0ϕ
−1
0 µ0

= θ
′(ϕ−1

0 +
1
ϕ

X
′
X)θ −θ

′
(ϕ−1

0 µ0 +
1
ϕ

X
′
y)

− (µ
′
0ϕ
−1
0 +

1
ϕ

y′X)θ +
1
ϕ

y
′
y+µ

′
0ϕ
−1
0 µ0

= θ
′
ϕ
−1
1 θ −θ

′
ϕ
−1
1 µ1−µ

′
1ϕ
−1
1 θ

+ µ
′
1ϕ
−1
1 µ1−µ

′
1ϕ
−1
1 µ1 +

1
ϕ

y′y+µ
′
0ϕ
−1
0 µ0

= (θ −µ1)
′
ϕ
−1
1 (θ −µ1)−µ

′
1ϕ
−1
1 µ1ϕ

−1
1 µ1 +

1
ϕ

y′y

+ µ
′
0ϕ
−1
0 µ0.

Therefore, the conditional posterior kernel in (31) above can be written as :

p(θ |ϕ,y,X) ∝

exp(−1
2
(θ −µ1)

′
ϕ
−1
1 (θ −µ1)exp(−1

2
(

1
ϕ

y′y+µ
′
0ϕ
−1
0 µ0−µ

′
1ϕ
−1
1 µ1)) (32)

Since none of the terms in the second exponent include θ , we simplify the full
conditional distribution in (32) to

p(θ |ϕ,y,X) ∝ exp(−1
2
(θ −µ1)

′
ϕ
−1
1 (θ −µ1)) (33)

Therefore, we have again, the kernel of a multivariate normal density, and we can
say that

θ |ϕ,y,X ∼ N(µ1,ϕ1)

where
ϕ1 = (ϕ−1

0 +
1
ϕ

X ′X)−1

and
µ1 = ϕ1(ϕ

−1
0 µ0 +

1
ϕ

X ′y)

to sample from.

Posterior Inference on ϕ

In order to derive the conditional posterior density for ϕ, we return to our original
expression for the joint posterior given in (30). Ignoring terms that are not related
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to ϕ, we have :

p(ϕ|θ ,y,X) ∝ (ϕ)
−n−2ν0−2

2 exp(− 1
2ϕ

(2τ0 +(y−Xθ)′(y−Xθ))) (34)

Comparing this expression with the kernel of the inverse gamma prior specified in
(29) above, we have the kernel of another inverse gamma density: Hence

ϕ|θ ,y,X ∼ IG(ν1,τ1) (35)

where
ν1 =

2ν0 +n
2

and

τ1 =
2τ0 +(y−Xθ)′(y−Xθ)

2

3.3. Estimation of Evolution Variance (Ωt ) with Discount Values

Consider the evolution equation in (5) above,

θt = Gtθt−1 +wt ,wt ∼ N(0,Ωt) (36)

where Ωt is the evolution variance and other parameters are as defined earlier.
Let

V (θt−1|Dt−1) =V (Gtθt−1|Dt−1)

= GtCt−1G′t

=Ct−1

so that
V (θt |Dt−1) =Ct−1 +Ωt

The prior distribution for θt−1 is

θt−1|Dt−1 ∼ N(mt−1,Ct−1)

where Dt−1 = (y1,y2, ...,yt−1) and the prior distribution for θt is

θt |Dt−1 ∼ N(mt−1,Qt)

where
Qt =Ct−1 +Ωt

Therefore,
Ωt = Qt −Ct−1 (37)
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We introduce the discount factor as a quantity λ such that

Qt =Ct−1/λ (38)

can be interpreted as the percentage of information that passes from time t−1 to t.
Therefore, we select the discounting grid λ ∈ [0.01,0.99]. We next develop a

sub-algorithm to select optimal granularities of the discount values λ which enable
us to conlude the convergence of the model.

4. Parsimonious Model Selection Algorithm (PMSA) for Optimal
Model and Discount Value Selection

Since the choice of the evolution variance determines the forcasting performance
of DLM, a sub-algorithm for optimal discount value selection with Mean Squared
Prediction Error was developed as follows:

1. Init: i=0

2. Let λi ∈ [0.01..0.99]

3. Compute Ωt in the DLM with λi

4. Estimate one-step ahead predictive density of the specified Bayesian DLM

5. Compute concurrent MSPE of DLM in 3 and cross-validate with the discount
value of Ωti

6. Set i = i+1

7. Is the current MSPE lower than the previous one?

8. If No, Go To 6

9. If Yes, Go To 10

10. Stop: Pick the current discount value and DLM as the best.

4.1. Convergence Diagnostics

The convergence diagnostics of Geweke (1993) was used to compare values in the
early part of the Markov chain to those in the latter part of the chain in order to detect
failure of convergence. The statistic is constructed as follows: Two sub-sequences
of the Markov chain θ are taken out, with θ t

1 : t = 1, ...,n1 and θ t
2 : t = na, ...,n where

1≤ n1 ≤ na < n.
Let n2 = n− na + 1 and define θ̄1 = 1

n1
∑

n1
t=1 θ t and θ̄2 = 1

n2
∑

n
t=na θ t . Geweke test

statistics was used to test whether the mean estimates have converged by compar-
ing means from the early and latter part of the Markov chain. Assuming the ratios
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n1
n and n2

n are fixed, n1+n2
n < 1 , then the following statistic converges to standard

normal distribution as n approaches ∞ we have

Zn =
θ̄1− θ̄2√

ŝ1(θ)/n1 + ŝ2(θ)/n2
(39)

where ŝ1(θ) and ŝ2(θ) respresent spectral density estimates at zero frequencies.
This is a two-sided test and large absolute value Z− score indicates rejection of the
null hypothesis of non-stationarity. Effective sample size relates to autocorrelation
and measures mixing of the Markov chain. Most often, much discrepancy between
the effective sample size and the simulation sample size indicates poor mixing.
Effective Sample Size (ESS) is defined as

ESS =
n
η

=
n

1+2∑
∞
k=1 ρk(θ)

(40)

where n is the total sample size and ρk(θ) is the autocorrelation at lag k for θ . The
quantity η is autocorrelation time. The Bayesian process for estimating it is to first
find a cut off point k after which the autocorrelations are very close to zero and then
sum all the ρk to that point. The cut-off point k is such that ρk < 0.01 or ρk < 2sk

where sk is the standard deviation defined as

sk = 2
√
(

1
n
(1+2

k−1

∑
j=1

ρ
2
k (θ))) (41)

In this method, the Lowest Average Granularity Range (AGR) of λ required for
convergence and for minimum Mean Squared Prediction Error (MSPE) would be
used to determine optimal performance of the DLMs.

4.2. The Modified Recursive Bayesian Algorithm

In summary, the modified recursive Bayesian algorithm for estimating time-varying
parameter proceeds as follows:

1. Sample from p(θT DT ) using the filtering density in section 3.2 . This distribu-
tion is assumed to be Normally distributed with parameter N(ht ,Ht) where:

ht = mt +CtG′tR
−1
t+1(θt+1−at+1) (42)

Ht =Ct −CtG′tR
−1
t+1GtC′t (43)

2. Sample from p(θT−1|θT ,DT ).

3. For the filtering algorithm to run, estimate ϕ using the Gibbs sampler in section
3.2.1 .

4. Given (θt |Dt), obtain Ωt = Ct(1−λ )/λ via the discounting method in section
3.3
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5. Proceed by sampling recursively in this manner for t +1, t +2, ...

6. Use the sub-algorithm in section 3.4 to determine AGR required for conver-
gence and when to stop sampling.

7. Sample from p(θ0, ...,θT |DT ).

8. Starting from the final density sampled in equation (7) above, the smoothing
recursion proceeds backwards in time, using the previously computed filtering
and prediction densities.

9. Employ the convergence diagnostics discussed in section 3.4.1 to detect fail-
ure or otherwise of convergence of the Markov chain.

10. Use λ and minimum MSPE to assess the performance of the modified algo-
rithm for DLM with FPs and TVPs for various sample sizes.

5. Conclusion

A sound theoretical exposition of how recursive Bayesian algorithms can be em-
ployed to model dynamic relationships over time in the presence of discounted evo-
lution variance constituted a major portion of this paper. The modelling of change
in the context of widely established concepts in econometrics was addressed by
proposing a conceptually implementable Recursive Bayesian Algorithm (RBA) for
estimating of time-varying slope parameters (θt ) in dynamic linear model in the
presence of discounted evolution variance. A fast and efficient sub-algorithm for
optimal discount value and model selection was also proposed, to determine the
average granularities of discount values required for convergence in estimation of
time-varying parameters. Future studies will explore the application of this algorithm
to simulated and real financial, economic and environmental time series data.
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A GENERALIZED EXPONENTIAL TYPE ESTIMATOR
OF POPULATION MEAN IN THE PRESENCE OF

NON-RESPONSE

Siraj Muneer1,Javid Shabbir2, Alamgir Khalil3

ABSTRACT

In this article, we propose a class of generalized exponential type estimators to esti-
mate the finite population mean by using two auxiliary variables under non-response
in simple random sampling. The proposed estimator under non-response in different
situations has been studied and gives minimum mean square error as compared to
all other considered estimators. Usual exponential ratio type estimator, exponential
product type estimator and many more estimators are also identified from the pro-
posed estimator. We use three real data sets to obtain the efficiencies of estimators.

Key words: auxiliary variables, bias, MSE, efficiency, non-response.

1. Introduction

In survey sampling, it is assumed that all the observations are correctly measured
on the characteristics under study. But in practice, when we fail to collect the
complete information on different variables, non-response is supposed to occur.
Non-response occurs due to many reasons, which includes the lack of information
provided by respondents, also some of the respondents refuse to answer the ques-
tionnaire, sometimes it is difficult to find out the respondents, etc. The common
approach to overcome non-response problem is to contact the non-respondents
and obtain maximum information as much as possible. Generally auxiliary informa-
tion is used to increase the precision of the estimators when there exists a corre-
lation between the study and the auxiliary variables. Ratio, product and regression
estimators are good examples in this context. In daily life there are many situa-
tions when we are unable to access the complete information either on the study
variable or the auxiliary variable or at the same time both on the study and the
auxiliary variables. Hansen and Hurwitz (1946) were the first to suggest a non-
response handling technique in mail surveys combined the advantages of mailed
questionnaires and personal interviews. Later on, several authors, including Sri-
nath (1971), selected the subsample of non-respondents, where the sub-sampling
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fraction varied according to the non-response rates. Rao (1986) suggested a ra-
tio type estimator for population mean, in the presence of non-response for two-
phase sampling, when the population mean of the auxiliary variable x was unknown
and non-response occurred on the auxiliary variable. Khare and Srivastava (1993,
1995, 1997, 2010) and Olkin (1958) suggested different ratio and product types
estimators for estimation of population mean using the auxiliary information under
non-response. Similarly, Singh and Kumar (2008) and Singh et al. (2010) have
made significant contributions and proposed ratio, product and difference classes
of estimators under non-response. El-Badry (1956), Bahl and Tuteja (1991), Ku-
mar and Bhougal (2011), Muneer et al. (2017) and Ismail et al. (2011) suggested
many estimators in two-phase sampling with sub-sampling of non-respondents in
estimating the finite population mean. Khare and Sinha (2007, 2009, 2011) pro-
posed some classes of estimators for estimating population mean in the presence
of non-response using multi-auxiliary characters in different ways. For controlling
the non-response bias and eliminating the need for call backs in survey sampling,
Tabasum and Khan (2006), Shabbir and Nasir (2013) and references cited therein
have discussed some good techniques and plans for the estimation of finite popu-
lation mean followed the technique proposed by Hansen and Hurwitz (1946) using
one or more auxiliary variables in the presence of non-response. Now, we explain
the Hansen and Hurwitz (1946) strategy for non-response.
Suppose a finite population U = (1,2, ...,N) of size N units can be divided into two
classes N =N1+N2. Let N1 and N2 be the number of units in the population that form
the response and non-response classes respectively. We draw a sample of size n
units from U by using a simple random sample without replacement (SRSWOR)
sampling scheme. Let r1 units respond and r2 = (n− r1) units do not respond in the
first attempt. Let a subsample of size k2 units be selected from r2 non-respondents
units, such that r2 = k2h,(h > 1). Let yi and (xi,zi) be the values of the study vari-
able (y) and the auxiliary variables (x,z) respectively. Let ȳ and (x̄, z̄) be the sample
means corresponding to population means Ȳ and (X̄ , Z̄) respectively.

2. Notations and Symbols with Selected Estimators

To obtain the properties of estimators, we define the following symbols and nota-
tions.
Let e∗0 =

(
ȳ∗−Ȳ

Ȳ

)
,e∗1 =

(
x̄∗−X̄

X̄

)
,e1 =

(
x̄−X̄

X̄

)
, e2 =

(
z̄−Z̄

Z̄

)
, e∗2 =

(
z̄∗−Z̄

Z̄

)
are the relative error terms, such that
E(ei

∗) = 0,(i = 0,1,2), E(ei) = 0,(i = 1,2).
E(e∗20 ) = λC2

y +θC2
y(2) =V ∗y , E(e∗21 ) = λC2

x +θC2
x(2) =V ∗x ,

E(e∗22 ) = λC2
z +θC2

z(2) =V ∗z , E(e∗0e∗1) = λCyx +θCyx(2) =V ∗yx,

E(e∗0e∗2) = λCyz +θCyz(2) =V ∗yz,E(e
∗
1e∗2) = λCxz +θCxz(2) =V ∗xz,

E(e∗1e1) = E(e2
1) = λC2

x =Vx,E(e∗0e1) = E(e0e1) = λCyx =Vyx,

where
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C2
y =

S2
y

Ȳ 2 , C2
x = S2

x
X̄2 , C2

z =
S2

z
Z̄2 , Cyx = ρyxCyCx, Cyz = ρyzCyCz,

Cxz = ρxzCxCz, C2
y(2) =

S2
y(2)
Ȳ 2 , C2

x(2) =
S2

x(2)
X̄2 , C2

z(2) =
S2

z(2)
Z̄2 ,

Cyx(2) = ρyx(2)Cy(2)Cx(2), Cyz(2) = ρyz(2)Cy(2)Cz(2), Cxz(2) = ρxz(2)Cx(2)Cz(2),

λ = ( 1− f
n ), f = n

N , θ =W2(
h−1

n ) and W2 =
N2
N .

Now, we review some important estimators which are available in the literature.

1. Hansen and Hurwitz (1946) were the first who formulated an unbiased es-
timator of the population mean Ȳ of the study variable Y in the presence of
non-response. Initially they considered the mailed survey in the first attempt
and personal interviews in the second attempt after the deadline was over.
The estimator is given by

ȳ∗ =
( r1

n

)
ȳr1 +

( r2

n

)
ȳk2 , (1)

where ȳr1 =
1
r1

∑
r1
i=1 yi and ȳk2 =

1
k2

∑
k2
i=1 yi.

The variance of ȳ∗, is given by

V (ȳ∗) = Ȳ 2V ∗y . (2)

2. The ratio and product estimators under non-response case.
When non-response exists on the study variable y as well as on the auxiliary
variable x, the traditional ratio and product estimators for population mean Ȳ
are given by

ȳ∗R = ȳ∗
(

X̄
x̄∗

)
, (3)

and

ȳ∗P = ȳ∗
(

x̄∗

X̄

)
, (4)

where ȳ∗ and x̄∗ are the Hansen and Hurwitz (1946) estimators for population
means Ȳ and X̄ respectively and are defined by ȳ∗ =

( r1
n

)
ȳr1 +

( r2
n

)
ȳk2 and

x̄∗ =
( r1

n

)
x̄r1 +

( r2
n

)
x̄k2 with (ȳr1 , x̄r1) and (ȳk2 , x̄k2) are the sample means of (y,x)

based on the samples of r1 and k2 units respectively.

The MSEs of ȳ∗R and ȳ∗P, to the first order of approximation, are given by

MSE(ȳ∗R)∼= Ȳ 2(V ∗y +V ∗x −2V ∗yx), (5)

and
MSE(ȳ∗P)∼= Ȳ 2(V ∗y +V ∗x +2V ∗yx). (6)

We observed that ȳ∗R and ȳ∗P perform better than ȳ∗ , if V ∗yx >
1
2V ∗x and V ∗yx <

− 1
2V ∗x respectively.
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3. Rao (1986) suggested ratio and product estimators under no-response.
When non-response exists only on the study variable y, while the complete
information on the auxiliary variable x is available, the ratio and product esti-
mators, are given by

ȳ∗Rao(R) = ȳ∗
(

X̄
x̄

)
, (7)

and

ȳ∗Rao(P) = ȳ∗
(

x̄
X̄

)
, (8)

where x̄ is the sample mean X̄ based on complete information, and X̄ is the
population mean of the auxiliary variable.

The MSEs of ȳ∗Rao(R) and ȳ∗Rao(P), to the first order of approximation, are given
by

MSE(ȳ∗Rao(R))
∼= Ȳ 2(V ∗y +Vx−2Vyx), (9)

and
MSE(ȳ∗Rao(P))

∼= Ȳ 2(V ∗y +Vx +2Vyx). (10)

Note that ȳ∗Rao(R) and ȳ∗Rao(P) perform better then ȳ∗ if Vyx >
1
2Vx and Vyx <− 1

2Vx

respectively.

4. Bahl and Tuteja (1991) exponential ratio and product type estimators for pop-
ulation mean Ȳ , when non-response exists on the study variable y as well as
on the auxiliary variable x as:

ȳ∗exp(R) = ȳ∗ exp
(

X̄− x̄∗

X̄ + x̄∗

)
, (11)

and

ȳ∗exp(P) = ȳ∗ exp
(

x̄∗− X̄
x̄∗+ X̄

)
. (12)

The MSEs of ȳ∗exp(R) and ȳ∗exp(P), to the first order of approximation, are given
by

MSE(ȳ∗exp(R))
∼= Ȳ 2

(
V ∗y +

1
4

V ∗x −V ∗yx

)
, (13)

and

MSE(ȳ∗exp(P))
∼= Ȳ 2

(
V ∗y +

1
4

V ∗x +V ∗yx

)
. (14)

Both the estimators ȳ∗exp(R) and ȳ∗exp(P) are more efficient than ȳ∗ if V ∗yx >
1
4V ∗x

and V ∗yx <− 1
4V ∗x respectively.

5. Singh and Kumar (2008) suggested ratio, product and difference type estima-
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tors in the case of non-response. They considered the situation in which the
population mean of the auxiliary variable x is known, but some units fail to
provide information on the study variable y and the auxiliary variable x. The
estimator is given by:

ȳ∗SK(R1) = ȳ∗
(

X̄
x̄∗

)(
X̄
x̄

)
, (15)

where x̄∗ and x̄, both are unbiased estimators of the population mean X̄ of the
auxiliary variable x.
The MSE of ȳ∗SK(R1), to the first order of approximation, is given by

MSE(ȳ∗SK(R1))
∼= Ȳ 2 (V ∗y +V ∗x +3Vx−2(V ∗yx +Vyx)

)
. (16)

Note that ȳ∗SK(R1) performs better than ȳ∗ if (V ∗yx+Vyx)>
1
2 (V

∗
x +Vx). The product

estimator of the above mentioned situation is

ȳ∗SK(P) = ȳ∗
(

x̄∗

X̄

)(
x̄
X̄

)
. (17)

The MSE of ȳ∗SK(P), to the first order of approximation, is given by

MSE(ȳSK(P))∼= Ȳ 2 (V ∗y +V ∗x +3Vx +2(V ∗yx +Vyx)
)
. (18)

Note that MSE of ȳ∗SK(P), is smaller than ȳ∗ if V ∗yx +Vyx <− 1
2 (V

∗
x +3Vx).

Singh and Kumar (2008) also suggested the generalized ratio-type estimator
of the above mentioned situations as

ȳ∗SK(R2) = ȳ∗
(

X̄
x̄∗

)α1
(

X̄
x̄

)α2

, (19)

where α1 and α2 are constants whose values are to be determined.

The minimum MSE of ȳ∗SK(R2) to the first order of approximation, at optimum

values of α1 and α2 i.e. α1opt =
(V ∗yx−Vyx)

(V ∗x −Vx)
and α2opt =

(V ∗x Vyx−V ∗yxVx)

Vx(V ∗x −Vx)
, is given by

MSE(ȳ∗SK(R2))min ∼= Ȳ 2

[
V ∗y −

VxV ∗2yx +V ∗x V 2
yx−2VyxV ∗yxVx

Vx(V ∗x −Vx)

]
. (20)

Note that ȳ∗SK(R2) performs better than ȳ∗

if VxV ∗2yx +V ∗x V 2
yx−2VyxV ∗yxVx

Vx(V ∗x −Vx)
> 0

Singh and Kumar (2008) also suggested a difference type estimator in the
case of non-response as

ȳ∗SK(d) = ȳ∗+d1(x̄− x̄∗)+d2(X̄− x̄), (21)
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where d1 and d2 are constants whose values are to be determined.
The minimum MSE of ȳ∗SK(d) to the first order of approximation, at optimum

values of d1 and d2 i.e. d1opt =
Ȳ (V ∗yx−Vyx)

X̄(V ∗x −Vx)
and d2opt =

ȲVyx
X̄Vx

, is given by,

MSE(ȳ∗SK(d))min ∼= Ȳ 2

[
V ∗y −

(V ∗yx−Vyx)
2

(V ∗x −Vx)
−

V 2
yx

Vx

]
. (22)

Note that ȳ∗SK(d) performs better than ȳ∗ if
[
(V ∗yx−Vyx)

2

(V ∗x −Vx)
+

V 2
yx

Vx

]
> 0. Also, we ob-

served that MSE(ȳ∗SK(d))min = MSE(ȳ∗SK(R2))min.

6. Kumar and Bhougal (2011) proposed ratio-product-type exponential estima-
tor for the population mean Ȳ , when non-response exists on both the study
variable y and the auxiliary variable x as

ȳ∗KB = ȳ∗
[

α exp
(

X̄− x̄∗

X̄ + x̄∗

)
+(1−α)exp

(
x̄∗− X̄
x̄∗+ X̄

)]
, (23)

where α is a constant whose value is to be determined.
The minimum MSE of ȳ∗KB at optimum value of αopt =

1
2 (1+ 2

V ∗yx
V ∗x

), to the first
order of approximation, is given by

MSE(ȳ∗KB)min ∼= Ȳ 2

(
V ∗y −

V ∗2yx

V ∗x

)
. (24)

Note that ȳ∗KB performs better than ȳ∗ if V ∗2yx
V ∗x

> 0, which is always true.

3. Class of Estimators

In application, our purpose was to construct a type of general class of estimators
which contains many estimators, stable and efficient. So motivated by Singh and
Shukla (1993) and Shukla et al. (2012), we propose the following general class of
estimators in the case of non-response exists on the study variable as well as on
the two auxiliary variables. Initially Bahl and Tuteja (1991) gave the idea of expo-
nential ratio type and product type estimators for estimating the population mean
by using the single auxiliary variable. Also, we can generate many more estima-
tors by substituting different values of (Ki, i = 1,2,3,4). The proposed estimator is
constructed by combining the ideas of Bahl and Tuteja (1991), Singh and Shukla
(1993) and Shukla (2012), given by

ȳ∗prop = ȳ∗
[

exp
(

G1−D1

G1 +D1

)
exp
(

G2−D2

G2 +D2

)]
, (25)

where ”prop” indicates proposed. G1 = (A1+C1)X̄ + f B1x̄∗, G2 = (A2+C2)Z̄+

f B2z̄∗,
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D1 =(A1+ f B1)X̄+C1x̄∗, D2 =(A2+ f B2)Z̄+C2z̄∗, Ai =(Ki−1)(Ki−2), Bi =(Ki−
1)(Ki−4), Ci = (Ki−2)(Ki−3)(Ki−4), (i = 1,2,3,4).
Substituting different values of Ki in (25), we can generate many more different
types of estimators from our proposed class of estimators given in Table 1.

Table 1: Some members of the proposed class of family of estimators ȳ∗prop
Estimators Estimators
K1 = 1 and K2 = 1 K1 = 1 and K2 = 2

ȳ∗prop1 = ȳ∗ exp
(

X̄−x̄∗
X̄+x̄∗

)
exp
(

Z̄−z̄∗
Z̄+z̄∗

)
ȳprop2 = ȳ∗ exp

(
X̄−x̄∗
X̄+x̄∗

)
exp
(

z̄∗−Z̄
z̄∗+Z̄

)
K1 = 1 and K2 = 3 K1 = 1 and K2 = 4

ȳ∗prop3 = ȳ∗ exp
(

X̄−x̄∗
X̄+x̄∗

)
exp
(

n(Z̄−z̄∗)
2NZ̄−n(z̄∗+Z̄ )

)
ȳ∗prop4 = ȳ∗ exp

(
X̄−x̄∗
X̄+x̄∗

)
K1 = 2 and K2 = 1 K1 = 2 and K2 = 2

ȳ∗prop5 = ȳ∗ exp
(

x̄∗−X̄
x̄∗+X̄

)
exp
(

Z̄−z̄∗
Z̄+z̄∗

)
ȳ∗prop6 = ȳ∗ exp

(
x̄∗−X̄
x̄∗+X̄

)
exp
(

z̄∗−Z̄
z̄∗+Z̄

)
K1 = 2 and K2 = 3 K1 = 2 and K2 = 4

ȳ∗prop7 = ȳ∗ exp
(

x̄∗−X̄
x̄∗+X̄

)
exp
(

n(Z̄−z̄∗)
2NZ̄−n(z̄∗+Z̄ )

)
ȳ∗prop8 = ȳ∗ exp

(
x̄∗−X̄
x̄∗+X̄

)
K1 = 3 and K2 = 1 K1 = 3 and K2 = 2

ȳ∗prop9 = ȳ∗ exp
(

n(X̄−x̄∗)
2NX̄−n(x̄∗+X̄)

)
exp
(

Z̄−z̄∗
Z̄+z̄∗

)
ȳ∗prop10 = ȳ∗ exp

(
n(X̄−x̄∗)

2NX̄−n(x̄∗+X̄)

)
exp
(

z̄∗−Z̄
z̄∗+Z̄

)
K1 = 3 and K2 = 3 K1 = 3 and K2 = 4

ȳ∗prop11 = ȳ∗ exp
(

n(X̄−x̄∗)
2NX̄−n(x̄∗+X̄)

)
)exp

(
n(Z̄−z̄∗)

2NZ̄−n(z̄∗+Z̄ )
)

ȳ∗prop12 = ȳ∗ exp
(

n(X̄−x̄∗)
2NX̄−n(x̄∗+X̄)

)
K1 = 4 and K2 = 1 K1 = 4 and K2 = 2

ȳ∗prop13 = ȳ∗ exp
(

Z̄−z̄∗
Z̄+z̄∗

)
ȳ∗prop14 = ȳ∗ exp

(
z̄∗−Z̄
z̄∗+Z̄

)
K1 = 4 and K2 = 3 K1 = 4 and K2 = 4

ȳ∗prop15 = ȳ∗ exp
(

n(Z̄−z̄∗)
2NZ̄−n(z̄∗+Z̄ )

)
ȳ∗prop16 = ȳ∗

Solving ȳ∗prop given in Eq. (25) in terms of e′s (defined earlier in Section 2), we
have

ȳ∗prop
∼=Ȳ (1+ e∗0)

(
1+

1
2

σ1e∗1−
1
4

σ1ν1e∗21 +
1
8

σ
2
1 e∗21 + ....

)
(

1+
1
2

σ2e∗2−
1
4

σ2ν2e∗22 +
1
8

σ
2
2 e∗22 + ....

)
, (26)

where σ1 =
f B1−C1

A1+ f B1+C1
, ν1 =

f B1+C1
A1+ f B1+C1

, σ2 =
f B2−C2

A2+ f B2+C2
, ν2 =

f B2+C2
A2+ f B2+C2

.

To first order of approximation, we have
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ȳ∗prop− Ȳ ∼= Ȳ (e∗0 +
1
2

σ1e∗1 +
1
2

σ2e∗2 +
1
2

σ1e∗0e∗1 +
1
2

σ2e∗0e∗2−
1
4

σ1ν1e∗21

−1
4

σ2ν2e∗22 +
1
8

σ
2
1 e∗21 +

1
8

σ
2
2 e∗22 ). (27)

The bias of ȳ∗prop to the first order of approximation, is given by

B(ȳ∗prop)
∼= Ȳ

[
1
2

σ1V ∗yx +
σ1

2
σ2V ∗yz +

1
8

V ∗x (σ
2
1 −2σ1ν1)+

1
8

V ∗z (σ
2
2 −2σ2ν2)

]
. (28)

The MSE of ȳ∗prop to the first order of approximation, is given by

MSE(ȳ∗prop)
∼= Ȳ 2E

[
e∗0 +

1
2

σ1e∗1 +
1
2

σ2e∗2

]2

.

Solving above equation, we have

MSE(ȳ∗prop)
∼= Ȳ 2

[
V ∗y +

1
4

σ
2
1V ∗x +

1
4

σ
2
2V ∗z +σ1V ∗yx +σ2V ∗yz +

1
2

σ1σ2V ∗xz

]
. (29)

Differentiate Eq.(29) with respect to σ1 and σ2, we get the optimum values of σ1 and
σ2 i.e.

σ1(opt) =
2(V ∗yzV

∗
xz−V ∗yxV

∗
z )

V ∗x V ∗z −V ∗2xz

and

σ2(opt) =
2(V ∗yxV

∗
xz−V ∗yzV

∗
x )

V ∗x V ∗z −V ∗2xz
.

Substituting the optimum values of σ1(opt) and σ2(opt) in Eq.(29), we get minimum
MSE of ȳ∗prop, given by

MSE(ȳ∗prop)min ∼= Ȳ 2

[
V ∗y −

V ∗2yx V ∗z +V ∗2yz V ∗x −2V ∗yxV
∗
yzV
∗
xz

V ∗x V ∗z −V ∗2xz

]
. (30)

4. Theoretical Comparison

A comparison of our MSE estimator and previously presented 12 different estima-
tors is given as
• By variance of Hansen and Hurwitz (1946) estimator and our MSE estimator:

MSE(ȳ∗prop)min <V (ȳ∗) if
A1
A2

> 0, where
A1 = (V ∗2yx V ∗z +V ∗2yz V ∗x −2V ∗yxV

∗
yzV
∗
xz) and A2 = (V ∗x V ∗z −V ∗2xz ).

• By MSE of Rao (1986) estimator and our MSE estimator:
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MSE(ȳ∗prop)min < MSE(ȳ∗Rao(R)) if

(Vx−2Vyx)+
A1
A2

> 0.
•By MSE of Rao (1986) estimator and our MSE estimator:
MSE(ȳ∗prop)min < MSE(ȳ∗Rao(P)) if

(Vx +2Vyx)+
A1
A2

> 0.
• By MSE of ratio estimator and our MSE estimator:
MSE(ȳ∗prop)min < MSE(ȳ∗R) if

(V ∗x −2V ∗yx)+
A1
A2

> 0.
• By MSE of product estimator and our MSE estimator:
MSE(ȳ∗prop)min < MSE(ȳ∗P) if

(V ∗x +2V ∗yx)+
A1
A2

> 0.
• By MSE of Bahl and Tuteja (1991) exponential ratio estimator and our MSE esti-
mator:
MSE(ȳ∗prop)min < MSE(ȳ∗exp(R)) if

( 1
4V ∗x −V ∗yx)+

A1
A2

> 0.
• By MSE of Bahl and Tuteja (1991) exponential product estimator and our MSE
estimator:
MSE(ȳ∗prop)min < MSE(ȳ∗exp(P)) if

( 1
4V ∗x +V ∗yx)+

A1
A2

> 0.
• By MSE of Singh and Kumar (2008) ratio type estimator and our MSE estimator:
MSE(ȳ∗prop)min < MSE(ȳ∗SK(R1)) if

[V ∗x +3Vx−2(V ∗yx +Vyx)]+
A1
A2

> 0.
• By MSE of Singh and Kumar (2008) product type estimator and our MSE estima-
tor:
MSE(ȳ∗prop)min < MSE(ȳ∗SK(P)) if

[V ∗x +3Vx +2(V ∗yx +Vyx)]+
A1
A2

> 0.
• By MSE of Kumar and Bhougal (2011) ratio and product type estimator and our
MSE estimator:
MSE(ȳ∗prop)min < MSE(ȳ∗KB)min if
A1
A2
− V ∗2yx

V ∗x
> 0.

• By MSE of Singh and Kumar (2008) chain ratio type estimator and our MSE esti-
mator:
MSE(ȳ∗prop)min < MSE(ȳ∗SK(R2))min if

A1
A2
− B1

B2
> 0, where
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B1 = (V ∗2yx Vx +V 2
yxV
∗
x −2VyxV ∗yxVx) and B2 =Vx(V ∗x −Vx).

• By MSE of Singh and Kumar (2008) difference type estimator and our MSE esti-
mator:
MSE(ȳ∗prop)min < MSE(ȳ∗SK(d))min if

A1
A2
− (V ∗yx−Vyx)

2

(V ∗x −Vx)
− V 2

yx
Vx

> 0.
Note: The proposed class of estimators performs better than all other considered
estimators, if the above mentioned conditions (i)− (Xii) are satisfied.

5. Numerical Comparison

To observe the performance of our proposed generalized class of estimators with
respect to other considered estimators, we use the following data sets, which were
earlier used by many authors in the literature. We used different values of h, i.e. 2,
4, 6, 8 and 16, in Tables 2-4 in our study.

1. Data set 1 [Source: Khare and Sinha (2007)]

y : Weights of the children in kilograms.
x : Skull circumference of the children in centimeter.
z: Chest circumference of the children in centimeter.

N = 95,n = 30,W2 = 0.25,Ȳ = 19.4968, X̄ = 51.1726, Z̄ = 55.8611,
ρyx = 0.3280, ρyx(2) = 0.4770, ρyz = 0.8460, ρyz(2) = 0.7290,
ρxz = 0.2970, ρxz(2) = 0.5700, Cy = 0.1562, Cy(2) = 0.1207,
Cx = 0.0301, Cx(2) = 0.0247, Cz = 0.0586, Cz(2) = 0.0541.

2. Data set 2 [Source: Khare and Sinha (2012)]

y : Number of literate persons in the village.
x : Number of workers in the village.
z: Number of non-workers in the village.

N = 109,n = 30,W2 = 0.25,Ȳ = 145.30, X̄ = 165.26, Z̄ = 259.08,
ρyx = 0.81, ρyx(2) = 0.78, ρyz = 0.90, ρyz(2) = 0.87,ρxz = 0.81,
ρxz(2) = 0.74,Cy = 0.76,Cy(2) = 0.68,Cx = 0.68, Cx(2) = 0.57,
Cz = 0.76, Cz(2) = 0.54.

3. Data set 3 [Source: Khare and Sinha (2009)]

y : Number of agricultural labors in the village.
x : Area (in hectares) of the village.
z: Number of cultivators in the village.
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N = 96,n = 30,W2 = 0.25,Ȳ = 137.92, X̄ = 144.87, Z̄ = 185.21,
ρyx = 0.77, ρyx(2) = 0.72, ρyz = 0.78,ρyz(2) = 0.78,ρxz = 0.81,
ρxz(2) = 0.72, Cy = 1.32, Cy(2) = 2.08,Cx = 0.81, Cx(2) = 0.94,
Cz = 1.05, Cz(2) = 1.48.

We use the following expression to obtain the percent relative efficiency (PRE)
for different estimators using different values of h:

PRE =
V (ȳ∗)

MSE(i) or MSE(i)min
×100, i = ȳ∗, ȳ∗Rao(P), ȳ

∗
Rao(P), ȳ

∗
R, . . . , ȳ

∗
prop.

Results based on three data sets are given in Tables 2, 3 and 4.
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Table 2: PRE of estimators with respect to ȳ∗ for data set 1

.

Estimator h=2 h=4 h=6 h=8 h=16
ȳ∗ 100.000 100.000 100.000 100.000 100.000

ȳ∗R 111.204 112.946 113.987 114.678 116.057

ȳ∗P 84.9820 83.8472 83.200 82.782 81.974

ȳ∗Rao(R) 107.908 105.704 104.460 103.662 102.134

ȳ∗Rao(P) 88.1636 91.004 92.745 93.922 96.314

ȳ∗exp(R) 106.369 107.189 107.672 107.991 108.621

ȳ∗exp(P) 92.6901 92.032 91.654 91.407 90.929

ȳ∗SK(R1) 112.749 114.116 114.927 115.465 116.532

ȳ∗SK(P) 72.8894 74.829 76.007 76.799 78.397

ȳ∗KB 114.506 117.822 119.946 121.417 124.495

ȳ∗SK(R2) 114.819 118.348 120.506 121.961 124.915

ȳ∗SK(d) 114.819 118.348 120.506 121.961 124.915

ȳ∗prop 309.222 270.592 254.538 245.755 231.530
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Table 3: PRE of estimators with respect to ȳ∗ for data set 2

.

Estimator h=2 h=4 h=6 h=8 h=16
ȳ∗ 100.000 100.000 100.000 100.000 100.000

ȳ∗R 277.329 269.560 265.571 263.144 258.764

ȳ∗P 31.268 31.832 32.144 32.341 32.712

ȳ∗Rao(R) 203.460 155.016 137.471 128.411 114.442

ȳ∗Rao(P) 36.190 44.8313 51.411 56.588 69.561

ȳ∗exp(R) 205.995 201.434 199.072 197.627 195.006

ȳ∗exp(P) 52.514 53.144 53.488 53.705 54.111

ȳ∗SK(R1) 90.356 112.140 128.782 141.911 174.939

ȳ∗SK(P) 16.087 19.056 21.147 22.701 26.275

ȳ∗KB 282.247 273.501 269.048 266.350 261.505

ȳ∗SK(R2) 282.309 273.589 269.133 266.427 261.559

ȳ∗SK(d) 282.309 273.589 269.133 266.427 261.559

ȳ∗prop 549.804 521.751 510.740 505.259 498.002
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Table 4: PRE of estimators with respect to ȳ∗ for data set 3

.

Estimator h=2 h=4 h=6 h=8 h=16
ȳ∗ 100.000 100.000 100.000 100.000 100.000

ȳ∗R 204.333 192.089 188.197 186.285 183.458

ȳ∗P 47.615 50.484 51.556 52.117 52.991

ȳ∗Rao(R) 142.598 118.102 111.493 108.419 104.068

ȳ∗Rao(P) 59.014 73.728 80.668 84.707 91.670

ȳ∗exp(R) 149.031 143.344 141.481 140.556 139.175

ȳ∗exp(P) 67.732 70.041 70.875 71.305 71.967

ȳ∗SK(R1) 170.523 175.322 177.041 177.925 179.283

ȳ∗SK(P) 31.343 39.367 43.181 45.410 49.267

ȳ∗KB 222.273 213.479 211.130 210.092 208.730

ȳ∗SK(R2) 226.014 216.679 213.634 212.124 209.873

ȳ∗SK(d) 226.014 216.679 213.634 212.124 209.873

ȳ∗prop 289.857 289.956 290.856 291.516 292.816

5.1. Discussion and Findings

In Table 2, PRE of the proposed class of estimators ȳ∗prop and Rao (1991) ratio es-
timator ȳ∗Rao(R) decrease as the values of h increases from 2 to 16. On the other
hand, the situation is reverse for the estimates ȳ∗R, ȳ

∗
exp(R), ȳ

∗
SK(R1), ȳ∗KB, ȳ

∗
SK(R2), ȳ

∗
SK(d).

In Table 3, the performances of the proposed estimator ȳ∗prop and all the other con-
sidered estimators decrease with an increase in the value of h.
In Table 4, PRE of the proposed class of estimators ȳ∗prop and Singh and Kumar
(2008) estimator ȳ∗SK(R1), increase with an increase in the values of h. Also in this ta-
ble, PRE of other estimators ȳ∗Rao(R), ȳ

∗
exp(R), ȳ

∗
SK(R1), ȳ∗KB, ȳ

∗
SK(R2), ȳ

∗
SK(d) decreases with

an increase in the value of h.
In Tables 2, 3 and 4, we observe that the product type estimators ȳ∗Rao(P) ȳ∗P, ȳ

∗
exp(P)

and ȳ∗SK(P) perform very poorly because of positive correlation in data sets 1, 2 and
3. Generally, we can use product type estimators when there exists a negative
correlation between the study variable and the auxiliary variable.
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6. Conclusion

We proposed a generalized class of estimators for estimating the population mean
using information on two auxiliary variables under non-response in simple random
sampling. Expressions for bias and MSE of the proposed generalized class of esti-
mators are derived up to the first degree of approximation. The proposed estimator
ȳ∗prop is compared with Hansen and Hurwitz (1946) estimator and other considered
estimators. A numerical study is carried out to support the theoretical results. In
Tables 2, 3 and 4, the proposed class of estimators performs better than all other
competitor estimators under non-response in simple random sampling. The prod-
uct type estimators perform poorly because of positive correlation in all data sets.
Therefore, the proposed class of estimators ȳ∗prop is preferable in different situations,
i.e. when no auxiliary variable, single auxiliary variable, and two auxiliary variables
are used. It is observed that the Singh and Kumar (2008) estimators ȳ∗SK(R1) and
ȳ∗SK(d) perform equally but ȳ∗SK(d) is preferable because of unbiasednes. All product
type estimators perform poorly due to weak correlation between the study and the
auxiliary variables.
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ON MEASURING POLARIZATION FOR ORDINAL DATA: 
AN APPROACH BASED ON THE DECOMPOSITION  

OF THE LETI INDEX 

Mauro Mussini1 

ABSTRACT 

This paper deals with the measurement of polarization for ordinal data. 
Polarization in the distribution of an ordinal variable is measured by using the 
decomposition of the Leti heterogeneity index. The ratio of the between-group 
component of the index to the within-group component is used to measure the 
degree of polarization for an ordinal variable. This polarization measure does not 
require imposing cardinality on ordered categories to quantify the degree of 
polarization in the distribution of an ordinal variable. We address the practical 
issue of identifying groups by using classification trees for ordinal variables. This 
tree-based approach uncovers the most homogeneous groups from observed 
data, discovering the patterns of polarization in a data-driven way. An application 
to Italian survey data on self-reported health status is shown.  

Key words: polarization, ordinal data, Leti index, classification trees. 

JEL: D31, C40, C46 

Introduction 

Surveys frequently comprise one or more questions asking a respondent to 
self-assess his status (e.g., health, well-being, satisfaction) by choosing a 
response category from a set of ordered categories. When analyzing polarization 
in the distribution of an ordinal variable, one approach consists in imposing 
cardinality on ordinal categories to calculate conventional polarization measures. 
However, Apouey (2007) argued that transforming ordinal data into cardinal data 
is a supra-ordinal assumption, and she proposed bi-polarization indices which do 
not require supra-ordinal assumptions. Apouey’s indices measure bi-polarization 
in the distribution (Wolfson, 1994); that is, the disappearing of the central class 
induced by the distribution of the observations towards the lower and upper 
categories rather than around the central categories. The concept of bi-
polarization differs from that of polarization, since the latter is the tendency of 
grouping around local poles (Deutsch et al., 2013), which can be more than two 
and different from the extreme categories. In this paper, we use classification and 
regression trees (CART) (Breiman et al., 1984) for uncovering polarization 
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278                                                                       Mussini M.: On measuring polarization… 

 

 

patterns when dealing with ordinal data. The use of regression trees to explore 
polarization in income distribution has been recently investigated by Mussini 
(2016). Classification trees for ordinal variables (Piccarreta, 2008) are used to 
handle ordinal data. To quantify the polarization uncovered from ordinal data 
exploration, a measure based on the decomposition of the Leti heterogeneity 
index by group is applied. We show that this polarization measure is coherent 
with a criterion for identifying groups of observations in classification trees for 
ordinal variables. 

Polarization is a relevant topic in studies on income distribution (Esteban and 
Ray, 1994; Duclos et al., 2004; Palacios-González and García-Fernández, 2012; 
Jenkins, 1995; Bossert and Schworm, 2008; Wang and Tsui, 2000; Yitzhaki, 
2010; Gigliarano and Mosler, 2009; Foster and Wolfson, 2010) and its original 
notion is based on the concept of identification-alienation: individuals identify 
themselves with those having similar income levels, whereas they feel alienated 
from those with different income levels. When measuring polarization for an 
ordinal variable whose categories describe the status of an individual, there is 
polarization when groups of individuals characterized by within-group 
homogeneity (identification) and between-group heterogeneity (alienation) are 
observable. A similar approach was suggested by Fusco and Silber (2014), who 
defined the situations with the lowest and highest levels of polarization under the 
assumption that groups are defined a priori. According to Fusco and Silber 
(2014), polarization is lowest if each group shows the same relative frequency 
distribution of individuals between the various ordered categories; that is, if an 
individual cannot identify himself with the members of his group or distinguish 
himself from those of the other groups. Polarization is highest if all the individuals 
within a group belong to one category and such category varies according to the 
group considered; that is, if an individual can fully identify himself with the 
members of his group and feel alienated from those of the other groups. This 
approach based on within-group homogeneity and between-group heterogeneity 
is in line with that suggested by Zhang and Kanbur (2001) for measuring income 
polarization2, however it suffers from the practical limitation that groups must be 
defined a priori (Duclos et al., 2004). We overcome this limitation by identifying 
groups through data exploration. We show that groups can naturally emerge from 
data by using classification trees to recursively partition individuals into groups. 
We assume that the ordinal variable is the response variable and some variables 
describing respondents (e.g., earned income, age, gender, education) are the 
explanatory variables. The population is recursively partitioned to maximize the 
between-group heterogeneity, which is equivalent to searching for the partition 
maximizing the gain in homogeneity within groups. A classification tree can 
uncover groups of homogeneous respondents in a data-driven way by selecting 
the explanatory variables which play a role in the polarization of the distribution of 
the response variable. Thus, polarization is examined on the basis not only of the 
response variable distribution but also of the socio-demographic characteristics of 
individuals, as suggested by Permanyer and D’Ambrosio (2015).   

The classification tree is obtained by applying the ordinal Gini-Simpson 
criterion proposed by Piccarreta (2008), which is based on a measure of 

                                                           
2 Given an inequality index (e.g. the Theil index), Zhang and Kanbur (2001) suggested measuring 
polarization by the ratio of the between-group component of the index to the within-group component.  
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heterogeneity for ordinal variables that can be expressed as a function of the 
between-group component of the Leti index of heterogeneity for ordinal variables 
(Leti, 1983). Grilli and Rampichini (2002) decomposed the Leti index of 
heterogeneity into two components: a within-group component measuring 
heterogeneity within groups, and a between-group component measuring 
heterogeneity between groups.3 Building on the Zhang and Kanbur approach to 
the measurement of polarization for numerical variables, polarization in the 
distribution of an ordinal variable is measured by the ratio of the between-group 
component of the Leti index to the within-group component. Since both the 
recursive partition and the polarization measure depend on the between-group 
component of the Leti index, this link is used to define a procedure for measuring 
polarization which consists of two phases. First, the most homogeneous groups 
are identified by using classification trees for ordinal variables. Second, 
polarization is measured by breaking down the Leti index into between-group and 
within-group components. 

We measure polarization in self-reported health data for a sample of Italian 
householders interviewed in the Survey on Household Income and Wealth in 
2010 (Banca d’Italia, 2012). Our findings show that polarization is low and that the 
interaction effect of income and age contributes to explaining the polarization 
pattern. 

The paper is organized as follows. Section 2 introduces the measure of 
polarization for ordinal variables. Section 3 outlines the procedure to recursively 
partition individuals into homogeneous groups. In section 4, an application to 
Italian household data on self-reported health status is shown. Section 5 
concludes. 

2. Measuring Polarization for Ordinal Variables 

We briefly review the Leti heterogeneity index and its decomposition by group 
(subsection 2.1); we then introduce the measure of polarization based on the 
decomposition of the Leti index (subsection 2.2). 

2.1 The Leti Index and Its Decomposition 

Suppose that 𝑌 is an ordinal variable with 𝑘 ordered categories 

𝑦1, ⋯ , 𝑦𝑗 , ⋯ , 𝑦𝑘. Let 𝑛 be the number of individuals and 𝑛1, ⋯ , 𝑛𝑗 , ⋯ , 𝑛𝑘 be the 

frequencies observed for the 𝑘 ordered categories of 𝑌. Let 𝐹(𝑦𝑗) be the 

cumulative relative frequency of 𝑦𝑗: 

 𝐹(𝑦𝑗) =
∑ 𝑛𝑖

𝑗
𝑖=1

𝑛
.           (1) 

The Leti index (Leti, 1983, pp. 290-297) is 

𝐿 = 2 ∑ 𝐹(𝑦𝑗)[1 − 𝐹(𝑦𝑗)]𝑘−1
𝑗=1 ,              (2) 

                                                           
3 Shorrocks (1980) defined a class of decomposable inequality measures for the measurement of 
inequality in the distribution of a numerical variable. Shorrocks (1984) also studied the properties of 
the inequality measures which can be decomposed by population subgroups.  



280                                                                       Mussini M.: On measuring polarization… 

 

 

and measures the degree of heterogeneity in the distribution of 𝑌. The Leti index 
equals 0 if frequencies are concentrated in one category. The Leti index equals 
(𝑘 − 1) 2⁄  if heterogeneity is highest; that is, when frequencies are equally split 

between the lowest category 𝑦1 and the highest category 𝑦𝑘. The Leti index can 

be normalized by dividing 𝐿 by (𝑘 − 1) 2⁄ .4 Building on the conceptualization of 
maximum heterogeneity for an ordinal variable suggested by Leik (1966), Blair 
and Lacy (1996, 2000) developed a measure of heterogeneity for ordinal 
variables, which is equivalent to the normalized version of the Leti index. This 
index was used by Reardon (2009) to measure segregation in the case of an 
ordinal variable. In addition, the index is a member of a class of inequality 
measures for ordinal data that was axiomatically derived by Lv et al. (2015).     

Grilli and Rampichini (2002) showed that the Leti index is decomposable by 
groups. Suppose the 𝑛 individuals are split into ℎ groups. Let 𝑛𝑗,𝑔 be the 

frequency observed for category 𝑦𝑗 within group 𝑔 (with 𝑔 = 1, ⋯ , ℎ) and 𝑛𝑔 be the 

size of group 𝑔. Let 𝐹(𝑦𝑗|𝑔) be the cumulative relative frequency of 𝑦𝑗 within 

group 𝑔: 

𝐹(𝑦𝑗|𝑔) =
∑ 𝑛𝑖,𝑔

𝑗
𝑖=1

𝑛𝑔
.         (3) 

The heterogeneity within group 𝑔 can be measured by using the Leti index:  

𝐿𝑔 = 2 ∑ 𝐹(𝑦𝑗|𝑔)[1 − 𝐹(𝑦𝑗|𝑔)]𝑘−1
𝑗=1 .       (4) 

 𝑝𝑔 = 𝑛𝑔 𝑛⁄  being the population share of group 𝑔, the within-group component of 

the Leti index is 

𝐿𝑊 = ∑ 𝑝𝑔𝐿𝑔
ℎ
𝑔=1 .           (5) 

The between-group component of the Leti index is 

𝐿𝐵 = 2 ∑ 𝑝𝑔
ℎ
𝑔=1 ∑ 𝐹(𝑦𝑗|𝑔)[𝐹(𝑦𝑗|𝑔) − 𝐹(𝑦𝑗)]𝑘−1

𝑗=1 .    (6) 

𝐿𝐵 in eq. (6) measures the heterogeneity between the cumulative relative 
frequency distribution in the population and the cumulative relative frequency 
distributions in the various groups. 

Since 𝐹(𝑦𝑗) = ∑ 𝑝𝑔𝐹(𝑦𝑗|𝑔)ℎ
𝑔=1 , 𝐿𝐵 can be rewritten as 

𝐿𝐵 = 2 ∑ ∑ 𝑝𝑔𝐹(𝑦𝑗|𝑔)[∑ 𝑝𝑖𝑖≠𝑔 𝐹(𝑦𝑗|𝑔) − ∑ 𝑝𝑖𝐹(𝑦𝑗|𝑖)𝑖≠𝑔 ]𝑘−1
𝑗=1

ℎ
𝑔=1 .  (7) 

Hence, after simple manipulations, an alternative expression for 𝐿𝐵 is 
obtained: 

𝐿𝐵 = 2 ∑ ∑ 𝑝𝑔𝐹(𝑦𝑗|𝑔) {∑ 𝑝𝑖
𝑖≠𝑔

[𝐹(𝑦𝑗|𝑔) − 𝐹(𝑦𝑗|𝑖)]}
𝑘−1

𝑗=1

ℎ

𝑔=1
 

                                                           
4 When 𝑛 is odd, the maximum value of the Leti index is  

𝑘−1

2
(1 −

1

𝑛2
) instead of  

𝑘−1

2
. However, this 

difference is negligible when 𝑛 is sufficiently large. 
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𝐿𝐵 = 2 ∑ ∑ {∑ 𝑝𝑖
𝑖≠𝑔

𝑝𝑔𝐹(𝑦𝑗|𝑔)[𝐹(𝑦𝑗|𝑔) − 𝐹(𝑦𝑗|𝑖)]}
𝑘−1

𝑗=1

ℎ

𝑔=1
 

𝐿𝐵 = 2 ∑ ∑ 𝑝𝑔𝑝𝑖
𝑖≠𝑔

∑ 𝐹(𝑦𝑗|𝑔)[𝐹(𝑦𝑗|𝑔) − 𝐹(𝑦𝑗|𝑖)]
𝑘−1

𝑗=1

ℎ

𝑔=1
 

𝐿𝐵 = 2 ∑ ∑ 𝑝𝑔𝑝𝑖 ∑ [𝐹(𝑦𝑗|𝑔) − 𝐹(𝑦𝑗|𝑖)]
2𝑘−1

𝑗=1

ℎ

𝑖=𝑔+1

ℎ

𝑔=1
 

 𝐿𝐵 = 2 ∑ ∑ 𝑝𝑔𝑝𝑖𝐷𝑔𝑖
ℎ
𝑖=𝑔+1

ℎ
𝑔=1 .                 (8) 

In eq. (8), 𝐷𝑔𝑖 measures the heterogeneity between the cumulative relative 

frequency distributions of groups 𝑔 and 𝑖. If the two groups have the same 

cumulative relative frequency distribution, then 𝐷𝑔𝑖 = 0. 𝐿𝐵 in eq. (8) is expressed 

as a function of the pairwise differences between the within-group cumulative 

relative frequency distributions. In this respect, there is a similarity between 𝐿𝐵 
and an index of inequality in life chances suggested by Silber and Yalonetzky 
(2011).5 When all groups have the same cumulative relative frequency 

distribution, 𝐷𝑔𝑖 is 0 for every 𝑔, 𝑖 = 1, ⋯ , ℎ (with 𝑔 ≠ 𝑖) and 𝐿𝐵 equals 0 since there 

is no heterogeneity between the cumulative relative frequency distributions of 

different groups. 𝐿𝐵 coincides with 𝐿 if the frequencies are concentrated in one 
category within every group; that is, when heterogeneity is fully explained by the 
between-group heterogeneity.  

Originally, Grilli and Rampichini (2002) interpreted the ratio of 𝐿𝐵 to 𝐿 as the 
share of heterogeneity explained by a generic variable 𝑋 used to form groups 
(Grilli and Rampichini, 2002, pp. 114). In the next section, we show that the ratio 
of the between-group component to the within-group component can be seen as 
a measure of polarization for ordinal variables. 

2.2 A Measure of Polarization for Ordinal Variables 

Polarization is the tendency of individuals to concentrate around local poles, 
forming groups of reasonable size in which every individual can identify himself 
with the members of his group and feel alienated from those of the other groups 
(Esteban and Ray, 1994; Duclos et al., 2004). The concept of polarization has 
been applied to studies on income distribution in which the original notion of 
identification-alienation has been adapted to the topic: individuals identify 
themselves with those having similar income levels, whereas they feel alienated 
from those with different income levels. This idea of polarization can be extended 
to the distribution of an ordinal variable by observing that there is polarization if 
groups have different relative frequency distributions and the relative frequency 
distribution within each group tends to converge towards a single category; that 

                                                           
5 Silber and Yalonetzky (2011) proposed a set of new indices for measuring inequality in life chances 
in the case of an ordinal variable. One of these indices is based on pairwise comparisons between the 
within-group cumulative relative frequency distributions of the ordinal variable. 
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is, polarization occurs if groups are characterized by within-group homogeneity 
(identification) and between-group heterogeneity (alienation). For example, Figure 
1 shows the relative frequency distribution of an ordinal variable with five 
response categories (ranging from “Very Poor” to “Excellent”). If we suppose that 
the individuals belonging to the same response category form a group of 
respondents with the same characteristics, we can say that the population is 
“polarized” in line with the Esteban and Ray general idea of polarization (Esteban 
and Ray, 1994). Fusco and Silber (2014) defined the situations with the lowest 
and highest levels of polarization for an ordinal variable, under the assumption 
that groups are pre-established. Polarization is lowest if each group has the same 
relative distribution of individuals between the various ordered categories; that is, 
if an individual cannot identify himself with the members of his group and 
distinguish himself from those of the other groups. Polarization is highest if the 
individuals within a group belong to a single category, and this category varies 
according to the group considered; that is, if an individual can fully identify himself 
with the members of his group and feel alienated from those of the other groups. 

 

Figure 1. Relative frequency distribution of an ordinal variable 
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In this framework, we establish a link between the measurement of 

polarization and the decomposition of the Leti index. Since the between-group 

component measures between-group heterogeneity and the within-group 

component measures within-group heterogeneity, we note that polarization 

increases as the share of the Leti index attributable to the between-group 

component increases. The higher the between-group heterogeneity, the lower the 

within-group heterogeneity. In line with the Zhang and Kanbur approach (2001), 

the ratio of the between-group component to the within-group component can be 

interpreted as a measure of polarization: 

𝑃𝑂 =
𝐿𝐵

𝐿𝑊 =
2 ∑ ∑ 𝑝𝑔𝑝𝑖𝐷𝑔𝑖

ℎ
𝑖=𝑔+1

ℎ
𝑔=1

∑ 𝑝𝑔𝐿𝑔
ℎ
𝑔=1

.         (9) 

𝑃𝑂 equals 0 if the cumulative relative frequency distribution within each group 

is the same; that is, the cumulative relative frequency distribution within each 

group is equal to that of the whole population. In this case, polarization is lowest 

since there is no between-group heterogeneity. 𝑃𝑂 increases as the share of 

overall heterogeneity due to the between-group heterogeneity increases. While 

the index equals 0 in the case of minimum polarization, there is no upper limit for 

the index. In this respect, 𝑃𝑂 differs from conventional inequality indices, which 

usually range from 0 (perfect equality) to 1 (maximum inequality). The polarization 

index satisfies the principle of population size invariance, which is a desirable 

property for inequality indices. This property states that the value of the index 

does not change if every individual is replicated 𝑚 times.6  

The formulation of 𝑃𝑂 takes the between-group heterogeneity, within-group 

homogeneity and group population shares into account; that is, the three main 

features of polarization (Esteban and Ray, 1994, p. 824) are included in the 

polarization measure. While the role of between-group heterogeneity is clear, 

those of the other two features deserve some additional explanations. The role of 

within-group homogeneity is considered by the within-group heterogeneity 

component in the denominator of the ratio in eq. (9). The higher the within-group 

homogeneity, the lower the denominator. Therefore, a gain in within-group 

homogeneity increases polarization, all other things being equal. From eq. (9), we 

see that smaller groups carry less weight in the measurement of polarization than 

larger groups. In addition, considering groups 𝑔 and 𝑖 and holding the sum of their 

population shares constant, the more similar their population shares, the greater 

the weight assigned to the heterogeneity between their cumulative relative 

frequency distributions. In eq. (9), 𝐷𝑔𝑖 is weighted by the product 𝑝𝑔𝑝𝑖, which 

increases as 𝑝𝑔 and 𝑝𝑖 become closer, holding the sum of the population shares 

of the two groups constant. 

                                                           
6 Silber and Yalonetzky (2011) introduced an alternative property linked to population replication for 
indices measuring inequality in the case of ordinal data, named population composition invariance. 
The property of population composition invariance states that the value of the index is unchanged if 

every individual within a group 𝑔 is replicated 𝑚 times. This property is not satisfied by 𝑃𝑂 since the 
population share of group 𝑔 and those of other groups would change if the population of group 𝑔 were 
replicated a certain number of times. 
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To apply the Leti-based measure of polarization, the partition of individuals 

into groups is required. However, assuming that groups are pre-established does 

not necessarily reflect the actual polarization in the distribution of an ordinal 

variable. Moreover, the choice of the criterion to form groups is a practical issue 

to be addressed (Duclos et al., 2004). We overcome these issues by letting 

homogeneous groups be formed in a data driven way. To uncover the most 

homogeneous groups, we use classification trees for ordinal variables (Piccarreta, 

2008), in which the recursive partition relies on a heterogeneity measure that can 

be expressed as a function of the between-group component of the Leti index. In 

the next section, we show that classification trees are useful to detect the most 

homogenous groups, since each group is composed of individuals who have the 

same characteristics (e.g. age, gender, occupational attainment, education) and 

are similar in terms of ordinal response categories. In fact, the classification tree 

procedure includes some individuals in the same group if they are similar in terms 

of a set of variables and the variable values characterizing that group differ from 

those characterizing the other groups, in line with the original idea of polarization 

proposed by Esteban and Ray (1994). 

3. Using Classification Trees for Detecting Homogenous Groups 

Classification and regression trees (Breiman et al., 1984) are nonparametric 

methods for exploring data or predicting new observations. If the response 

variable is categorical (numerical), a classification (regression) tree is produced. 

In a classification tree, the variation of a response categorical variable is 

explained by a set of explanatory variables. The classification tree is produced by 

recursively partitioning individuals into more homogeneous groups, each of which 

is characterized by both the within-group distribution of the response variable and 

the values of explanatory variables describing the members of the group. When 

dealing with an ordinal response variable, the conventional criteria for partitioning 

individuals into groups may not lead to the best partition (Piccarreta, 2008). 

Piccarreta (2008) extended the classification tree method and introduced splitting 

criteria to deal with an ordinal response variable. Here, we use ordinal 

classification trees as an explorative statistical tool for uncovering the 

relationships between an ordinal response variable and a set of individual’s 

characteristics. 

3.1 Classification Trees for Ordinal Variables 

Let (𝑌, 𝑿): Ω → (𝑆𝑌 × 𝑆𝑋1
× ⋯ × 𝑆𝑋𝑝

) ≡ 𝑆 be a vector random variable on the 

probability space (Ω, 𝐹, 𝑃), where 𝑌 is an ordinal variable and 𝑿 =
{𝑋1, ⋯ , 𝑋𝑚, ⋯ , 𝑋𝑝} are 𝑝 explanatory variables. Assume that 𝑌 is the response 

variable, with 𝑘 ordered categories (𝑦1, ⋯ , 𝑦𝑗 , ⋯ , 𝑦𝑘), and 𝑿 is the vector collecting 

𝑝 individual’s characteristics. The classification tree is built by recursively 

partitioning the space 𝑆 into disjoint subsets, such that each subset includes 

individuals who are as homogeneous as possible in terms of 𝑌. Initially, all 

individuals are included in one set, called the root node, and then are split into 
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subsets, called nodes. The degree of heterogeneity of the response variable 

within a node is measured by defining an impurity measure. In the case of an 

ordinal response variable, impurity can be measured by using the Gini index of 

heterogeneity of an ordinal variable (Gini, 1954): 

𝐼𝑡(𝑌) = ∑ 𝐹(𝑦𝑗|𝑡)[1 − 𝐹(𝑦𝑗|𝑡)]𝑘
𝑗=1 ,         (10) 

where 𝑡 is a generic node, which coincides with the root node at the beginning of 

the recursive partitioning procedure. The partitioning procedure starts by splitting 

a parent node (the root node) into two descendent nodes according to a cut-off 

value chosen among all the observed values of the explanatory variables 𝑿. Such 

a cut-off value is selected to maximize the decrease in the impurity measure in 

eq. (10). In the next step, each descendent node is split into two further subsets 

according to the partition maximizing the decrease in impurity. In each step of the 

splitting procedure, the decrease in impurity is measured by subtracting the 

impurity within the descendent nodes from the impurity of the parent node. To 

explain the criterion for partitioning a parent node into two descendent nodes, 

consider a generic node 𝑡 with 𝑛𝑡 individuals. Without loss of generality, we may 

assume that 𝑋𝑚 is a numerical explanatory variable. Let 𝑐 ∈ 𝑆𝑋𝑚
|𝑡 stand for a 

value of 𝑋𝑚, with the domain of 𝑋𝑚 restricted to node 𝑡. Let 𝑡𝑙 and 𝑡𝑟 be the 

descendent nodes obtained by splitting 𝑡 at the cut-off 𝑐. Let 𝑛𝑡𝑙
= ∑ 𝐼{𝑋𝑚,𝑖≤𝑐}

𝑛𝑡
𝑖=1  

and 𝑛𝑡𝑟
= ∑ 𝐼{𝑋𝑚,𝑖>𝑐}

𝑛𝑡
𝑖=1  be the numbers of individuals in nodes 𝑡𝑙 and 𝑡𝑟, 

respectively. The decrease in impurity obtained by splitting 𝑡 into two nodes, 𝑡𝑙 

and 𝑡𝑟, at 𝑐 is 

∆𝑡(𝑌, 𝑐) = 𝐼𝑡(𝑌) −
𝑛𝑡𝑙

𝑛𝑡
 𝐼𝑡𝑙

(𝑌) −
𝑛𝑡𝑟

𝑛𝑡
 𝐼𝑡𝑟

(𝑌),        (11) 

where 𝐼𝑡𝑙
(𝑌) = ∑ 𝐹(𝑦𝑗|𝑡𝑙)[1 − 𝐹(𝑦𝑗|𝑡𝑙)]𝑘

𝑗=1  and 𝐼𝑡𝑟
= ∑ 𝐹(𝑦𝑗|𝑡𝑟)[1 − 𝐹(𝑦𝑗|𝑡𝑟)]𝑘

𝑗=1  are 

the impurity measures calculated for nodes 𝑡𝑙 and 𝑡𝑟, respectively. After simple 
manipulations, eq. (11) can be rewritten as 

∆𝑡(𝑌, 𝑐) =
𝑛𝑡𝑙

𝑛𝑡𝑟

𝑛𝑡
2 ∑ [𝐹(𝑦𝑗|𝑡𝑙) − 𝐹(𝑦𝑗|𝑡𝑟)]

2𝑘
𝑗=1 .        (12)  

Piccarreta (2008) suggested the use of the expression in eq. (12) for 
measuring the decrease in impurity due to splitting 𝑡 into 𝑡𝑙 and 𝑡𝑟, with the 
exclusion of the comparison between 𝐹(𝑦𝑘|𝑡𝑙) and 𝐹(𝑦𝑘|𝑡𝑟): 

∆𝑡
∗(𝑌, 𝑐) =

𝑛𝑡𝑙
𝑛𝑡𝑟

𝑛𝑡
2 ∑ [𝐹(𝑦𝑗|𝑡𝑙) − 𝐹(𝑦𝑗|𝑡𝑟)]

2𝑘−1
𝑗=1 .         (13) 

For node 𝑡, the splitting variable and the variable threshold c are selected 
from all the observed values of the explanatory variables to maximize the impurity 
reduction in eq. (13). This splitting procedure recursively runs until a stopping rule 
establishes that no further partition is useful since it does not produce any 
important gain in terms of within-group homogeneity and between-group 
heterogeneity. At the end of the procedure, the individuals in a subset (terminal 
node) constitute a group characterized by the distribution of 𝑌 within the group 
and the combination of the values of the explanatory variables which identifies 
that group. 



286                                                                       Mussini M.: On measuring polarization… 

 

 

3.2 Linking the Decomposition of the Leti Index with the Splitting Criteria for 
a Classification Tree 

We show that maximizing ∆𝑡
∗(𝑌, 𝑐) is equivalent to searching for the 

breakdown maximizing the between-group component of the Leti index calculated 
for node 𝑡. The Leti heterogeneity index for 𝑡 is 

𝐿𝑡 = 2 ∑ 𝐹(𝑦𝑗|𝑡)[1 − 𝐹(𝑦𝑗|𝑡)]𝑘−1
𝑗=1 .      (14) 

Supposing that 𝑡 is split into 𝑡𝑙 and 𝑡𝑟, the decomposition of 𝐿𝑡 is 

𝐿𝑡 = 𝐿𝑡
𝑊 + 𝐿𝑡

𝐵,          (15) 

where the within-group component is 

𝐿𝑡
𝑊 =

𝑛𝑡𝑙

𝑛𝑡
2 ∑ 𝐹(𝑦𝑗|𝑡𝑙)[1 − 𝐹(𝑦𝑗|𝑡𝑙)]𝑘−1

𝑗=1 +
𝑛𝑡𝑟

𝑛𝑡
2 ∑ 𝐹(𝑦𝑗|𝑡𝑟)[1 − 𝐹(𝑦𝑗|𝑡𝑟)]𝑘−1

𝑗=1 =

𝑝𝑡𝑙
 𝐿𝑡𝑙

+ 𝑝𝑡𝑟
 𝐿𝑡𝑟

                     (16) 

and the between-group component is  

𝐿𝑡
𝐵 = 2 {

𝑛𝑡𝑙

𝑛𝑡
∑ 𝐹(𝑦𝑗|𝑡𝑙)[𝐹(𝑦𝑗|𝑡𝑙) − 𝐹(𝑦𝑗|𝑡)]𝑘−1

𝑗=1 +
𝑛𝑡𝑟

𝑛𝑡
∑ 𝐹(𝑦𝑗|𝑡𝑟)[𝐹(𝑦𝑗|𝑡𝑟) −𝑘−1

𝑗=1

𝐹(𝑦𝑗|𝑡)]}  

𝐿𝑡
𝐵 = 2𝑝𝑡𝑙

𝑝𝑡𝑟
∑ [𝐹(𝑦𝑗|𝑡𝑙) − 𝐹(𝑦𝑗|𝑡𝑟)]

2𝑘−1
𝑗=1 .           (17) 

Irrespective of the multiplicative factor 2 in eq. (17), the comparison of eq. (17) 
and (13) leads to the conclusion that the decrease in heterogeneity produced by 
splitting node 𝑡 is measured by the between-group component of the Leti index 
calculated for that subset. The partitioning procedure iteratively searches for the 
breakdown maximizing the between-group component of the Leti index.  

The splitting procedure can be repeated until the terminal nodes are very 
small, resulting in an overlarge tree that could be difficult to interpret. Therefore, a 
stopping rule is needed to select the optimal tree size. A tree pruning procedure 
(Breiman et al., 1984) is used to find the best tree. Pruning can be performed by 
minimizing the following cost-complexity function for a tree 𝑇: 

𝑅𝛼(𝑇) = 𝑅(𝑇) + 𝛼 ∙ |𝑇|.          (18) 

In eq. (18), |𝑇| is the tree size (i.e. the number of terminal nodes), 𝛼 is a 

complexity parameter ranging within the interval (0, ∞), and 𝑅(𝑇) is the 

resubstitution error. The functional form of 𝑅(𝑇) depends on the nature of the 

response variable 𝑌. If 𝑌 is ordinal, 𝑅(𝑇) may coincide with either the total 
misclassification rate or the total misclassification cost. A misclassification occurs 
when the true response category of an individual is different from that assigned to 
him by the tree. Following Galimberti et al. (2012), the response category 
assigned to an individual is equal to the median category of the terminal node in 
which the individual is included. The total misclassification rate is equal to ratio of 
the number of misclassified individuals to the total number of individuals. The total 
misclassification rate is commonly used when dealing with a nominal variable. 
Piccarreta (2008) suggested assigning a cost to each misclassification given that 
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the response variable is ordinal instead of nominal. The misclassification cost is 
set equal to the number of categories separating the true response category of an 
individual from the response category assigned to him by the tree: for example, if 
the two categories are adjacent, the misclassification cost equals 1; if the true 
response category of an individual is 𝑦𝑗 and the response category assigned to 

him is 𝑦𝑗−2, then the misclassification cost equals 2. The total misclassification 

cost is equal to the sum of misclassification costs. 
As shown in Breiman et al. (1984), for any 𝛼 there is a unique smallest tree 

minimizing eq. (18), therefore, finding the best tree reduces to selecting the 
optimal tree size. Since 𝑅(𝑇) in eq. (18) is always minimized by the largest tree, 
Breiman et al. (1984) suggested using V-fold cross-validation to improve the 
reliability of misclassification error estimates. V-fold cross-validation is performed 
in various steps: (i) individuals are divided into V (usually V is set equal to 10) 
subsets of approximately equal size; (ii) each subset in turn is left out, a tree of 
size |𝑇| is built by using the remaining subsets and this tree is used to predict the 
response categories for the members of the omitted subset; (iii) the 
misclassification costs are calculated for each omitted subset; (iv) the 
misclassification costs calculated for the V subsets are added up and the cross-

validated total misclassification cost is obtained, 𝑅𝐶𝑉(𝑇); (v) steps (i)-(iv) are 

repeated for every tree size. Then, 𝑅(𝑇) is replaced with 𝑅𝐶𝑉(𝑇) in eq. (18) to 
select the optimal tree size.  

After pruning the classification tree, the terminal nodes identify groups 
characterized by within-group homogeneity and between-group heterogeneity in 
terms of a set of variables comprising the response ordinal variable and the 
explanatory variables used to produce the tree. Different from the Silber and 
Fusco (2014) approach, groups are directly identified through data exploration by 
clustering individuals who are similar. Therefore, using classification trees, 
polarization patterns can be naturally uncovered in a data driven way. A further 
advantage of the tree-based approach to the identification of groups is the 
selection of the most important explanatory variables in determining between-
group heterogeneity, since only the explanatory variables producing an 
appreciable decrease in impurity are shown in the classification tree.  

4. Application to Data on Self-Reported Health Status 

We measure the polarization in the distribution of data on self-reported health 
status (hereafter, SRHS) collected by the Survey on Household Income and 
Wealth (henceforth, SHIW) carried out by the Bank of Italy in 2010 (Banca d’Italia, 
2012). SRHS data include respondents’ perceptions of their general health 
condition, with the response categories ranging from “Very Poor” to “Excellent”. 
The use of SRHS is very common in epidemiological surveys since it is a good 
predictor of mortality (Allison and Foster, 2004); moreover, socio-economic 
surveys frequently ask SRHS to investigate the relationship between health status 
and socio-economic status (Kakwani et al., 1997; Idler and Benyamini, 1997). In 
our analysis, polarization in SRHS is measured by exploring the relationship 
between SRHS and a set of explanatory socio-economic variables collected in the 
2010 SHIW. First, we run the classification tree procedure to partition 
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respondents into homogeneous groups. Second, we measure polarization in the 
SRHS distribution by using 𝑃𝑂.  

The 2010 SHIW collected information on income, wealth and socio-economic 
variables for a sample of 7,951 households. In addition, the survey asked each 
householder to assess his health status and that of each household member. We 
focus our attention on the householder SRHS and 7,950 householders are 
considered7. Table 1 shows the description and coding for the ordinal response 
variable and explanatory variables. SRHS is measured with an ordinal variable 
having five response categories: “Very Poor”, “Poor”, “Fair”, “Good”, “Excellent”.  

Table 1. Variable description and coding. 

Response variable 

name description type ordered categories 

SRHS 
self-reported 
health status 

ordinal "Very Poor", "Poor", "Fair", "Good", "Excellent"; 

Explanatory variables 

name description type 
categories coding (for categorical variables) or range (for 

numerical variables) 

AGE_CLASS age class ordinal up to 34 years, 35-44, 45-54, 55-64, more than 64 years 

AREA 
geographical 

area of 
residence 

nominal N="North", C="Centre", S="South and Islands" 

INCOME 
household 

income 
numerical (0,∞) 

EMPLOYMENT 
employment 

status 
nominal 

(BC="blue-collar worker", OW="office worker or school 
teacher", M="cadre or manager", P="sole 

proprietor/member of the arts or professions", SE="other 
self-employed", R="retired", NE="other not-employed") 

EDUCATION 
educational 
qualification 

ordinal 

N="none", P="primary school certificate", LS="lower 
secondary school certificate", VS="vocational secondary 
school diploma", US="upper secondary school diploma", 

B="3-year university degree", G="5-year university degree", 
PG="postgraduate qualification" 

ACTIVITY 
sector of 
activity 

nominal 
A="agriculture, fishing", I="industry", G="general 

government", O="other", NA="do not know" 

GENDER gender dichotomous F="Female" 

SIZE_TOWN 
size of the 

town of 
residence 

ordinal  
ST="0-20,000 inhabitants", MT="20,000-40,000", 

LT="40,000-500,000", C="more than 500,000 inhabitants" 

 
Figure 2 shows the relative frequency distribution of SRHS data. We observe 

that the median category is “Good” and that the relative frequencies in the upper 
categories (“Good” and “Excellent”) are greater than those in the others. We 
initially run the recursive partitioning procedure by setting a small value of the 

                                                           
7 SRHS is not available for one of the surveyed householders; therefore, he is excluded from the 

empirical analysis. In all calculations, we use the sample weights provided by the SHIW.  
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complexity parameter (CP=0.01) to produce a large tree.8 An overlarge tree 
avoids that the interaction effects between explanatory variables are not 
discovered because none of the associated main effects produces a split with an 
appreciable decrease in terms of misclassification costs.9  

 

Figure 2. Relative frequency distribution of SRHS 

 

                                                           
8 We use the R package rpartScore (Galimberti et al., 2012) for recursive partitioning and we set the 

complexity parameter equal to the default value CP=0.01. The CP value in rpartScore is directly 
linked to α in eq. (18), since CP is equal to the ratio of α to the total misclassification cost calculated 
for the tree with no splits (i.e. the tree having no subsets). Therefore, α can be determined by setting 
CP. 

9 Setting a large CP value serves the scope of excluding a split if it does not produce an appreciable 
reduction in total misclassification cost. However, if that split is made, one of the descendent subsets 
may be split in a way to produce an appreciable decrease in total misclassification cost. This can 
occur when a split based on the interaction between variables produces an appreciable decrease in 
total misclassification cost but none of the associated variable main effects produces an appreciable 
misclassification cost reduction.  
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Table 2 shows the tree size |𝑇| (column 1), the minimum CP value for a tree 

of size |𝑇| (column 2), the total misclassification cost (column 3), the 10-fold 
cross-validated total misclassification cost (column 4), and the standard error of 
the 10-fold cross-validated total misclassification cost (column 5).  

 

Table 2. Tree size, total misclassification cost and 10-fold cross-validated total 
misclassification cost. 

 |𝑇| 𝐶𝑃 𝑅(𝑇) 𝑅𝐶𝑉(𝑇) 𝑆𝐸 

1 0.0491 1.0000 1.0000 0.0172 

3 0.0170 0.9018 0.9047 0.0174 

6 0.0100 0.8507 0.8566 0.0220 

 
Table 2 shows that the tree is not particularly successful in classifying 

individuals since the 10-fold cross-validated total misclassification cost is 0.8566. 
However, our aim is not finding a tree performing a good classification but 
exploring whether there are homogenous groups emerging from the data. From 
this standpoint, we need to handle the trade-off between the gain in within-group 
homogeneity and the tree size increase. We observe that passing from three to 
six terminal nodes does not imply a remarkable reduction of misclassification 
cost; that is, increasing the number of groups from three to six produces a small 
gain in terms of within-group homogeneity. Hence, we prune the tree by setting a 
complexity parameter greater than 0.01 to reduce the tree size. Figure 3 shows 
that the pruned tree has three terminal nodes in which the householders are split 
(groups 2, 6 and 7 in Figure 3). Figure 3 shows the size and the median category 
for each group. AGE_CLASS and INCOME are the explanatory variables playing 
a role in the partition of householders into groups. As expected, age has an effect 
on SRHS. SRHS of householders aged 65 years or older (group 3) is lower than 
SRHS of those younger than 65 years (group 2). Among householders aged 65 
years or older (group 3), SRHS is better for householders with household income 
higher than 20,960.5 euros (group 7).  
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Figure 3. Classification tree for SRHS 

 
Figure 4 shows the relative frequency distribution within each of the three 

groups. Although the median category of groups 2 and 7 is the same, the relative 
frequencies are concentrated in the upper two categories within group 2 whereas 
the relative frequencies spread towards the middle category within group 7. We 
observe that the SRHS distribution within group 2 is quite different from that within 
group 6, however group 6 is not very homogeneous in terms of SRHS. The 
normalized Leti index of the overall SRHS distribution equals 0.4542, indicating 
an intermediate level of heterogeneity. We break down the Leti index by group 
and we find that the within-group component is 0.3880 while the between-group 
component is 0.0662. The polarization measure 𝑃𝑂 is equal to 0.1706 and 
indicates that polarization is low. This means that the groups are not particularly 
characterized by within-group homogeneity and between-group heterogeneity 
with respect to SRHS and the socio-economic variables considered.  
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Figure 4. Relative frequency distributions of SRHS by group 

5. Conclusion 

This article deals with the measurement of polarization for ordinal variables. 
The contribution of the article is two-fold. First, we propose a synthetic measure of 
polarization based on the decomposition of the Leti heterogeneity index by group. 
Given a set of individuals split into groups by a certain criterion, the ratio of the 
between-group component of the Leti index to the within-group component 
indicates the extent to which the distribution of the ordinal variable is 
homogeneous within each group and heterogeneous between groups. If the 
within-group distributions are equal, the members of a group cannot distinguish 
themselves from those of the other groups. In this case, the measure of 
polarization equals 0, indicating that polarization is minimum. If the ordinal 
variable distribution within each group is mainly concentrated in a single category 
and this category varies according to the group considered, the within-group 
homogeneity is high. In this case, each member of a group can identify himself 
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with the members of his group and feel alienated from those belonging to the 
other groups. The greater the within-group homogeneity, the greater the measure 
of polarization. An advantage of this polarization measure is that it does not 
require imposing cardinality on the ordered categories of an ordinal variable. 
Indeed, imposing cardinality is a supra-ordinal assumption altering the original 
variable type. 

The second contribution of the article is the use of a tree-based approach to 
partition individuals into homogeneous groups when exploring polarization in the 
distribution of an ordinal variable. As noted by Duclos et al. (2004), a practical 
issue in polarization studies is finding groups characterized by within-group 
homogeneity and between-group heterogeneity in terms of a set of variables. We 
show that the between-group component of the Leti index is equivalent to the 
impurity measure used in the process generating a classification tree for an 
ordinal response variable. Using classification trees, we can uncover whether 
individuals are naturally split into homogeneous groups, each of which comprises 
individuals who are similar in terms of the ordinal response variable and a set of 
explanatory variables. In addition, this approach is useful for selecting the 
explanatory variables which play a role in the polarization of the ordinal variable. 
Since the recursive partitioning procedure also explores the interaction effects 
between the explanatory variables, analysts can discover polarization patterns 
which cannot be assumed a priori. 

We measure the polarization of SRHS data for a sample of Italian 
householders interviewed in the 2010 SHIW. The polarization measure is equal to 
0.1706, indicating that polarization is low. The classification tree for SRHS shows 
that the age and household income of respondents are the most important 
variables in the partition of householders in terms of SRHS. All other explanatory 
variables, like employment status, educational qualification or gender, do not play 
an important role in the polarization of SRHS. 
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A NEW METHOD FOR COVARIATE SELECTION
IN COX MODEL

Ujjwal Das1, Nader Ebrahimi2

ABSTRACT

In a wide spectrum of natural and social sciences, very often one encounters a large
number of predictors for time to event data. An important task is to select right ones,
and thereafter carry out the analysis. The `1 penalized regression, known as “least
absolute shrinkage and selection operator" (LASSO) became a popular approach
for predictor selection in last two decades. The LASSO regression involves a penal-
izing parameter (commonly denoted by λ ) which controls the extent of penalty and
hence plays a crucial role in identifying the right covariates. In this paper we pro-
pose an information theory-based method to determine the value of λ in association
with the Cox proportional hazards model. Furthermore, an efficient algorithm is dis-
cussed in the same context. We demonstrate the usefulness of our method through
an extensive simulation study. We compare the performance of our proposal with
existing methods. Finally, the proposed method and the algorithm are illustrated
using a real data set.
Key words: Bhattacharya distance, index of resolvability, Kullback-Leibler measure,
`1 penalty, proportional hazards model, time to event data.

1. Introduction

The statistical analysis of time to event data is very common in several applied
fields, such as biology, medicine, economics, engineering and social sciences. Typ-
ical examples of such an event may be the onset of a disease, death of a subject
under study, occurrence of default of a corporate bond, malfunctioning of a system,
etc. It is very frequent to adjust the analysis of those event times by incorporating
the information available from covariates. One of the popular ways of analysing
time to event data is based on the hazard rate function, and a common way of mod-
elling the hazard rate function with covariate matrix Z is to write it as the product
of the baseline hazard and some function of Z. This model referred to as ‘propor-
tional hazards’ or the ‘Cox model’, can connect the covariates with time to event in
a parametric or semi-parametric fashion. Mathematically, from Cox (1972) we have

h(t|Z) = h0(t)exp(Z′β ), (1.1)

where h0(t) is called the baseline hazard rate, Z′β = β1Z1 + β2Z2 + ...+ βpZp and
exp(Z′β ) describes how the hazard rate varies in response to covariates. One may

1Operations Management, Quantitative Methods and Information Systems Area, Indian Institute of
Management, Udaipur 313001, Rajasthan, India. E-mail: ujjwal.das@iimu.ac.in.

2Division of Statistics, Northern Illinois University, Dekalb, IL 60115, USA.
E-mail: nader@math.niu.edu.
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assume some parametric form for h0(t) and then (1.1) reduces to a parametric
model. If no parametric form is assumed for h0(t) then the model (1.1) is semi-
parametric. In practice, the estimation and inference from the Cox model is based
on the partial likelihood function. But for our purpose we use the full likelihood
function.

In some practical studies such as genetics, researchers may have a large num-
ber of covariates (p) from fewer number of observations n, and they may need to
select only few of those many covariates. An example includes a typical microarray
data set that consists of thousands of genes from hundred subjects. Traditional se-
lection methods such as stepwise deletion or best subset selection though useful
but may perform poorly in high dimensional (p >> n) situations. The limitations of
the existing methods of model selection are mentioned in Breiman (1996) and Fan
and Li (2001). As a unified method of variable selection for both low and high di-
mension, the penalized approach has gained increasing popularity in recent years.
The penalized methods with some conditions on the penalty functions, not only re-
tain the good properties of the old methods but also enjoy theoretical justifications.
Among the convex penalty functions, the least absolute shrinkage and selection
operator or LASSO proposed by Tibshirani (1996) has gained enormous attention
from the researchers. LASSO is defined as the `1 norm of the parameters: λ ||β ||1,
where β is the vector of regression coefficients and λ is the tuning parameter or pe-
nalizing parameter. The penalizing parameter plays an influential role for variable
selection. A larger value of λ exerts a higher penalty on regression coefficients,
resulting in inclusion of fewer variables in the model. Conversely, a small value
of λ leads to less penalty, and hence inclusion of many variables. Commonly, a
sequence of λ values is generated and then variables are detected for each value
of the series. Thereafter, a value of λ is chosen by k-fold cross validation, and
corresponding set of predictors are included in the model. Tibshirani (1997) used
generalized cross validation for the Cox model. More recently, Simon et al. (2011)
developed an R-package for variable selection in Cox model via LASSO with λ se-
lected thorough cross-validation. Li and Barron (2000) developed the concept of
information theoretically valid `1-penalty by extending the work of Grunwald (2007).
Using a similar risk analysis Barron et al. (2008a) and, Barron and Luo (2008) devel-
oped the concept of information theoretically valid `1 norm penalty function for linear
models. They obtained a lower bound on the penalizing parameter which makes the
LASSO penalty information theoretically valid. Recently, Das and Ebraimi (2017)
extended the concept for accelerated failure time model. In this paper, we introduce
the information theory for time to event data under the model (1.1) and obtain the
bound for λ . The nonlinear structure of the model (1.1) makes the results more
intricate than linear models. We will use the lower bound as the value of the initial
penalizing parameter. In addition to that, we propose an efficient algorithm for the
Cox proportional hazards model for variable selection following Barron et al. (2008).
Any software that performs constrained optimization, can be used to implement the
proposed algorithm.

The paper is organized as follows. A brief description on information theory
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along with related concepts and, the determination of the bound on penalizing pa-
rameter for the Cox model are given in subsections 2.1 and 2.2, respectively. Sec-
tion 3 deals with the algorithm and its accuracy. Section 4 ensures the usefulness
of the proposed methodology through extensive simulation studies. The results are
presented in a tabular format for different combinations of n and p with different
censoring proportions. The performance of our method is compared with existing
methods of selecting the tuning parameter in the immediate section. In Section 6
we illustrate our proposed method using a real world data, and compare the re-
sults with other methods. Finally, some concluding remarks complete the paper in
Section 7.

2. Method

2.1. Preliminaries

This section provides a brief summary of different information measures. For a de-
tailed discussion one can see Ebrahimi et al. (2010). The most well-known and
widely used measure of uncertainty is Shannon’s entropy (Shannon, 1948). For a
random variable X with a domain S, its entropy H(X) is defined as −

∫
S log p(x)dP(x),

where P(x) is the cumulative distribution function and p(x) is the probability den-
sity (mass) function of X . As a measure of information discrepancy between two
probability distribution functions P and Q, we use Kullback-Leibler (KL) divergence
(Kullback, 1959) given by D(P,Q) = Ep log( p

q ) =
∫

S log( p(x)
q(x) )dP(x), provided P is ab-

solutely continuous with respect to Q on the support S. Bhattacharya distance is an
alternative way to discriminate between two distribution functions P and Q, and it is
given by

d(P,Q) =−2log
∫ √

p(x)q(x)dx, (2.1)

see Bhattacharya, (1943). Throughout this paper, Bhattacharya distance is used
as the loss function to judge the accuracy of the estimate.

Index of Resolvability: Let L f be the likelihood characterized by f and f ∗ is
the true value of f . Then, the index of resolvability is defined as

Rn( f ∗) = min
f∈F

{
1
n

D(L f ∗ ,L f )+
1
n

pen( f )
}
, (2.2)

where f is a candidate to estimate unknown f ∗, F is the set of all possible values
of f and pen( f ) denotes some penalty function. We use this index to upper-bound
the statistical risk, associated with the estimates obtained by achieving the following
minimization

min
f∈F

{
1
n

log(
1

L f
)+

1
n

pen( f )
}
. (2.3)

The estimator obtained from (2.3) is called minimal complexity estimator. It can be
shown that the expression under minimization in (2.3), converges in probability to
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index of resolvability plus a constant (entropy), which ensures that the minimization
in (2.3) is equivalent to the minimization of the resolvability index, Rn( f ∗) in (2.2).
For more details see Barron et al. (2008).

From (1.1) f ∗ is the linear predictor given by Z′β ∗. Let f̂ be the minimal com-
plexity estimator of f ∗. Then we measure the associated risk of f̂ by E[d(L f ∗ ,L f̂ )].
We choose the penalizing parameter of LASSO such that

E
(

d̄(L f ∗ ,L f̂ )
)
≤ inf

β∈R p
{D̄(L f ∗ ,L f )+

λ

n

p

∑
j=1
|β j|}. (2.4)

where d̄(L f ∗ ,L f̂ ) = d(L f ∗ ,L f̂ )/n and D̄(L f ∗ ,L f ) = D(L f ∗ ,L f )/n are the average Bhat-
tacharya distance and Kullback-Leibler measure respectively, when averaged across
the n independent subjects. In the next subsection we provide a lower bound of λ

so that the risk bound in (2.4) holds for Cox model.

2.2. Determination of the bound on penalizing parameter

We consider survival studies in which n individuals are put on test and data of
the form (vi,δi,zi) for i = 1,2, ...,n, are collected. Here, vi is the minimum of the
exact failure time Xi and the censoring time Ci of the ith individual, δi = I(Xi ≤Ci) is
an indicator variable that represents the failure status, and zi is the corresponding
covariate that may be a vector. In addition, the survival function of the ith individual
is S(t|zi) = P(Xi > t|zi). The corresponding density function is f (t|zi), where Xi is
the exact failure time. Furthermore, we assume that the censoring time Ci of the ith

individual is a random variable with survival and density functions G(t|zi) and g(t|zi)

respectively, and that given z1, ...,zn, the C1, ...,Cn are stochastically independent
of each other and of the independent failure times X1, ...,Xn. Therefore, the full
likelihood function of the data (ti,δi,zi), conditional on z1, ...,zn, is

L f (v1,v2, ...,vn|δ1,δ2, ...,δn,Z) =
n

∏
i=1

( f (xi|Zi)G(xi|Zi))
δi (S(Ci|Zi)g(Ci|Zi))

1−δi

Since the censoring time is noninformative, the full likelihood function can be rewrit-
ten as

L f (v1,v2, ...,vn|δ1,δ2, ...,δn,Z) ∝

n

∏
i=1

( f (xi|Zi))
δi (S(Ci|Zi))

1−δi

=
n

∏
i=1

(
h0(xi)exp [−H0(xi)exp( fi)]e fi

)δi

(exp [−H0(Ci)exp( fi)])
1−δi (2.5)
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Under the above likelihood we have the following bound on λ :
Result 1: The `1 penalized likelihood estimator f̂ = f

β̂
= Z′iβ̂ obtained by

min
β

{
n

∑
i=1

δi

n

[
H0(xi)eZ ′iβ −Z′iβ

]
+

n

∑
i=1

[
(1−δi)

H0(Ci)

n
eZ ′iβ

]
+

λ

n
||β ||1

}
(2.6)

attains the risk bound

Ed̄(L f ∗ ,L f̂ )≤ inf
β

{
D̄(L f ∗ ,L f )+

λ

n

p

∑
j=1
|β j|

}

for every sample size provided that

λ ≥ 2
√

log2p

√√√√[ n

∑
i=1

{
δi

(
H0(xi)e fi − 1

2

)
+(1−δi)

(
H0(Ci)e fi − 1

2

)}]
. (2.7)

In practice, fi is replaced by f̂i obtained from (2.6).
Proof: The proof is outlined in the Appendix.
Remark: Under certain conditions (2.7) may not work. In that case, the bound will
be

λ ≥ 2
√

log2p

√
n

∑
i=1

[δie fiH0(xi)+(1−δi)e fiH0(Ci)]. (2.8)

The condition is discussed in the Appendix.

3. The Algorithm

We propose an algorithm for the detection of regression parameters in the Cox
model following Barron et al. (2008). For (p < n) we fit the Cox-model to the data
and use the point estimates as initial estimate for the algorithm. For (p > n) we
begin with β

0 = 0. Then, we estimate the cumulative baseline hazard by using
the Breslow-type estimator. With these, next we estimate λ by using (2.7) or (2.8)
according to the necessity. For any t ≥ 1 we will move from (t−1)th step to tth step
of iteration by: β

t = αβ
t−1 + γIl , where the parameters: α ∈ [0,1], γ ∈ (−∞,∞), and

Il is a vector of zero except for lth component which is 1. Combining this with (2.6)
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the likelihood, as a function of α and γ, becomes

W t(α,γ, l) =
1
n

n

∑
i=1

δi

[
H0(xi)exp

(
α

p

∑
j=1

Z′iβ
t−1 + γZil

)
−

(
α

p

∑
j=1

Z′iβ
t−1 + γZil

)]

+
1
n

n

∑
i=1

[
(1−δi)H0(Ci)exp

(
α

p

∑
j=1

Z′iβ
t−1 + γZil

)]

+
λ

n

(
α

p

∑
j=1
|β t−1

j |+ |γ|

)
. (3.1)

for every coordinate l = 1,2, ..., p. Now, we minimize (3.1) with respect to α and γ

and obtain the value of the objective function for each l = 1,2, ..., p. At tth iteration
the optimal αt , γt and Il(t) are those for which the value of the objective function is
minimum. We change that coordinate(s) and set others to zero. At the end of each
iteration the estimates of λ and cumulative baseline hazards are also updated for
the next iteration. The process is repeated until no new covariate is detected and
the absolute difference between the estimates from two consecutive iterations is
less than some preassigned small number. Any standard software can be used for
performing the constrained optimization. We call R-routine ‘constrOptim’ with the
option ‘Nelder-Mead’ method for its suitability to optimization of non-smooth func-
tions. The R-code can be available from the corresponding author upon request.

3.1. Convergence of the Algorithm

Let L f be the likelihood function with unknown parameters (or linear combination of
parameters) f as given in (2.5), estimated by f̂(k) at kth iteration. Then we have
Result 2: Let L f̂ be the minimal complexity estimate of L f ∗ and L f̂k

be the estimate
from kth iteration obtained by our proposed algorithm. Then,

1
n

log
1

L f̂(k)
(x)

+λu(k) ≤ inf
f

{
1
n

log
1

L f (x)
+λU f +

4U2
f

k+1

}
, (3.2)

where u(k) = ∑
p
j=1 |β̂ j,(k)| and U f = ∑

p
j=1 |β j| with β̂ j,(k) is the estimate of β j at kth

iteration.
Proof: The proof is given in the Appendix.

4. Numerical Studies

We investigate the performance of the proposed λ along with the algorithm through
simulations. We will use the lower bound of λ as its value, for all numerical in-
vestigations. First, we create a matrix of 100 rows and 1000 columns by randomly
drawing 1000 observations from a 100-dimensional multivariate normal distribution
with mean 0 and pairwise correlation 0.1. Throughout the simulation study, we keep
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this matrix fixed and use appropriate number of rows and columns as design matrix
under four different scenarios: (a) n=100, p=50, (b) n=1000, p=100 for low dimen-
sion, and (c) n=50, p=100, (d) n=100, p=1000 for high dimension. For (a) we use
the first 50 columns of the matrix, for (b) we transpose the matrix, and for (c) we
consider the first 100 columns with their first 50 rows for numerical studies. Let β

denote the true vector of regression coefficients. So, β is a vector of length 50 for
(a), of length 100 for (b) and (c), and of length 1000 for (d). In each case, we ran-
domly choose seven elements of β and set them to unity, and rest of the elements
are all zero. Let Z be the design matrix of appropriate order. We model the baseline
hazard of Cox regression assuming Weibull distribution to generate data. In this
way we get a closed form expression for the survival function. We equate the sur-
vival function with random numbers generated from uniform(0,1) distribution, and
then invert the survival function to get the time to event. We choose the scale and
shape parameters of the Weibull distribution as 1 and 1.2 respectively. For a de-
tailed discussion on the methods to generate data from the Cox model, one can see
Bender, Augustin and Blettner (2005). Except for (n=50, p=100), for remaining pairs
of (n, p) we vary the censoring proportion from 5% to 40% with an increment of 5%.
In this way, we generate 1000 data sets for every combination of n, p and censoring
percentage. Before analysis, for all the eight covariates we subtract the respective
mean and then divide them by the respective standard deviation. Then, the vari-
ables are selected through the algorithm discussed in Section 3. The simulation
results are summarized in Table 1, where n represents the number of subjects, p
is the number of covariates as candidate of the model, Cens. Pcnt. gives percent
of censoring, TMDR is the true model detection rate defined as the percentage of
replications where the full model (all correct seven covariates) is detected, Median
and Mean the number of correct variables detected, and Avg. Incln. is the average
model size, from the 1000 replications.

From Table 1 we find that the method is working well for detecting the correct
set of variables except for n = 50, p = 100. Along with the median, the average
number of correct variables included is also higher than 6 for both n = 100, p = 50
and n = 100, p = 1000. We note that the average model size is not far from the
average number of correct covariates detected, in all cases considered here. The
phenomena indicates the inclusion of fewer false variables. More specifically, for
n = 1000, p = 100, the entire correct model is identified always without any error for
all censoring percentages. We observe that the convergence was achieved equally
faster whether the initial estimate was 0 or taken from the Cox model fitting, for low
dimension.

5. Comparison

We compare our proposed method of tuning parameter selection with cross-validation
(CV), generalized cross-validation (GCV) and BIC. We use R-package glmnet. For
a detailed discussion on the glmnet, its algorithm and convergence, see Simon et al.
(2011). We reconsider the simulated data sets from Section 4, and reanalyse them
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Table 1: Summary of the Simulation Studies

n p Cens. Pcnt. TMDR Median Mean Avg. Incln.
50 100 5.71 15.01 5 5.39 5.81

10.88 10.1 5 4.89 5.34
14.19 6.6 5 4.66 5.02
19.68 1.1 4 4.12 4.66
25.31 0 4 3.78 4.73
29.19 0 4 3.72 4.81

100 50 5.27 90.1 7 6.87 7.05
10.16 84.1 7 6.75 7.06
15.22 80.8 7 6.71 7.1
20.27 76.7 7 6.65 7.08
25.02 74.9 7 6.64 7.09
31.2 72.8 7 6.62 7.15

34.87 68.1 7 6.54 7.06
39.42 66.5 7 6.52 6.83

100 1000 5.76 84.4 7 6.79 7.58
10.61 80.9 7 6.76 7.62
14.85 77.2 7 6.74 7.53
20.25 74.3 7 6.72 7.12
25.25 71.8 7 6.65 7.24
30.11 69.4 7 6.59 7.19
35.71 65.9 7 6.57 7.22
41.48 62.4 7 6.44 7.61

1000 100 5.02 100 7 7 7
10.11 100 7 7 7
15.01 100 7 7 7
20.09 100 7 7 7
25.19 100 7 7 7
30.15 100 7 7 7
34.9 100 7 7 7

40.11 100 7 7 7

by glmnet in conjunction with 10-fold CV, GCV and BIC. 10-fold CV was performed
using the R-function cv.glmnet, when for the other two we fit the Cox model with the
selected predictors for every value of λ and then obtain the GCV and BIC values
for each model. From a sequence of λ values, we pick the one as the value of the
penalizing parameter and the corresponding model, for which the desired criterion
(CV, GCV or BIC) attains its minimum. We compare the average number of vari-
ables detected for different values of n, p and censoring percentages, from all the
methods. Table 2 provides the average number of predictors identified as non-zero
from 1000 replications for 5% to 40% censoring. For n = 50 and p = 100 we per-
form the simulation up to 30% censoring. From Table 2 we see that cross-validation
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Table 2: Average number of variables detected by Our Method and cross-validation

n p Method 5% 10% 15% 20% 25% 30% 35% 40%
50 100 Our method 5.81 5.34 5.02 4.66 4.73 4.81

CV 15.51 15.87 15.93 15.27 15.43 15.14
GCV 15.56 15.25 16.09 15.36 15.34 15.39
BIC 14.15 13.98 14.53 14.07 14.14 14.01

100 50 Our method 7.05 7.06 7.1 7.08 7.09 7.15 7.06 6.83
CV 20.15 19.63 19.92 18.99 20.19 18.75 20.19 19.09

GCV 20.57 20.08 19.93 19.69 20.74 20.14 21.01 20.68
BIC 15.21 15.17 14.94 14.61 15.33 15.18 15.66 14.88

100 1000 Our method 7.58 7.62 7.53 7.12 7.24 7.19 7.22 7.61
CV 29.39 30.12 30.67 31.76 30.51 30.32 30.48 30.47

GCV 30.15 31.87 31.29 32.27 31.52 31.11 31.61 31.83
BIC 24.25 25.07 24.79 24.82 25.33 25.11 25.02 24.90

1000 100 Our method 7 7 7 7 7 7 7 7
CV 38.93 37.71 38.13 37.82 36.57 36.93 37.12 36.67

GCV 39.51 38.96 39.09 38.76 38.03 37.84 37.94 38.02
BIC 30.01 29.71 29.37 29.58 29.12 29.17 29.93 29.66

tends to select more covariates compared to our method. For both n = 100, p = 50
and n = 100, p = 1000 the average model size by our method is near 7, whereas
from cross-validation and GCV these are around 19 and 30 respectively. Similarly,
for n = 1000 and p = 100 our method detects all the covariates up to 40% censoring
without any false inclusion whereas the average model size from cross-validations
is more than 35. The BIC tends to select fewer variables than CV and GCV but
higher than our proposed method. We note that glmnet is almost always able to
identify the correct set of covariates for the simulated data sets. For example, for
n = 50, p = 100 and with 30% censoring, the true model detection rate (TMDR) was
higher than 95% when our proposed method was unable to find all the correct co-
variates in a single instance. So, the cross-validations and BIC tend to select an
entire set of right predictors at the cost of larger model size. Additionally, the coor-
dinate descent algorithm seems to be faster than our algorithm. In general, we see
that the proposed method may not always detect the full model, but the inclusion
of a false covariate is small compared to the cross-validations and BIC, for all the
scenarios we considered here.

6. Real data analysis

We analyse data on survival of the patients with advanced lung cancer. The study
was conducted by North Central cancer treatment group, and described in Loprinzi
et al. (1994). After some cleaning we are left with survival time on 167 subjects
with information on 8 covariates. The covariates are: institution code, age in years,
gender, ECOG performance score, Karnofsky performance score rated by physi-
cians, Karnofsky performance score rated by the patients, calories consumed at
meals, and weight loss in last six months. We analyse the data in three different
ways, and as before, calculate the Bayesian information criterion (BIC) of the final
selected model from each method for comparison. First, we select the model by
BIC. The resulting model includes only two covariates: gender and ECOG perfor-
mance score. BIC of this model is 1006.99, when the BIC value of the full model is
1023.48. Next, we fit the `1-penalized Cox proportional hazard model with penalizing
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parameter chosen by 10-fold CV, GCV and BIC by using R-package glmnet. The
CV and GCV identify seven out of eight covariates (exclude the variable calories
consumed), and BIC after fitting the Cox model with these seven selected covari-
ates is 1018.36. When the penalizing parameter was selected through BIC, two
more predictors (age and Karnofsky performance score rated by the patients) are
dropped from the model. BIC of the Cox model with these five predictors is 1011.38.
Finally, we analyse the data by our proposed method. As mentioned before, we use
the lower bound from (2.7) as the value of λ . Our method detects three covariates:
institution code, gender and ECOG performance score. The BIC of the Cox model
with these three variables comes out as 1008.66. We note that the p-values of gen-
der and ECOG performance score are significant at 5% level when the same for the
institution code (p-value= 0.0675) is significant at 10% level. The result seems to be
consistent with our finding in Section 5.

7. Conclusion

The selection of appropriate penalty parameter has great influence on variable se-
lection. Cross-validation is a widely used approach for choosing the parameter.
Leng, Lin and Wahba (2006) suggested to go with some method other than cross-
validations or BIC when covariate selection is of primary importance. The numer-
ical results show that the model resulted from our method always includes fewer
non-active covariates. From that perspective our method may be thought of as
an alternative route to choose the penalizing parameter. Certainly, the proposed
method is not a panacea for variable selection when event time is the outcome of
interest. We have seen in Sections 2 and 7 that for low dimension our method
yields the model with second smallest BIC value. But BIC-based model selection
cannot be performed in high dimension where penalized regression is the only tool
for variable selection. In general, for many of the situations we study in this paper,
our method shows promising results. Together with these, our method may be a
good candidate when covariate selection is the primary goal.
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APPENDIX

Here, we outline the proof of Result 1 and show the convergence of the proposed
algorithm.

Proof of Result 1:

From Barron et al. (2008) the condition on penalty function is

pen( f )≥ log(
L f (X)

L f̃ (X)
)−2log

E
√

L f (X)

L f∗ (X)

E
√

L f̃ (X)

L f∗ (X)

+2L ( f̃ ), (7.1)
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Using the full likelihood and the fact that f̃i
p→ fi we get,

L f (v1,v2, ...,vn)

L f̃ (v1,v2, ...,vn)
=

n

∏
i=1

(
h0(vi)exp

[
−H0(vi)e fi

]
e fi
)δi
(
exp
[
−H0(Ci)e fi

])1−δi(
h0(vi)exp

[
−H0(vi)e f̃i

]
e f̃i
)δi
(

exp
[
−H0(Ci)e f̃i

])1−δi

=
n

∏
i=1

 exp
[
−H0(vi)e fi

]
e fi

exp
[
−H0(vi)e f̃i

]
e f̃i

δi
 exp

[
−H0(Ci)e fi

]
exp
[
−H0(Ci)e f̃i

]
1−δi

.

Thus, by Taylor expansion up-to order 2, we have

log

(
L f (v1,v2, ...,vn)

L f̃ (v1,v2, ...,vn)

)
=

n

∑
i=1

[δi

{
H0(vi)(e f̃i − e fi)+( fi− f̃i)

}
+(1−δi)H0(Ci)

(e f̃i − e fi)]

=
n

∑
i=1

[
δiH0(vi)e fi ( f̃i− fi)

2

2
+(1−δi)H0(Ci)e fi ( f̃i− fi)

2

2

]
=

n

∑
i=1

e fi ( f̃i− fi)
2

2
[δiH0(vi)+(1−δi)H0(Ci)] ,

Next, consider the expectation from (7.1),

E

√
L f (V1,V2, ...,Vn)

L f ∗(V1,V2, ...,Vn)

=
n

∏
i=1

(
∫ Ci

0

√
exp [−H0(vi)e fi ]e fi

exp
[
−H0(vi)e f ∗i

]
e f ∗i

h0(vi)exp
[
−H0(vi)e f ∗i

]
e f ∗i dvi +√

exp [−H0(Ci)e fi ]

exp
[
−H0(ti)e f ∗i

] exp
[
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)]}

=
n

∏
i=1
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2
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2

(
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(7.2)
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Hence, after some algebra the ratio of the expectation in (7.1) reduces to

E
√

L f (V1,V2,...,Vn)

L f∗ (V1,V2,...,Vn)

E
√

L f̃ (V1,V2,...,Vn)
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=
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∏
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2e
fi+ f∗i
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e fi+e f∗i

[
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(
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e fi+e f∗i
2

)]
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(
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)]
2e
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[
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2
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)]
=

n

∏
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fi− f̃i

2
+

( fi− f̃i)
2

8

}(
e fi + e f ∗i +( f̃i− fi)e fi

e fi + e f ∗i
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1− exp
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(
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e f̃i+e f∗i
2

)
H0(Ci)

e fi
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(
−H0(Ci)
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2

)


=
n

∏
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{
1+

( fi− f̃i)
2

8

}
. (7.3)

We expand fi around f̃i up-to first order by Taylor series, and since f̃i
p→ fi then by

the fact that for x close to 0, ex = 1+x+ x2

2 . Taking log on both sides of (7.3) we get

log
E
√

L f (V1,V2,...,Vn)

L f∗ (V1,V2,...,Vn)

E
√

L f̃ (V1,V2,...,Vn)

L f∗ (V1,V2,...,Vn)

=
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∑
i=1

log
{

1+
( fi− f̃i)

2

8

}

=
n

∑
i=1

( fi− f̃i)
2

8
. (7.4)

As a result, the second expression in (7.1) may be approximated as

−2log

E
√

L f (V1,V2,...,Vn)

L f∗ (V1,V2,...,Vn)

E
√

L f̃ (V1,V2,...,Vn)

L f∗ (V1,V2,...,Vn)

 = −
n

∑
i=1

( fi− f̃i)
2

4
. (7.5)
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Hence, together with (7.2) and (7.5) the condition (7.1) is equivalent to

pen( f ) ≥
n

∑
i=1

[
e fi ( f̃i− fi)

2

2
{δiH0(vi)+(1−δi)H0(Ci)}−
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∑
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(
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1
2

)
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1
2

)]
+2L ( f̃ ).

(7.6)

Using the facts that ( f̃i− fi)
2 p→ E( f̃i− fi)

2 =Var( f̃i) and this variance has an upper
bound UU f

K i.e. Var( f̃i)≤
UU f

K . This upper bound together with the fact that L ( f̃ ) =
K log2p yield an upper bound for the right-hand side of (7.6). Replacing these in
(7.6) we obtain
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(7.7)

Differentiating (7.7) with respect to K and then equating it to zero we get
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√
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∑
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[
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.

Then, replacing that value of K in (7.7) with the choice of U =U f we get
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which is equivalent to
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1
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1
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(7.8)

This completes the proof of the theorem.
There is a chance that the sum in (7.7) can be negative. Then, we cannot proceed
further with that negative sum. In that situation, we adopt a slightly modified route
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to overcome this difficulty. From (7.5) we have

−2log

E
√

L f (V1,V2,...,Vn)

L f∗ (V1,V2,...,Vn)
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√
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i=1

( fi− f̃i)
2

4
≤ 0. (7.9)

With the bound in (7.9) and by the facts that ( f̃i− fi)
2 p→ E( f̃i− fi)

2 =Var( f̃i)≤
UU f

K
and L ( f̃ ) = K log2p, the condition (7.1) reduces to

pen( f ) ≥
n

∑
i=1

[
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]
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(7.10)

Then, we minimize the right-hand side of (7.10) with respect to K and choose
U =U f as before. Now, the equation (7.10) reduces to

pen( f ) ≥ 2

√
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n

√
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∑
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[δie fiH0(vi)+(1−δi)e fiH0(Ci)].

(7.11)

From (7.11) it is clear that the penalty function is still information theoretically valid
since it satisfies the condition (7.1).
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Proof of Result 2:

Let ek =
1
n log

L f̂ (x)
L f̂(k)

(x) +λ (u(k)−U f ). Then, using the full likelihood we get

ek =
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where f̂i = Z′iβ̂ and f̂i,(k) = Z′iβ̂ (k) with β̂ (k), obtained at kth iteration, is the estimate
of β . To prove the theorem we need to show that

ek ≤ (1−α)ek−1 +
1
2

α
2U2

f . (7.13)

It is clear that to have the inequality (7.13), we only need to tackle the ratio of the
survival functions from (7.12). For the ith subject we rewrite the ratio of the survival
functions from (7.12) in the following way
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(7.14)

So, to prove (7.13) we need to show{
exp
(
−H0(Ci)e f̂i

)}α {
exp
(
−H0(Ci)e

f̂i,(k−1)
)}ᾱ

exp
(
−H0(Ci)e

f̂i,(k)
) ≤ 1. (7.15)
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Then, using the updating rule that f̂i,(k) = ᾱ f̂i,(k−1) + γZil we rewrite (7.15) in the
following way{

exp
(
−H0(Ci)e f̂i

)}α {
exp
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. (7.16)

We choose customarily some α and γ = αU f in such a way that γZil
p→ α fi, which

is estimated by α f̂i. For more details regarding the customary choices and the
convergence see [2]. Using these facts (7.16) reduces to

exp
(
−H0(Ci)

{
e f̂i + e f̂i,(k−1)

})
{

exp
(
−H0(Ci)e f̂i

)}ᾱ {
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We denote the numerator and denominator of (7.17) by Dn and De, respectively.
We see that for α = 0 and 1, Dn = De which reduces (7.17) to 1 and hence log of
(7.17) becomes 0. For α ∈ (0,1) we study the nature of De. We have

∂ logDe

∂α
= H0(Ci)

(
e f̂i − e f̂i,(k−1) − eᾱ f̂i,(k−1)+α f̂i( f̂i− f̂i,(k−1))

)
and

∂ 2 logDe

∂α2 = −H0(Ci)exp
{

ᾱ f̂i,(k−1)+α f̂i
}
( f̂i− f̂i,(k−1))

2 (7.18)

From (7.18) it is clear that logDe and hence, De is strictly concave function. As a
result, De cannot attain its maximum for α = 0 or 1 since in that case De will be a
constant. So, (7.17) is less than or equal to 1 for 0 < α < 1, indicating that its log is
negative. This completes the proof of the result.
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COHORT PATTERNS OF FERTILITY IN POLAND BASED 
ON STAGING PROCESS – GENERATIONS 1930-1980 

Wioletta Grzenda1, Ewa Frątczak2  

ABSTRACT 

As a transition country in the region of Central and Eastern Europe, Poland has 
experienced unprecedented changes in the fertility. Currently, the total fertility rate 
level is very low, ca. 1.3 children per woman, which is below the replacement 
level. Many studies have described changes in fertility based on the cross-
sectional approach. However, the changes of cohort fertility have been described 
not quite sufficiently. Our paper complements this gap by the assessment of 
stochastic fertility tables, calculated for five-year generations of women born in the 
period 1930-1980. The main goal of this study is to analyse changes in the cohort 
patterns of female fertility in Poland.  

Key words: cohort fertility, stochastic process, stage probabilities. 

1. Introduction 

Fertility behaviour of women is influenced by numerous factors and is 
constantly changing over time, therefore fertility tables are the best tool for their 
analysis. Fertility tables are derived from life tables, which are one of the oldest 
tools of demographic analysis. The contemporary methodology of constructing life 
tables, based on the probability theory, was introduced by C.L. Chiang in 1968 
(Chiang, 1968). He was also one of the first authors of stochastic fertility tables 
(Chiang, 1984). There are also numerous publications on this subject in Polish 
(Frątczak and Ptak-Chmielewska, 2011a; 2011b; Frątczak, 1996; Bolesławski, 
1974) and foreign literature (Cigno, 1994; Namboodiri, 1991; Chiang and Van 
Den Berg, 1982; Namboodiri and Suchindran, 1987). The bases for constructing 
such tables are stochastic processes, because the events from a life course of a 
given individual, such as for example births, can be treated as the implementation 
of these processes. Therefore, often tables constructed in this manner are called 
stochastic tables. The events considered are localized in time, therefore the 
stochastic fertility tables can be used for analysing the changes of the level and 
pace of this phenomenon.  

                                                           
1 Warsaw School of Economics, Collegium of Economic Analysis, Institute of Statistics and 

Demography. E-mail: wgrzend@sgh.waw.pl. 
2 Warsaw School of Economics, Collegium of Economic Analysis, Institute of Statistics and 

Demography. E-mail: ewaf@sgh.waw.pl. 
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The main aim of this paper is the analysis of cohort patterns changes of 
female fertility in Poland using stochastic fertility tables. There are various 
methods of constructing such stochastic fertility tables. The most popular and the 
least complicated approach is to treat the birth of each child as a single event and 
investigate single episode model. In this paper stochastic fertility tables have 
been constructed based on staging process (Willekens, 1991) using multi episode 
models.  The construction of such tables necessitates taking into account the time 
of waiting for an event, which is the birth of a child. This requires the use of event 
history analysis methods (Graunt, 1962; Liu, 2012) in the modelling. This 
approach made it possible to comprehensively analyse successive births as 
sequences of events. The cohort approach is very common in fertility behaviour 
studies, because it allows the researchers to compare the fertility of each 
generation of women in a particular moment of their lives. One publication (Frejka 
and Calot, 2001), describing the fertility patterns in low fertility countries, studied 
women born in the years 1930-1970. In the majority of the 27 countries analysed, 
the total fertility rate decreased for each subsequent birth cohorts. In order to 
reverse this trend, women who are at the beginning of their fertility period should 
adopt vastly different fertility patterns than women born in 1960s and 1970s. The 
analysis of fertility patterns for groups of women born in the same year can be 
also found in many other publications (Frejka and Sardon, 2004; Sobotka, 2003). 

Properly constructed fertility tables provide important information regarding 
women’s fertility behaviour. They allow us to answer questions such as: when did 
a given woman give birth, at what age, and how many children does she have. A 
complementary character of such information is very important; therefore studies 
offer various methods of supplementing the missing information for cohort fertility 
schedules (Cheng and Lin, 2010).  

This paper aims to analyse the fertility behaviour of women in Poland, based 
on the stochastic fertility tables constructed for five-year generations, from 1931-
1935 to 1976-1980. Five-year age groups are widely used in the studies of female 
fertility (for example: Lee, 1974), which makes our results comparable with the 
results of other similar works. The data used for constructing the fertility tables 
come from “Fertility of Women” study conducted along with the National Census 
of Population and Housing in Poland in 2002. The basis for this study, received 
from the Central Statistical Office, was created for the “Epidemiology of fertility 
dangers in Poland – multi-centre, prospective cohort study” research project by 
pairing the information from Form D “Women’s fertility” with selected results from 
Form A “National Census of Population and Housing 2002” 3. The results of 

                                                           
3 Research project: Epidemiology of fertility dangers in Poland – multi-centre, prospective cohort study 

/ Ministry of Science and Higher Education ordered grant, decision K 140/P01/2007, Repro_PL, 
project director: Professor Wojciech Hanke, MD, PH.D., J. Nofer Occupational Medicine Institute in 
Łódź. Project implementation: 2007 – 2011.  

Within the abovementioned project framework, the Event History and Multilevel Analysis Unit of the 
Institute of Statistics and Demography conducted two research assignments: 

Research Assignment 1.1.1 Demographic and socio-economic reasons for low fertility and total fertility 
rate in Poland (postponing the childbearing decisions – descriptive and modelling analyses). Past, 
present, perspectives.  

Research assignment 1.1.2 Late fertility and childbearing diagnosis (postponing the childbearing 
decisions; plans and preferences – cohort prospective study (quantitative and qualitative) of 
demographic, socio-economic and health factors. For the purpose of research assignment 1.1.1, the 
research team received the relevant National Census of 2002 data from the Central Statistical Office.  
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descriptive fertility tables for single cohorts 1911-1986, where the birth of each 
child is treated as a single-episode process and not a staging process, based on 
the results of “Women’s Fertility” study conducted along the Census of 2002, are 
included in the work (Frątczak and Ptak-Chmielewska, 2011a, 2011b).  Moreover, 
the results of the preliminary analysis of this data set are contained in (Frątczak 
and Grzenda, 2011). This text is a continuation of the latter research on the 
subject of cohort fertility based on the “Women’s Fertility” data.  

The scope of the analysis conducted allows us to verify numerous research 
hypotheses regarding the changes of fertility behaviour of Polish women after 
World War II. The reasons for these changes can be linked to the Second 

Demographic Transition (Van de Kaa, 1987), which relates to the demographic 
changes from the beginning of 1990s in Central-Eastern Europe. Regarding 
fertility, these changes are characterized mostly by a decrease in fertility rate and 
postponing the decision of first birth.  

Analysing births in Poland (Bolesławski, 1974; 1975; Paradysz, 1992) we can 
conclude that the baby boom in 1970s and 1980s is an echo of the post-war baby 
boom of 1950s. Taking into consideration other publications dealing with the issue 
of fertility analysis we have posed two research hypotheses. The oldest birth 
cohorts: 1931-1935 and 1936-1940 are characterized by the largest probability of 
forth and subsequent births. The 1951-1955 and 1956-1960 birth cohorts exhibit a 
high staging probability of second and third births. At the end of the 20th century 
we saw the lowest level of fertility in virtually every European country (Frejka and 
Sardon, 2004). In this study we will verify the hypothesis that the youngest birth 
cohorts: 1971-1975 and 1976-1980, are characterized by the greatest probability 
of remaining childless and the lowest rate of successive births. The calculations of 
stochastic fertility tables for investigated cohorts not only allow verifying these 
hypotheses but also allow determining the exact differences in the fertility for 
these cohorts. 

2. Research Method 

The majority of methods used for population research are based on the 
probability theory because births, migrations or mortality for each individual can 
be considered an event. Each event is a transition from one state into another, 
and each individual at risk of each event has a certain positive probability of 
experiencing the transition between states (Namboodiri, 1991). We are interested 
not only in the time of occurrence of a given event, but also how often this event 
occurred during an individual’s life and what the probability of such event 
occurring in a given timeframe is. The analysis of random events is based on the 
analysis of random variables. These variables are indexed with a certain 
parameter, interpreted as time; therefore the result is a stochastic process 
(Chiang, 1980).  

The staging process is a sequence of certain events, generated by a random 
mechanism, bearing in mind that a multiple occurrence of the same event at the 
same time is impossible. It differs from the Markov process in that it has a certain 
sequence and is irreversible, while in Markov process there are recurring stages. 
Examples of staging processes in survivability analysis can be found in (Chiang, 
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1985), in medical applications and in fields related to fertility. Therefore, an 
example of a staging process is the fertility process:  

0 children→ 1 child → 2 child → 3 child → … → n–th child. 

An elementary process is a process which generates one event – the 
occurrence of the event in a given time is the end of the elementary process. A 
chain of independent elementary processes defines a staging process: the first 
elementary process generates the first event and triggers the second elementary 
process, which in turn generates the second event, etc.  

In order to describe the staging process we assume the following notation: 

n  – intensity of the n-th event, 

nX  – the time of occurrence of the n-th event; the times are ordered increasingly:

 210 XXX , 

nU  – the period of waiting for the occurrence of the n-th event: 1 nnn XXU ,   

xN    – the number of events. 

The schema of staging process with 5 events can be defined as follows:  
The process intensity: 

543210 54321 


 

Waiting time: 

543210
54321 XXXXXX

UUUUU
  

Please note that the waiting period for the first event, which is the birth of the 
first child, is a random variable with no memory parameter. This parameter, also 
known as the Markov’s parameter, is characteristic of an exponential distribution. 
After the first event has occurred everything starts again. Therefore, we assume 
that successive periods of waiting for childbirth are independent random variables 
with exponential distribution.  

The theoretical basis for constructing fertility table is the Poisson process, 

where the times between two successive events (waiting periods) 
nU  are 

independent random variables with exponential distributions, but with different 
parameters.  

In the analysed process, the measure that has been found is the intensity 
(hazard) function. For the n-th event it is expressed by the formula:  

 
.

|
lim

0 x

xXxxXxP nn

x
n







  

It is the probability of the occurrence of the n-th event within the time interval, 
assuming that the event with the number n-1 had occurred before the process 
reached time x. 
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Distribution function of the waiting period for n+1 event is not dependant on 
the occurrence of the n-th event: 

       .exp1exp1 1111 uuuUPuF nnnn     

The density function for the time period between n and n+1 event is given as: 

   
 

 .exp 11
1

11 u
u

uUP
uUPuf nn

n
nn 


 




   

The probability that the event does not occur before the time x, i.e. survival 

function, is:      .exp0 11 xxXPNP x   

The probability that the process being at the first stage at the time x is 
exposed to the risk of experiencing the first event is called stage probability and 

labelled as:  xS1 . 

The probability that the event occurs exactly once in the interval  x,0  is 

denoted by  1xNP . It is stage probability  xS 2 , which means that the 

process at the time x is at the stage 2. If the dependant events process 21   , 
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While constructing the fertility tables we calculate such staging probabilities 
for successive births. In the staging process analysis, we quite often identify the 
moment from which we start measuring the duration of a given process – this 
study assumes a period of 15 years, and the time axis covers the following age of 
women: 15 – 49 years.  

Based on the formulas presented, using the exponential distribution, we have 

calculated the hazard value for each event n , 5,,2,1 n  and then the staging 

probability values for successive births. This study presents the staging 
probabilities for five-year age groups: 15-19, 20-24,…, 45-49. 
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3. Estimation Results 

Based on the formulas presented in the previous section we have created an 
original program for calculating the characteristics of fertility tables. The 
estimation of all models was conducted in SAS systems. The estimation of fertility 
tables was conducted taking into consideration weights, therefore the results may 
be generalized for the entire population of women. In this chapter we present and 
interpret the resulting parameters of stochastic fertility tables.  

In tables 1-7 we include the staging probabilities of successive births for five-
year age groups of women: 15-19, 20-24,…, 45-49, determined for five-year 
generations, from 1931-1936 to 1976-1980.  

Table 1. The stage probabilities of successive births – women aged 15-19 

Birth cohorts 0 children 1 child 2 children 3 children 

1931-1935 0.8696 0.0941 0.0307 0.0051 

1936-1940 0.8536 0.1080 0.0349 0.0031 

1941-1945 0.8471 0.1161 0.0306 0.0057 

1946-1950 0.8757 0.0972 0.0239 0.0030 

1951-1955 0.8921 0.0844 0.0210 0.0024 

1956-1960 0.8836 0.0869 0.0259 0.0033 

1961-1965 0.8685 0.0969 0.0288 0.0039 

1966-1970 0.8625 0.0998 0.0323 0.0052 

1971-1975 0.8681 0.1005 0.0274 0.0034 

1976-1980 0.8994 0.0817 0.0171 0.0016 

 

 

Figure 1. Distribution of stage probabilities of births – women aged 15-19  
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In Table 1, we present the stage probabilities for women aged 15-19. The 
stage probabilities of successive births for all generations are similar (Figure 1). In 
the case of first births, the highest probability is observed for 1936-1940, 1941-
1945 and 1971-1975 cohorts.  

Table 2 includes the values of stage probabilities for women aged 20-24. The 
youngest cohorts: 1971-1975 and 1976-1980 are the cohorts with the highest 
percentage of childless women, which is clearly visible in Figure 2. The stage 
probability values for first births for all generations are similar, peaking for 
generation 1946-1950 and 1971-1975. The stage probabilities of second births for 
generations from 1931-1940 to 1966-1970 are similar, reaching the highest value 
for 1961-1965 cohort, while the probability value is lowest for the two youngest 
cohorts. It is important to note a steady drop in higher-order births for each 
subsequent birth cohort.  

Table 2. The stage probabilities of successive births – women aged 20-24 

Birth 
cohorts 

0 children 1 child 2 children 3 children 4 children 5+ child. 

1931-1935 0.4462 0.1849 0.2033 0.1061 0.0412 0.0183 

1936-1940 0.4284 0.2077 0.2264 0.0956 0.0319 0.0100 

1941-1945 0.4252 0.2380 0.2199 0.0835 0.0252 0.0082 

1946-1950 0.4471 0.2477 0.2086 0.0703 0.0201 0.0062 

1951-1955 0.4478 0.2363 0.2221 0.0709 0.0173 0.0056 

1956-1960 0.4320 0.2194 0.2355 0.0855 0.0209 0.0067 

1961-1965 0.4137 0.2154 0.2485 0.0895 0.0266 0.0063 

1966-1970 0.4299 0.2289 0.2341 0.0788 0.0214 0.0069 

1971-1975 0.5029 0.2511 0.1818 0.0502 0.0114 0.0026 

1976-1980 0.6680 0.2247 0.0887 0.0163 0.0021 0.0002 

 

 

Figure 2. Distribution of stage probabilities of births – women aged 20-24  
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Table 3 presents the values of stage probability for women aged 25-29. The 
highest probability of remaining childless is observed for the youngest birth 
cohort: 1971-1975, but at the same time this cohort is characterized by the 
highest probability of first births. A higher probability of first births is also visible for 
generations 1941-1945, 1946-1950 and 1966-1970. When it comes to second 
births, they are at a similar level, bearing in mind that they are the lowest for the 
youngest and oldest cohorts, and the highest for 1956-1960 and 1961-1965 
cohorts. We can also see that the oldest cohort has the highest value of third 
births, while this probability is lowest for the youngest cohort (Figure 3).  

 

Table 3. The stage probabilities of successive births – women aged 25-29 

Birth 
cohorts 

0 children 1 child 2 children 3 children 4 children 5+ child. 

1931-1935 0.2584 0.1560 0.2694 0.1831 0.0838 0.0493 

1936-1940 0.2468 0.1791 0.3070 0.1662 0.0639 0.0370 

1941-1945 0.2453 0.2133 0.3085 0.1487 0.0569 0.0273 

1946-1950 0.2536 0.2123 0.3229 0.1409 0.0487 0.0216 

1951-1955 0.2496 0.1976 0.3357 0.1455 0.0495 0.0221 

1956-1960 0.2374 0.1734 0.3515 0.1616 0.0519 0.0242 

1961-1965 0.2257 0.1778 0.3503 0.1655 0.0565 0.0242 

1966-1970 0.2434 0.2123 0.3404 0.1443 0.0427 0.0169 

1971-1975 0.3270 0.2828 0.2841 0.0812 0.0192 0.0057 

 

 

Figure 3. Distribution of stage probabilities of births – women aged 25-29  
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Analysing Table 4 and Figure 4 we can see that for women aged 30-34 the 
values of each probability are similar for “middle” cohorts. It is worth noting that 
the highest value of fourth births is observed for the oldest cohort. There is also a 
significantly lower probability of first births in favour of second births for 
generations 1956-1960 and 1961-1965, as well as a higher value of first births 
probability for cohorts 1941-1945, 1946-1950 and 1966-1970. 

 
Table 4. The stage probabilities of successive births – women aged 30-34 

Birth 
cohorts 

0 children 1 child 2 children 3 children 4 children 5+ child. 

1931-1935 0.1718 0.1289 0.3027 0.2230 0.1080 0.0656 

1936-1940 0.1624 0.1501 0.3485 0.2025 0.0872 0.0493 

1941-1945 0.1576 0.1803 0.3559 0.1925 0.0741 0.0396 

1946-1950 0.1631 0.1788 0.3744 0.1858 0.0654 0.0325 

1951-1955 0.1588 0.1601 0.3900 0.1930 0.0657 0.0324 

1956-1960 0.1499 0.1409 0.4021 0.2053 0.0691 0.0327 

1961-1965 0.1403 0.1450 0.4045 0.2075 0.0713 0.0314 

1966-1970 0.1575 0.1942 0.4078 0.1754 0.0482 0.0169 

 
 

 

Figure 4. Distribution of stage probabilities of births – women aged 30-34 
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Analysing the values of stage probability of successive births for women aged 
35-39, based on Table 5 and Figure 5, we can observe the highest probability of 
second births. However, for subsequent cohorts, beginning with the oldest one, 
we observe a drop in the number of higher-order births. 

 

Table 5. The stage probabilities of successive births – women aged 35-39 

Birth 
cohorts 

0 children 1 child 2 children 3 children 4 children 5+ child. 

1931-1935 0.1202 0.1116 0.3264 0.2542 0.1195 0.0681 

1936-1940 0.1117 0.1313 0.3793 0.2265 0.0988 0.0524 

1941-1945 0.1080 0.1596 0.3922 0.2175 0.0815 0.0412 

1946-1950 0.1107 0.1593 0.4119 0.2127 0.0718 0.0336 

1951-1955 0.1063 0.1382 0.4319 0.2166 0.0744 0.0326 

1956-1960 0.0996 0.1206 0.4379 0.2323 0.0759 0.0337 

1961-1965 0.0925 0.1252 0.4476 0.2317 0.0738 0.0292 

 
 

 

Figure 5. Distribution of stage probabilities of births – women aged 35-39 

 

The results presented in Tables 6 and 7 are not significantly different than the 
ones presented in Table 5. Therefore, the figures for the women aged 40-44 and 
aged 44-49 have been omitted. We can observe that the percentage of childless 
women is very similar for all generations analysed, and the most common number 
of births is 2.  
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Table 6. The stage probabilities of successive births – women aged 40-44 

Birth 
cohorts 

0 children 1 child 2 children 3 children 4 children 5+ child. 

1931-1935 0.0870 0.0992 0.3486 0.2764 0.1249 0.0639 

1936-1940 0.0799 0.1182 0.4076 0.2451 0.1017 0.0475 

1941-1945 0.0769 0.1467 0.4250 0.2332 0.0814 0.0368 

1946-1950 0.0781 0.1468 0.4462 0.2289 0.0712 0.0288 

1951-1955 0.0742 0.1240 0.4675 0.2321 0.0743 0.0279 

1956-1960 0.0687 0.1063 0.4719 0.2490 0.0756 0.0285 

 

Table 7. The stage probabilities of successive births – women aged 45-49 

Birth 
cohorts 

0 children 1 child 2 children 3 children 4 children 5+ child. 

1931-1935 0.0648 0.0895 0.3664 0.2937 0.1271 0.0585 

1936-1940 0.0592 0.1081 0.4295 0.2584 0.1023 0.0425 

1941-1945 0.0568 0.1359 0.4497 0.2446 0.0808 0.0322 

1946-1950 0.0569 0.1367 0.4725 0.2396 0.0696 0.0247 

1951-1955 0.0534 0.1123 0.4953 0.2427 0.0727 0.0236 

 

Based on the presented stage probability results for successive birth cohorts 
we can single out two cohorts: the post-war baby boom cohort 1951-1955 and the 
younger analysed cohort 1971-1975. For birth cohort 1971-1975 we can see that 
the percentage of childless women is larger than in the 1951-1955 cohort. 
Moreover, we can observe that the number of successive births is getting lower. 
The greatest value of state probabilities for first births for women aged 20-24 was 
obtained for birth cohort 1971-1975. This value for cohort 1951-1955 is similar to 
other cohorts. Similarly for women aged 25-29, but this difference between birth 
cohort 1971-1975 and other cohorts is much deeper. Based on the stage 
probabilities of second births values for 1951-1955 and 1971-1975 cohorts there 
is a visible decline for women aged 20-24 and 25-29. 

Finally, we compare the stage probability values for 1951-1955 and 1971-
1975 cohorts, for third births. For 1951-1955 cohort we can observe an increasing 
trend for third birth for each age group, starting with women aged 15-19. For the 
youngest birth cohort 1971-1975 the trends are the total opposite of the ones 
exhibited by 1951-1955 cohort. 

Analysing the stage probability values for first births we can see that the first 
birth occurs most frequently among women aged 20-24 and 25-29, regardless of 
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their year of birth. We can see that the highest probability of first births in the age 
group 25-29 occurs in the youngest generation of women 1971-1975, and the 
lowest probability occurs in the oldest generation. Moreover, the highest 
probability of first births for this cohort is also in the age group 20-24. Therefore, it 
can be concluded that among women aged 20-24, the women of birth cohort 
1971-1975 with the highest probability gave birth to the first child, compared to 
other cohorts. On the other hand, the women of birth cohort 1971-1975 aged 20-
24 begun decline in successive births. 

5. Conclusions and Discussion 

The goal of this study was to analyse the fertility behaviour of women in 
Poland, based on stochastic fertility tables constructed for 5-year generations 
from 1931-1935 to 1976-1980. We used stochastic fertility tables based on the 
staging process. This approach allows considering in modelling the sequence of 
events, not only each event separately. 

Based on the presented results (Tables 1-7), it was found that there is no 
indication to reject the investigated hypotheses. It follows from the Tables 1-7 that 
the oldest birth cohorts: 1931-1935 and 1936-1940 are characterized by the 
largest probability of forth and subsequent births. Moreover, the 1951-1955 and 
1956-1960 birth cohorts are characterized by a high staging probability of second 
and third births. Furthermore, the highest changes in the values of stage 
probabilities can be observed in the case of the last two generations: 1971-1975 
and 1976-1980. They are the result of the reaction to the socio-economic and 
cultural transformation in Poland after 1989. The results of probability estimation 
clearly show that in every remaining cohort the probability of higher-order births is 
decreasing (Figure 1-5). The observed changes in fertility have been conditioned 
by various economic and socio-cultural factors, including migration. The analysis 
of these factors requires a different approach and is the subject of analysis 
performed by Polish and foreign researchers (Kotowska et al., 2008; Olah and 
Frątczak, 2013; Frejka et al., 2016). 

There are various theories which can help explain the transformation changes 
of cohort fertility patterns in Poland. We must agree with McDonald’s theory 
(McDonald, 2006; 2008), who argued that the emergence of low fertility is 
associated with two waves of social change that have profound effects upon 
family formation behaviour in the past 40 years. The first wave of change 
beginning in the 1960s was an expansion of social liberalism (the so-called 
reflective modernization) and the second wave beginning in the 1980s was an 
expansion of economic deregulation, the so-called new capitalism, but the most 
important is the labour market deregulation. While in the period of socialism in 
Poland, that is until 1989, these waves could not act with full force, for example 
because of government regulation of labour market, similarly to other socialist 
countries, their effect and importance became much more intense from the 
beginning of the transformation period. This translates into drastic changes in 
younger analysed cohorts: 1971-1975, 1976-1980. The labour market 
participation of women and their fertility is also the subject of many studies. In 
(Kotowska et al., 2008), authors indicated the connections between women's 
employment and their fertility. They hypothesize that female employment would 
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have decline more if the women had not reduced their fertility. Moreover, the 
authors suggest that since the beginning of the 1990s the significance of 
educational achievements of women and their decision to have a baby have been 
characterized by a rapid development of higher education in Poland. 

All theories related to the demographic changes described by the Second 
Demographic Transition (Van de Kaa, 1994; 1996; Lesthaeghe, 1991; 1998), that 
is: (a) the theory of increased female economic autonomy (Becker, 1991), (b) the 
theory of relative economic deprivation (Easterlin, 1976; 1979), and (c) the theory 
of ideational shift (Lesthaeghe and Surkyn, 1988; Bumpass, 1990) may be useful 
for explaining the changes in cohort fertility in Poland. On the other hand, in 
Poland after 1989, the intensity of changes of cohort fertility patterns increased 
rapidly along with the socio-economic transformation processes, which directly 
follows from the distribution of stage probabilities of births for women aged 20-24 
(Figure 2). Therefore, it is worth agreeing with the opinion of Espanding-Andersen 
and Billari (Espanding-Andersen and Billari, 2015), who state that because of the 
high intensity of changes in families in post-transitional societies, the explanation 
of the changes using the abovementioned three theories related to the Second 
Demographic transition is no longer sufficient. Similarly to many other 
transformation countries from Central and Eastern Europe, Poland is 
experiencing the process of both cohort and cross-section transformation, which 
is determined by numerous phenomena and processes.  

The changes in actual cohorts translated into the changes of cross-sectional 
fertility and fertility rates, which is reflected in the low values of cross-sectional 
fertility rates. Our results (Figure 3) indicate that for women aged 25-29 a decline 
in the stage probability of second births takes place; at the same time, the stage 
probability of first birth is getting higher. This is consistent with other studies 
showing that there are significant changes in the nuclear family model in Poland 
(Frątczak, 2001; Frątczak and Kozłowski, 2005). During the transformation period 
in Poland the model of nuclear family changed from two-child model into one-child 
model, with a high percentage of childless families in the general structure. These 
changes were explained by some researchers using the effect of shifting, which in 
developed countries has been observed for cohorts of women born after World 
War II (Sobotka et al., 2012). However, more recent analysis of 15 Central and 
East European (CEE) countries, including Poland, confirms these tendencies 
(Frejka et al., 2016) and shows that despite the growth in fertility rates in the late 
2000s, the fertility still remains at a low level. 
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GENERALIZED EXPONENTIAL SMOOTHING IN
PREDICTION OF HIERARCHICAL TIME SERIES

Daniel Kosiorowski1, Dominik Mielczarek2,
Jerzy P. Rydlewski3, Małgorzata Snarska4

ABSTRACT

Shang and Hyndman (2017) proposed a grouped functional time series forecasting
approach as a combination of individual forecasts obtained using the generalized
least squares method. We modify their methodology using a generalized exponen-
tial smoothing technique for the most disaggregated functional time series in order to
obtain a more robust predictor. We discuss some properties of our proposals based
on the results obtained via simulation studies and analysis of real data related to the
prediction of demand for electricity in Australia in 2016.

Key words: functional time series, hierarchical time series, forecast reconciliation,
depth for functional data.

1. Introduction

The problem of optimal reconciliation of forecasts of complex economic phenom-
ena partitioned into certain groups and/or levels of hierarchy has been considered
in the economic and econometric literature many times and is still present in a pub-
lic economic debate (see Kohn (1982), Weale (1988), Hyndman et al. (2011)).
National import/export quantities or Gross National Product balances are important
examples here. Discrepancies between forecasts prepared at the global level and
obtained by aggregating regional forecasts or forecasts prepared according to cer-
tain hierarchy levels are usually thought to be caused by different methodologies
or different precision of measurements used at different hierarchy levels or ”predic-
tion clusters”. The issue is also very important from a particular company’s point of
view in a context of a product or a service lines management, consumers portfolio
optimization and consumers segmentation. Let us take the equipment for running
grouped in levels of hierarchy with respect to age, sex, competitive or re-creative us-
age and season designation as an example of material product line management.
Let us take demand and supply of electricity within day and night optimized with
respect to forecasted day and night demand, customers grouped with respect to
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Figure 1: Electricity demand in regions of Australia in 2016 – hierarchical functional
time series example

regions of living or residing and a degree of ”consumer priority” as examples of im-
material product sales optimization. Let us take the Internet holiday booking service
divided into sub-services with respect to certain wealth or ”an inclination to adven-
tures” criterion as an example of a service management. In recent years a very
interesting statistical methodology named functional data analysis (FDA) for ana-
lyzing functional data has been developed (see Bosq (2000), Ramsay et al. (2009),
Horvath and Kokoszka (2012), Krzyśko et al. (2013), Shang and Hyndman (2017)).
For applications of FDA in economics see Kosiorowski (2014), Kosiorowski (2016),
Kosiorowski, Rydlewski and Snarska (2017a). Economic usefulness of outliers de-
tection procedures in the FDA setup has been recently described and discussed
in Nagy et al. (2017), Kosiorowski, Rydlewski and Zawadzki (2018a), Kosiorowski,
Mielczarek and Rydlewski (2018c).
In this context, it is worth stressing, that many others economic phenomena may
effectively be described by means of functions or their series (i.a. utility curves,
yield curves, development paths of companies or countries).

Following the above cited authors we consider a random curve X = {x(t), t ∈
[0,T ]}, where T is fixed, as a random element of the separable Hilbert space
L2([0,T ]) with the inner product < x,y >=

∫
x(t)y(t)dt. The space is equipped with

the Borel σ−algebra. Furthermore, in Bosq’s (2000) monograph it is proved that
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probability distributions do exist for functional processes with values in Hilbert space.
We denote this probability distribution by F . Functional time series (FTS) is a se-
ries of functions indexed by time (e.g. see Fig. 1, colors indicate time succession
of sequence of the functional objects according to the base R terrain.colors color
palette). A hierarchical functional time series is a series of functions grouped at
specified levels (household, town, region, whole country), (i.e. see Fig. 1). At each
level a forecast can be made. A natural problem arises: how to use information
obtained at different levels to obtain a reconciliated prediction for all levels?

The problem of hierarchical time series prediction is solved with various ways.
Bottom-up method relies on forecasting each of the disaggregated series at the
lowest level of the hierarchy, and then using simple aggregation to obtain forecasts
at a higher level of the hierarchy (see Kahn (1998)). Top-down method involves
forecasting of aggregated series at the top level of the hierarchy, and then using
disaggregation to obtain forecasts at a lower level of the hierarchy based on histor-
ical proportions. Shang and Hyndman (2017), extending the method of Hyndman
et al. (2011), considered grouped functional time series forecasting as an opti-
mal combination of individual forecasts using generalized least squares regression
with level forecasts treated as regressors. In the context of hierarchical FTS pre-
diction a general problem arises: which method of forecasting should be chosen
(see Bosq (2000), Besse et al. (2000), Hyndman and Ullah (2007), Hyndman and
Shang (2009), Aue et al. (2015), Kosiorowski, Mielczarek and Rydlewski (2017b,
2018b)). Shang and Hyndman (2017) proposed a grouped functional time series
forecasting approach as a combination of individual forecasts obtained by means
of their smart predicting method, in which functional time series is reduced to a
family of one dimensional time series of principal component scores representing
original functional series (see Kosiorowski, 2014). As a result of conducted simu-
lation studies, we decided to modify their methodology. Instead of using principal
component scores forecast methods, we decided to propose a certain functional
generalization of exponential smoothing technique (see Hyndman et al. (2008) for
a theoretical background of the exponential smoothing), i.e. we used moving lo-
cal medians and moving local functional trimmed averages (Febrero-Bande and
de la Fuente, 2012) for the most disaggregated series in order to obtain more ro-
bust predictor than Shang and Hyndman (2017). The main aim of the paper is to
modify Shang and Hyndman (2017) predictor so that it could cope with functional
outliers and/or it would be elastic enough to adapt to changes in data generating
mechanism. The remainder of the paper is as follows: in the second section el-
ements of depth concept for functional data are sketched and in the third section
our proposals are introduced. Fourth section presents results of simulation as well
as empirical studies. The paper ends with conclusions, references and a short ap-
pendix containing R script showing how to calculate forecasts using our proposals
with free DepthProc and fda.usc R package (see Kosiorowski and Zawadzki, 2018;
Febrero-Bande and de la Fuente, 2012).
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2. Depths for functional data

For obtaining robust hierarchical FTS predictor we focused our attention on the
functional data depth concept (Nagy et al. (2016) and Nieto-Reyes and Battey
(2016)). We have chosen, in our opinion the best depth for the considered functional
data, namely the corrected generalized band depth (cGBD, see López-Pintado and
Jörnsten (2007)), but for computational reasons we restrict our considerations to
the case of the band consisting of two functions.
If X1 and X2 are independent functional random variables generated by the func-
tional time series, and generating the observations (real functions in the L2([0,T ])
space), the cGBD of curve x with respect to F is defined as

cGBD(x|F ) = F (G(x)⊂ Ac(x;X1,X2))

where G(x) = {(t,x(t)) : t ∈ [0,T ])} is a graph of function x, and a1,2 = {t ∈ [0,T ] :
X2(t)−X1(t)≥ 0} and

Ac(x;X1,X2) = {t ∈ a1,2 : X1(t)≤ x(t)≤ X2(t)}, if a1,2 ≥ a2,1

or
Ac(x;X1,X2) = {t ∈ a2,1 : X2(t)≤ x(t)≤ X1(t)}, if a2,1 > a1,2.

Now, let XN = {x1, ...,xN} be a sample of continuous curves defined on the compact
interval [0,T ]. Let λ denote the Lebesgue measure and let a(i1, i2) = {t ∈ [0,T ] :
xi2(t)−xi1(t)≥ 0}, where xi1 and xi2 are band delimiting objects. Let Li1,i2 =

λ (a(i1,i2))
λ ([0,T ]) .

The empirical cGBD of a curve x with respect to the sample XN , which estimates
cGBD for curve x in the considered functional space with respect to F , is defined
as (see López-Pintado and Jörnsten, 2007)

cGBD(x|XN) =
2

N(N−1) ∑
1≤i1<i2≤N

λ (Ac(x;xi1 ,xi2))

λ ([0,T ])

where
Ac(x;xi1 ,xi2) = {t ∈ a(i1, i2) : xi1(t)≤ x(t)≤ xi2(t)}, if Li1,i2 ≥

1
2

or
Ac(x;xi1 ,xi2) = {t ∈ a(i2, i1) : xi2(t)≤ x(t)≤ xi1(t)}, if Li2,i1 >

1
2
.

Within this definition, the introduced earlier band depth (López-Pintado and Romo,
2009) is modified so that it only takes into account the proportion of the domain
where the delimiting curves define a contiguous region which has non–zero width.
Further in our proposals we use the depth regions of order α for the considered
cGBD, i.e. Rα(F ) = {x : cGBD(x,F ) ≥ α}. Note, that α-central regions Rα(F ) =

{x∈L2([0,T ]) : D(x,F )≥α}may be defined for any statistical depth function D(x,F ),
where F denotes a probability distribution (Zuo and Serfling, 2000). Note also
that various robust and nonparametric descriptive characteristics, like scatter, skew-
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ness, kurtosis, may be expressed in terms of α− central regions. These regions
are nested and inner regions contain less and less probability mass. Following
Paindaveine and Van Bever (2013), when defining local depth it will be more appro-
priate to index the family {Rα(F )} by means of probability contents. Consequently,
for any β ∈ (0,1] we define the smallest depth region with F -probability equal or
larger than β as

Rβ (F ) =
⋂

α∈A(β )

Rα(F ),

where A(β ) = {α ≥ 0 : P(Rα(F )) ≥ β}. The depth regions Rα(F ) and Rβ (F )

provide only the deepest point neighborhood. In our considerations, we can re-
place probability distribution F = F X by its symmetrized version for any function
x, namely Fx =

1
2F X + 1

2F 2x−X. For any depth function D(·,F ) the correspond-
ing sample local depth function at the locality level β ∈ (0,1] is LDβ (x,F (N)) =

D(x,Fx
β (N)), where F

β (N)
x denotes the empirical probability distribution related to

those functional observations that belong to Rβ
x (F (N)), where F (N) denotes empir-

ical probability distribution calculated from XN . Thus Rβ
x (F (N)) is the smallest sam-

ple depth region that contains at least a proportion β of the 2N random functions
x1, ...,xN ,2x− x1, ...,2x− xN . Depth is always well defined – it is an affine invariant
from original depth. For β = 1 we obtain global depth, while for β ' 0 we obtain
extreme localization. As in the population case, our sample local depth will require
considering, for any x ∈ L2([0,T ]), the symmetrized distribution F

(N)
x , which is em-

pirical distribution associated with x1, ...,xN ,2x− x1, ...,2x− xN . Sample properties
of the (global) depths result from general findings presented in Zuo and Serfling
(2000). Implementations of local versions of several depths including projection
depth, Student, simplicial, Lp depth, regression depth and modified band depth can
be found in free R package DepthProc (see Kosiorowski and Zawadzki, 2018). In
order to choose the locality parameter β we recommend using expert knowledge
related to the number of components or regimes in the considered data. Sample
properties of the local versions of depths result from general findings presented in
Paindaveine and Van Bever (2013). For other concepts of local depths see, e.g.,
Sguera et al. (2016).

3. Our proposals

We consider a sample of N functions XN={xi(t) : t ∈ [0,T ], i = 1, ...,N}. Let
FDβ (y|XN) denote sample functional depth of y(t) with locality parameter β , e.g.,
the functional depth is equal to corrected generalized band depth: FD = cGBD.
Sample β–local median is defined as

MEDFDβ (XN) = argmax
i=1,...,N

FDβ (xi|XN).
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Assume now, that we observe a functional time series xcluster
i (t), i = 1,2, ... for each

considered level of hierarchy. We put our proposals forward.

PROPOSAL 1: We independently apply on each considered level of hierarchy
and in each cluster of that level a moving median predictor to obtain a forecast for
the cluster, and then generalized exponential smoothing takes the following form

x̂cluster
n+1 (t) = MEDFDβ (W cluster

n,k ),

where Wn,k denotes a moving window of length k ending in a moment n, i.e.
W cluster

n,k = {xcluster
n−k+1(t), ...,x

cluster
n (t)}.

Then joint reconciliation of forecasts is conducted and our reconciled predictor
takes the form:

X̂n+1(t) = F(x̂cluster1
n+1 (t), ..., x̂clusterM

n+1 (t)),

where F denotes the reconciliation procedure. In Proposal 1, F is a generalized
least squares procedure originally proposed by Shang and Hyndman (2017) and M
is the number of moving median predictors.

PROPOSAL 2: Sample βthreshold–trimmed mean with locality parameter β is de-
fined as

ave(βthreshold ,β )(XN) = ave(xi : FDβ (xi|XN)> βthreshold),

where ave denotes the sample functional average, and βthreshold is a a pre-specified
trimming threshold. In this setup a generalized exponential smoothing technique is
applied independently on each considered level of hierarchy and in each cluster of
that level as well. As a predictor for (n+1)th moment we take

x̂cluster
n+1 (t) = z ·ave(β 1

threshold ,β1)(W cluster
n1,k1

)+(1− z) ·ave(β 1
threshold ,β1)(W cluster

n2,k2
),

where W cluster
n,k denotes a moving window of length k ending in a moment n , i.e.

W cluster
n,k = {xcluster

n−k+1(t), ...,x
cluster
n (t)}, z ∈ [0,1] is a forgetting parameter and n2 < n1.

Thus we consider a closer past represented by W cluster
n1

and a further past repre-
sented by W cluster

n2
.

Note that lengths of the moving windows k,k1,k2 used in Proposals 1 – 2 relate to
the analogous forgetting parameters α in the classical exponential smoothing. Ad-
ditionally, we have at our disposal the resolution parameter β , at which we predict
a phenomenon. Such an approach allows us to accommodate expert knowledge
and adjust forgetting and resolution parameters to the researcher’s requirements.
For comparison purpose, note that in original Shang and Hyndman (2017) paper,
the authors made predictions using functional regression based on constant in time
functional principal components scores modelled by means of the well known one–
dimensional time series models (see Hyndman and Shang, 2009).
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In the next step we consider the whole hierarchy structure of the phenomenon. As-
sume that a hierarchical structure is described by fixed hierarchy levels, which are
also divided into sub-levels, which are divided into sub-levels, and so on – assume
that we have M clusters in the whole hierarchical structure. Smart reconciliation of
forecasts is conducted in this step and our reconciled predictor takes the form:

X̂n+1(t) = F(x̂cluster1
n+1 (t), ..., x̂clusterM

n+1 (t)),

where F is a Generalized Least Squares Estimator (see Shang and Hyndman,
2017).
Using Shang and Hyndman (2017) notation we can write our model in the form

Rn = Snbn,

where Rn is a vector of all series at all clusters, bn is a vector of the most dis-
aggregated data and Sn is a fixed matrix that shows a relation between them.
In the considered example we have Rn = [RAustralia, RNSW , RQLD, RSA, RTAS, RV IC]

T ,
bn = [RNSW , RQLD, RSA, RTAS, RV IC]

T , where T denotes a vector transpose. The ma-
trix Sn is an 6×5 matrix, where the only non-zero elements are S1i = 1 for i= 1,2, ...,5
and S j j−1 = 1 for j = 2, ...,6. We propose to do the base forecast:

R̂n+1 = Sn+1βn+1 + εn+1,

where R̂n+1 is a matrix of the base forecast for all series at all levels,
βn+1 = E[bn+1|R1, ...,Rn] is the unknown mean of the forecast distribution of the most
disaggregated series and εn+1 is responsible for errors. We propose to use a gen-
eralized least square method as in Shang and Hyndman (2017)

β̂n+1 =
(
ST

n+1W−1Sn+1
)−1

ST
n+1W−1R̂n+1

modified so that we use a robust estimator of the dispersion matrix W , i.e. instead
of diagonal matrix, which contains forecast variances of each time series, we can
use a robust measure of joint forecast dispersion taking into account dependency
structure between the level forecasts. Note that a dynamic updating of the disper-
sion matrix estimates should be considered in further studies. Let us define our
dispersion matrix:

W = diag{vtotal ,vcluster1 , ...,vclusterM}

where

vcluster =V
{∫ T

0

(
xcluster

nk (t)− x̂cluster
n (t)

)2
dt,k = 1,2, ...,Kcluster,n = 1,2, ...,N

}
,

Kcluster is the number of observations in the considered cluster in time n, N is here
the number of moments at which observations have been made and where V is
some chosen robust measure of dispersion. We propose to substitute V = c ·MAD2
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instead of Shang and Hyndman’s (2017) variance. If we consider a hierarchy as in
the above Figure 1, our dispersion matrix takes a simple form:

W = diag{vAustralia,vNSW ,vQLD,vSA,vTAS,vV IC}.

We propose to use c ·MAD2 instead of variance or take into account a dependency
structure between level series using the well-known minimum covariance deter-
minant (MCD) or recently proposed PCS robust matrix estimators of multivariate
scatter (see Vakili and Schmitt (2014)).

4. Properties of our proposals

Thanks to the kindness of prof. Han Lin Shang, who made his R script available for
us, we calculated the optimal combination of forecast predictor and we compared
Shang and Hyndman (2017) proposal with our Proposals 1 and 2 and with indepen-
dent moving functional mean (no reconciliation was conducted for this predictor).

We generated samples of trajectories from one dimensional SV, GARCH, Wiener,
Brownian bridge processes, functional FAR(1) processes tuned as in Didericksen
et al. (2012), and various mixtures of them. In the cases of the considered mix-
tures, we treated one of the component as ”good” and the rest as ”bad” - outlying.
In the simulations we considered several locality parameters which differed within
the levels of hierarchy and several moving window lengths. We considered samples
with and without functional magnitude as well as shape outliers (see Kosiorowski,
Mielczarek, Rydlewski, 2018b, 2018c, and references therein). The outliers were
defined with respect to the functional boxplot induced by cGBD, i. e. we replaced
1%, 5%, 10% of curves in the samples by means of arbitrary curves being outside
a band determined by the functional boxplot whiskers, and compared medians and
medians of absolute deviations from the medians (MAD) of integrated forecasts er-
rors in these two situations. Fig. 2 presents simulated hierarchical functional time
series consisting of three functional autoregression models of order 1 (i.e. FAR(1))
with Gaussian kernels and sine–cosine errors design (see Didericksen et al. 2012).
Fig. 3 presents corresponding level forecasts obtained by means of our Proposal
1 and local moving median calculated from 15-obs. windows and locality parame-
ters equal to 0.45. Fig. 4 presents simulated hierarchical time series consisting of
three processes, each being mixtures of two one-dimensional stochastic volatility
processes (SV). Fig. 5 presents corresponding level forecasts obtained by means
of our Proposal 1 and local moving median calculated from 15-obs. window and
locality parameters equal to 0.45. In Figures 2, 4, 5 and 6 colours indicate time se-
quence of the functional objects according to basic R package terrain.colors colour
palette. We indicated the order of appearance of observations using colors palette
starting from yellow and ending in blue. In the appendix we placed a simple script
depending on DepthProc R package illustrating a general idea of the performed
simulations.

In order to check the statistical properties of our proposals we considered em-
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Figure 2: Simulated HFTS consisting of FAR(1) processes

Figure 3: HFTS prediction using our Proposal 1
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Figure 4: Simulated HFTS consisting of two regime FTS processes

Figure 5: HFTS prediction using our Proposal 1
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pirical data set related to an electricity demand in the period from 1 to 31 January
2016 in Australia. The data come from five regions of Australia, denoted with the fol-
lowing symbols: NSW, QLD, SA, TAS, VIC. All the considered data were taken from
Australian Energy Market Operator https://www.aemo.com.au/. Fig. 6 presents 291
predicted electricity demand curves obtained by means of our Proposal 1 using
moving local median to calculate level forecasts, window lengths k = 10 observa-
tions and locality parameter equal to β = 0.2. Fig. 7 presents boxplots for integrated
prediction errors in each region and in the whole Australia. Fig. 8 presents func-
tional boxplot for the prediction of errors for the whole Australia in 2016, where the
predictions were obtained using Proposal 1. Fig. 9 presents functional boxplots for
prediction of errors of electricity demand in NSW, QLD, VIC and TAS in 2016 ob-
tained using Proposal 1. Note that the functional median of prediction errors is close
to 0 for Australia and its regions (see Fig. 8 and 9). The boxplots in Fig. 7 show that
a prediction error is small as well. The volumes of central regions in Fig. 8 and 9
may be treated as the predictor effectiveness measure. We could therefore deduce
that our predictor is median-unbiased (for more details on median-unbiasedness for
functional data see Kosiorowski, Mielczarek and Rydlewski, 2017b, and references
therein).

The performance of our proposals was compared with Shang and Hyndman
(2017) proposal and with the independent moving functional mean predictor (with-
out the reconciliation of forecasts), in terms of the median of absolute deviation
of integrated prediction errors in each region and in the whole Australia. Table 1
summarizes results of this comparison. In general, the obtained results lead us
to the conclusion that our proposals seem to be more robust to functional outliers
than Hyndman and Shang proposal. It is not surprising, as the authors made their
forecasts on the basis of nonrobust generalized least squares method. Admittedly,
Shang and Hyndman (2017) claimed that their proposal performed better in com-
parison with bottom-up approach based on moving medians, but note that they
considered Fraiman and Muniz global depths only. Moreover, thanks to the locality
parameter adjustment, our proposals are more appropriate for detecting the change
of regimes in the HFTS setup. In the cases of data sets without outliers, simple func-
tional moving means, where the reconciliation procedure is not conducted, seem to
outperform all other proposals. In this ”clean data” situation, the performance of our
both proposals and of Shang and Hyndman (2017) proposal is comparable. Our
second proposal is more computationally demanding, however.

Table 1. MAD of integrated forecasts errors

Predictor Australia NSW V IC SA QLD TAS
Proposal 1 1126 470 401 146 224 49
Proposal 2 1311 628 452 147 181 52

H & S Proposal 1275 627 1004 176 230 51
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Figure 6: Predicted electricity demand in Australia in 2016
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Figure 7: Boxplots for integrated forecasts errors for electricity demand in Australia
and its regions in 2016, predictions obtained using Proposal 1
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QLD, VIC and TAS in 2016 obtained using Proposal 1
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4.1. Uncertainty evaluation

Series of functional principal component scores are considered as surrogates of
original functional time series (see Aue et al. (2015), Hyndman and Shang (2009)).
Several authors postulate using the dynamic functional principal components ap-
proach in order to take into account the time changing dependency structure of the
described phenomenon (Aue et al., 2015). Note that such modification may dras-
tically increase computational complexity of the HFTS procedure. In a context of
uncertainty evaluation of our proposals, we suggest considering Vinod and López-
de-Lacalle (2009) maximum entropy bootstrap for time series approach. Boot-
strap methods for FTS were studied by Hörmann and Kokoszka (2012) and Shang
(2018), among others. Similarly, as in Shang and Hyndman (2017) we propose
to use maximum entropy bootstrap methodology to obtain confidence regions and
to conduct statistical inference. The meboot and DepthProc R packages give the
appropriate computational support for these aims.

5. Conclusions

The hierarchical functional time series methodology opens new areas of statistical
as well as economic research. E–economy provides a great deal of HFTS data. Our
HFTS predictor proposal, which is based on local moving functional median, per-
forms surprisingly well in comparison with Shang and Hyndman (2017) proposal.
The lengths of the moving windows used in our proposals relate to the forgetting
parameters α ’s in the classical exponential smoothing. Moreover, we have at our
disposal a ”data resolution parameter” - β , at which we predict the phenomenon.
When using the locality parameter, we can take into account different sensitivity to
details, e.g. the number of different regimes of the considered phenomena. Fur-
ther economic applications of the HFTS methodology may be found, for example,
in Kosiorowski, Mielczarek, Rydlewski (2018b).
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APPENDIX

#Simple R script, example showing how to calculate base forecasts for three hierarchy levels
#using moving functional median implemented within the DepthProc R package.
require(DepthProc)
require(fda.usc)
require(RColorBrewer)
require(zoo)

wrapMBD = function(x){ depthMedian(x, depth params = list(method=”Local”, beta=0.45,
depth params1 = list(method = ”MBD”))) }
#Simple stochastic volatility 1D process simulator
SV ¡- function(n, gamma, fi, sigma, delta) {
epsilon ¡- rnorm(n)
eta ¡- rnorm(2*n, 0, delta)
h ¡- c()
h[1] ¡- rnorm(1)
for (t in 2:(2*n)) {
h[t] ¡- exp(gamma+fi*(h[t-1]-gamma)+sigma*eta[t]) }
Z ¡- sqrt(tail(h,n)) * epsilon
return(Z)}
example ¡- SV(100, 0, 0.2, 0.5, 0.1)
plot(ts(example))
#functional time series simulator
m.data1¡-function(n,a,b) {
M¡-matrix(nrow=n,ncol=120)
for (i in 1:n) M[i,]¡- a*SV(120,0,0.3,0.5,0.1)+b
M }
m.data.out1¡-function(eps,m,n,a,b,c,d){
H¡-rbind(m.data1(m,a,b),m.data1(n,c,d))
ind=sample((m+n),eps)
H1=H[ind,]
H1 }
m ¡- matrix(c(1, 0, 1, 3, 2, 3, 2, 0), nrow = 2, ncol = 4) m[2,]=c(2,2,3,3) m[1,]=c(0,1,1,0)
#below three functional time series
M2A= m.data.out1(150,3000,7000,5,0,1,25)
M2B= m.data.out1(150,3000,7000,2,0,1,15)
M2C= m.data.out1(150,3000,7000,3,0,1,10)
matplot(t(M2A),type=”l”,col=topo.colors(151),xlab=”time”, main=”Functional time series with
two regimes”)
matplot(t(M2B),type=”l”,col=topo.colors(151),xlab=”time”, main=”FTS with two regimes”)
matplot(t(M2C),type=”l”,col=topo.colors(151), xlab=”time”, main=”FTS with two regimes”)
#below moving local medians applied to the above series, window lengths = 15 obs.,
#locality parameters betas = 0.45
result4A = rollapply(t(M2A),width = 15, wrapMBD, by.column = FALSE)
result4B = rollapply(t(M2B),width = 15,wrapMBD, by.column = FALSE)
result4C = rollapply(t(M2C),width = 15, wrapMBD, by.column = FALSE)
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matplot(result4A,type=”l”,col=topo.colors(87), xlab=”time”,main=”local 15-obs moving func-
tional median, beta=0.45”)
matplot(result4B,type=”l”,col=topo.colors(87), xlab=”time”,main=”local 15-obs moving func-
tional median, beta=0.45”)
matplot(result4C,type=”l”,col=topo.colors(87), xlab=”time”,main=”local 15-obs moving func-
tional median,
beta=0.45”)

#basic function for calculating β treshold− trimmed β− local MBD functional mean

beta tresh mean¡-function(x,beta tresh,beta)
depths= depth(x, depth params = list(method=”Local”, beta=beta, depth params1 = list(method
= ”MBD”)))
ind=which(depthsbetatresh)
wyn = f unc.mean(x[ind, ])
wyn$data



STATISTICS IN TRANSITION new series, June 2018 351

STATISTICS IN TRANSITION new series, June 2018
Vol. 19, No. 2, pp. 351–357, DOI 10.21307/stattrans-2018-020

ON A SURPRISING RESULT OF TWO-CANDIDATE
ELECTION FORECAST BASED

ON THE FIRST LEADERSHIP TIME

Czeslaw Stępniak1

ABSTRACT

This is a simple but provocative note. Consider an election with two candidates and
suppose that candidate A was the leader until counting n votes. How to use this
information in predicting the final results of the election? According to the common
belief the final number of votes for the leader should be a strictly increasing function
of n. Assuming the votes are counted in random order we derive the Maximum
Likelihood predictor of the final number of votes for the future winner and loser based
on the first leadership time. It appears that this time has little effect on the predicting.

Key words: two-candidate election, winner, leader, leadership time, predicting num-
ber of votes for winner, Maximum Likelihood.

1 Introduction

Two-candidate election such as the last round of presidential election always at-
tracts a great attention. Suppose that candidate A was the leader until counting n
votes. We write T = n for the first leadership time T . The problem is how to use this
information in predicting the final results of the election. According to the common
belief the final number of votes for the leader should be a strictly increasing function
of n.

Assume the votes are counted in random order. Combinatorial tools for the
process of counting of votes in this situation may be found in many books and
articles (Brémaud (1994), Feller (1968), Goulden and Serrano (2003), Lengyel
(2011), Renault (2007) and Takacs (1997), among others) under the name of the
ballot problem. The results are usually formulated in probabilistic terms.

Statistical inference is often based on the notion of likelihood (cf. Azzalini (1996))
and the Maximum Likelihood principle plays the fundamental role in the process. In
the present note we derive the Maximum Likelihood predictor of the final number of
votes for the future winner.

Presentation of this note is accessible not only for specialists.

1Faculty of Mathematics and Natural Sciences, University of Rzeszów.
E-mail: stepniak@umcs.lublin.pl.
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2 Initial formalization and predicting the future win-
ner

Consider election with two candidates A and B. In this note the number of all votes
is known and is denoted by N. So that all potential results of the election were
conclusive we assume that N is odd and each vote indicates exactly one candi-
date. The votes are counted in random order, that is all permutations are equally
probable.

The results of the election are usually announced by the winner (W ) and by the
final number of votes for W . For some technical reasons, instead of this number, it
will be convenient to handle the final number of votes for loser. Denote the last num-
ber by M. In this situation the pair (W,M), where W ∈ {A,B} and M ∈ {0,1, ..., N−1

2 }
plays the role of unknown parameter.

One can consider two problems: predicting W under assumption that M is the
nuisance parameter, and predicting M. The both predictors are based on the ob-
servation (L,T ), where L ∈ {A,B} is the first leader and T is the first leadership
time.

As regards the first problem we may choose between two predictors: W = L and
W 6= L. Intuitively, the first one is better. We shall formally confirm this intuition. To
this aim we only need to observe that a candidate will be the first leader if and only
if the first vote is for him.

In consequence

PM(W = L) = PM(L =W ) =
final number of votes for winner

number of all votes
=

N−M
N

>
1
2

while

PM(W 6= L) = PM(L 6=W ) =
final number of votes for loser

number of all votes
=

M
N

<
1
2

for all M ≤ N−1
2 . Therefore, the predictor W = L is better.

For predicting the final number of votes for winner and loser we shall use distri-
bution PM(T = n) of the first leadership time T .

3 Towards distribution of the first leadership time

Some results on this distribution were derived in Stępniak (2015) under silent as-
sumption that M > 0. We shall prove the following

Theorem 1 For all M = 0,1, ..., N−1
2 distribution PM(T = n) of the first leadership time

T is given by
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PM(T = n) =


2
n

(
n

n+1
2

)(
N−n−1
M− n+1

2

)(
N
M
)−1 ,

if n is a positive odd integer
such that n+1

2 ≤M,
N−2M

N , if n = N,
0, otherwise.

(1)

Proof. Let us consider three cases:

I. M = 0 (n arbitrary),

II. n = N (M arbitrary),

III. M > 0 and n < N.

We mention that the classical ballot problem refers only to the probability PM(T =

N,L = W ). In our notation the well-known Ballot Theorem (see Brémaud(1994),
Feller (1968), Goulden and Serrano (2003), Lengyel (2011), Renault (2007) and
Takacs (1997)) may be expressed in the form

PM(T = N,L =W ) =
(N−M)−M

N
=

N−2M
N

for all M. (2)

In the case II PM(T = N,L 6=W ) = 0 and, therefore,

PM(T = N) =
N−2M

N
for all M = 0,1, ...,

N−1
2

.

The case I is trivial and it leads to

P0(T = n) =
{

1, if n = N,
0, otherwise.

(3)

In this situation the set of all positive integers n such that n+1
2 ≤ M is empty and

hence the formula (3) coincides with (1).

Now let us consider the case III.

Any record of the counting of votes may be represented as a lattice path from the
origin to (N,N−2M) with steps of type (1,1) and (1,−1) indicating that a successive
voice is for the future winner or loser. In particular, the first leader is the future
winner with the leadership time n, if and only if the path is touching the x-axis for
x = n+ 1 and lying above the axis for all positive integers x ≤ n. Similarly, the first
leader is the future loser with the leadership time n, if the corresponding segment
of the path is lying below the x-axis. In consequence, PM(T = n,L = W ) is positive
only for n odd and less than 2M. Moreover

PM(T = n,L 6=W ) = PM(T = n,L =W ). (4)

This fact is known as the Reflection Principle (see, Brémaud(1994) or Feller (1968),
for instance). Thus it remains to find PM(T = n,L 6= W ) for n = 1,3, ...,2M− 1. The
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desired probability may be expressed in the form

PM(T = n,L 6=W ) = P(A)P(B/A)P(C/A∩B),

where

• A is the event that n+1
2 among the first n votes will be for loser (and n−1

2 for
winner),

• B is the event that (n+1)-th vote will be for winner,

• C is the event that during counting the first n votes the loser will be always the
leader.

By the well-known formula for the hypergeometric distribution we get

P(A) =

(
M
n+1

2

)(
N−M
n−1

2

)
(N

n )
.

Moreover

P(B/A) =
N−M− n−1

2
N−n

.

On the other hand, by the Ballot Theorem (2) for N = n and M = n−1
2

P(C/A∩B) = P(C/A) =
n− (n−1)

n
=

1
n

.

In consequence for n = 1,3, ...,2M−1

PM(T = n,L 6=W ) =
1
n

N−M− n−1
2

N−n

(
M
n+1

2

)(
N−M
n−1

2

)
(N

n )
.

By some elementary operations on the binomial coefficients the last one reduces
to

PM(T = n,L 6=W ) =
1
n

(
n

n+1
2

)(
N−n−1
M− n+1

2

)(N
M
)−1 (5)

for all M > 0 and for all n = 1,3, ...,2M−1.

Finally, by collecting the formulae (3), (4) and (5) we get the desired result (1).

In the next section we will predict the final number M of votes for loser by the
Maximum Likelihood.
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4 Predicting the final number of votes for winner and
loser

Let us recall that under given leadership time n the Likelihood Function is a function
of the unknown parameter M defined by the formula

Ln(M) = PM(T = n)

and the Maximum Likelihood predictor M̂(n) of M is defined by the argument of Ln

realizing its maximum. This may be expressed more precisely in the form

M̂(n) = arg max
M∈{0,1,...,N−1

2 }
Ln(M).

We shall prove

Theorem 2 The Maximum Likelihood predictor M̂(n) of the final number of votes
for loser based on the leadership time n is given by

M̂(n) =
{

0, if n = N,
N−1

2 , if n < N

while the ML predictor of the final number of votes for winner is given by

N̂−M(n) =
{

N, if n = N,
N+1

2 , if n < N.

Proof. For n = N the probability PM attains its maximum for M = 0 and hence
M̂(N) = 0.

For all odd positive integers n < N the Likelihood Function is defined by the
formula

Ln(M) =

 2
n

(
n

n+1
2

)(
N−n−1
M− n+1

2

)(
N
M
)−1 , for M ∈ { n+1

2 , ..., N−1
2 },

0, otherwise

and the ML predictor M̂(n) of M is given by

M̂(n) = arg max
M∈{ n+1

2 ,...,N−1
2 }

Ln(M).

We will show that in this case

arg max
M∈{ n+1

2 ,...,N−1
2 }

Ln(M) =
N−1

2
.
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To this aim we only need to verify that

Ln(M+1)
Ln(M)

> 1 (6)

for all integers M belonging to the interval
[ n+1

2 , N−1
2

)
.

Indeed, for such M

Ln(M+1)
Ln(M)

=
(M+1)(N−M− k)
(M− k+1)(N−M)

, where k =
n+1

2
.

Thus the condition
Ln(M+1)
Ln(M)

> 1

may be presented in the form

(M+1)(N−M− k)> (M− k+1)(N−M).

Since the last inequality holds for all integers M ∈
[ n+1

2 , N−1
2

)
, the desired condition

(6) was verified.

Reassuming, the ML predictor of the final number of votes for loser based on
the leadership time n is given by

M̂(n) =
{

0, if n = N,
N−1

2 , if n < N.

Finally, by the well-known fact that the results of the ML estimation do not depend
on the parametrization (see, for instance, Schervish (1995, Th. 5.28, p. 308)) we
get the predictor of the final number of votes for winner in the form

N̂−M(n) =
{

N, if n = N,
N+1

2 , if n < N.

Therefore, the ML predictor of the final number of votes for winner does not
depend on the first leadership time n unless n = N. This leads to the following
conclusion.

5 Conclusion

The first leadership time is informative for the final results of the election only in the
trivial case.
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THE WELLBEING EFFECT  
OF COMMUNITY DEVELOPMENT.  

SOME MEASUREMENT AND MODELING ISSUES1      

Włodzimierz Okrasa2, Dominik Rozkrut3 

ABSTRACT 

The two interconnected methodological tasks – measurement and modeling – 
become especially challenging in the context of exploration of the interaction 
between the local community development and individual wellbeing. In this paper, 
the preliminary results illustrate usefulness of an analytical framework aimed to 
assess an impact of the local development on individual wellbeing through 
multilevel modeling, accounting for spatial effects is. To this aim, a dual 
measurement system is employed with data from two independent sources: (i) the 
Local Data Bank (LDB) for calculating a multidimensional index of local deprivation 
(MILD), and to capture variations in geographically embedded administrative units, 
communes (the country's finest division), and (ii) the Time Use Survey data to 
construct the U-index ('unpleasant'), considered as a measure of individual 
wellbeing. Since one of the implications of the main hypothesis on the interaction 
between community development and individual wellbeing was the importance of 
'place' and 'space' (effect of neighborhood and proximity), a special emphasize 
has been put on spatial effects, i.e. geographic clusters and spatial associations 
(autocorrelation, dependence The evidence that place and space matter for this 
relationship provides support for validity of both multilevel and spatial approaches 
(ideally, combined) to this type of problems. 

I. Introduction  

Background and problem  

Although the view that place and space matter for both the community and 
individual wellbeing is widely shared among the analysts and experts interested in 
their improvement (separately or jointly), a little effort has been done so far to 
determine what type of functional form describes the relationships or mutual 
influence between the two kinds of wellbeing, including their spatial patterns and 
factors of dynamics. This research was motivated as much by the knowledge gap 
in the literature concerning this methodological issue, including the ways of 

                                                           
1 This article is based on the presentation "The Time Use Data-based Measures of the Wellbeing 

Effect of Community Development" at the 2018 Federal Committee on Statistical Methodology 
(FCSM) Research Conference, Washington DC, March 7-9, 2018. 

2 Cardinal Stefan Wyszyński University in Warsaw and Statistics Poland. 
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parameterization of these relationships, as also by the policy practitioners' 
demand (addressed to statisticians) for tooling devices to better allocate the scare 
resources to local communities while accounting for individual wellbeing. 
It embraces exploration of the relationships between subjective and objective 
measures of wellbeing at micro- (individual) and macro- (community) level while 
accounting for their cross-level operating factors in the presence of spatial effects, 
including quality of the place and spatial dependency. 

Since the relationship between community wellbeing (CWB) and individual 
wellbeing (IWB) is of particular interest here, the three kinds of intertwined issues 
must be addressed concurrently: measurement – data – models. The 
measurement problem is complicated by the fact that, as noted by Gibson (2016), 
there is no theoretical justification for maximizing either happiness or life 
satisfaction, because neither corresponds to utility (p. 439). ‘Happiness is not all 
that matters, but first of all, it does matter (…), and second, it can often provide 
useful evidence on whether or not we are achieving our objectives in general’ 
(Sen, 2008). However, an alternative approach, Sen’s capability approach, which 
stresses priority of functionings and capabilities instead of resources or utility is 
becoming more useful also for policy purposes (Alkire, 2015): "The need for 
identification and valuation of the important functionings cannot be avoided by 
looking at something else, such as happiness, desire fulfillment, opulence, or 
command over primary goods’ (Sen 1985 – in Alkire, op cit., p.1).Therefore, 
different information sources, including subjective data, can provide better 
insights on values and perceptions of people.  

Within such a type of analytical framework, an ideal strategy seems to be the 
multilevel spatial modeling. However, some restrictions related to availability of 
data – which are here ad hoc combined from different sources instead to be 
generated by design to have the appropriate nested (hierarchical) structure - the 
cross-level modeling methodology will be illustrated below in a simplified version. 
Both types of possible strategies are explored and will be demonstrated as 
complementary to each other, 'interactive' and 'structural'. The former being 
focused on assessing the effect of interaction in searching for sources of 
variability at both individual and community levels. The latter is aimed at 
identifying causal mediator in searching for sources of influence (direct and 
indirect impact).  

Analyses conducted in this paper use the multi-source database constructed 
through 'integrating' data – i.e. matching them on the ground of commune (gmina) 
– from three different sources: the Local Data Bank (public data file), the Time 
Use Survey (TUS, carried out by the Central Statistical Office in 2013), and Social 
Diagnosis (representative survey conducted this same year by an independent 
academic consortium). The measures derived from these data sets made it 
possible to explore spatial patterns of associations, autocorrelations and the 
dependency between measures of local deprivation (gmina-level) and the TUS-
based indicators of wellbeing (the so-called index of 'unpleasant state', U-index). 
Although the results are preliminary and hardly robust - given incidental rather 
than natural hierarchically structured spatially distributed data, used in this study - 
they firmly support the adopted approach, i.e. employing spatially integrated 
social research framework for both analytical and policy purposes as a 'good 
practice' (methodologically) whenever place and space matter.  
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The paper is structured as follows. In the next section presented are some 
conceptual and measurement issues of key variables. It is followed by discussion 
(in section 3) of cross-level interrelation models, along with empirical results of 
their application. The explicitly included spatial aspects and spatial analysis of 
geo-referenced data, along with preliminary results are discussed in section 4. 
The concluding section closes up the paper, with some suggestions on 
prospective directions of further investigations. 

II. The conceptualization, measurement and modeling of wellbeing  

Conceptualization, operationalization and the measurement of wellbeing 
typically start with questions what?, how? and why? Consequently, the three 
types of issues – measurement, data and modeling- need to be considered 
concomitantly. Such an approach is adopted in the form of a perspective of 
spatially integrated social research within a multilevel spatial analytical framework 
capable of guiding methodological choices for selecting and integrating the 
needed data from different sources 

While focusing on functionings as things that people actually value, one may 
consider using data from time use survey in which respondent is asked to report 
what s/he did in the previous day - Day Reconstruction Method (Kahneman et al., 
2004) 4. Respondent makes also an assessment of the time spent on performing 
particular activity as pleasant or unpleasant (the so-called 'time of unpleasant 
state', Krueger et al., 2009). This approach is the key for constructing individual 
wellbeing measure here. It converges with conceptualizations of subjective 
wellbeing that take into account both positive and negative affectivity (Bradburn 
1969) associated with the performed activity, and is now common in empirical 
research following international recommendations for measuring subjective 
wellbeing in public statistics (OECD 2013; NRS 2013; Kalton, Mackie, Okrasa 
2015; Maggino 2017).  

The key importance of community wellbeing in both research and policy 
considerations of the individual wellbeing determinants, especially in the 
development context (with clear distinction between local and regional 
development, e.g. Capello, 2009) is due to several reasons.  Many of them have 
been recognized and discussed thoroughly in the literature, either as a part of the 
process or of outcome of such development, challenging the traditional use of  
GDP and other economic indicators as measures of social progress (Stiglitz et al., 
2010, OECD, 2013, Kim and Ludwigs, 2017; Lee et al., 2015). Methods of 
community wellbeing assessment, including subjective aspects of wellbeing, are 
becoming standard tools for policy purposes in several countries (notably in 
Australia, Canada, USA and UK). They all have one feature in common, namely, 
they are based on self-reported feeling about selected aspects of wellbeing in 
connection with community, and community itself is among the components of the 
wellbeing measures.  

One special feature of local community that affects its wellbeing in the 
development context is community cohesion. It is interpreted here in a broader 

                                                           
4 "Functionings is a broad term used to refer to the activities and situations that people spontaneously 

recognize to be important" (Alkire, op cit, p. 3-4). 
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sense than the latter – hence termed spatial cohesion - due to embracing all other 
types of cohesion: social, economic or territorial cohesion, which are typically 
considered among the goals of the European Union's development policies and 
studies (focused often on so-called β-convergence and σ-convergence, 
respectively). Usually, it is meant consistently with classical interpretation of the 
term, e.g. following Forrest's and Kearns' (2001) specification of  the component 
topic areas: (I) common values and a civic culture, (ii) social order and social 
control, (iii) social solidarity and reduction in wealth disparities, (iv)  social 
networks and social capital, and (vi) place attachment and identity (p. 2129). The 
last one is of special interest here due to focusing on „…creating relationships 
between individuals, about empowering the individual as well as local 
communities" (Kearn and Forrest, 2000), and is assumed here as being covered 
by the measures of subjective community wellbeing. This aspect will be briefly 
explored with data from Social Diagnosis, a biannual survey of attitude and 
wellbeing on a large nation-wide representative sample.   

As regards modeling of multilevel relationships – between individual and 
community wellbeing – two approaches are employed here (Okrasa, 2017). One 
is a between level interaction-focused approach concentrated on decomposition 
of variance into within group (differences among individuals in community, level –
1) and between groups (communes, level-2), reflecting differences across 
communities. To this aim, models for hierarchically structured data seem 
appropriate, which however are not free of a risk of ‘ecological fallacy’ (Goldstein, 
2003(2010); Subramanian, 2009). In a parallel way, there is a 'causal' type of 
modeling checked as well. Specifically, we employ structural modeling of (causal) 
mediation mechanism, which consists of decomposition of total effect of the 
independent (‘treatment’) variable into the natural direct and indirect effects 
(Hong, 2015). Within this approach, community wellbeing can be hypothesized as 
a mediating factor between an objective (material) status of a person and her 
subjective wellbeing.  

It was also hypothesized that in addition to the characteristics of a locality 
(place/commune) itself, spatial relations, proximity (distance) have impact not only 
on both the level of relevant measures – i.e., on both individual and community 
wellbeing – but also on the character of the relationship between them. 
Consequently, spatial (dependence) analysis is explicitly applied too. However, 
given the nature of the problem involving estimation of the impact of space on 
relation between variables rather than of their parameters we do not employ  
spatial statistics in version of model-based strategies, i.e. SAE/Small Area 
Estimation (Rao and Molina, 2015). Given also character of available data, 
a spatial econometric version of data-exploration was applied using data-driven 
strategies for analyzing patterns in geo-referenced data. Specifically, GeoDa 
(Spatial Data Analysis for non-GIS data, Anselin, 1995, 2005), and ESDA 
(Exploratory Spatial Data Analysis, Fischer and Getis, 2009) were used to this 
aim. 

Data and measures of wellbeing 

In order to analyze individual (subjective) wellbeing and quality of the living 
environment, community wellbeing, a multi-source analytical  database was 
constructed which contains data from Time Use Survey 2013 (TUS) and the Local 
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Data Bank (LDB), and data from Social Diagnosis 2013 (SD). The procedure for 
integrating the data sets in the multisource analytical database (MADb) was 
based on the geographical information, i.e. X,Y coordinates of the locations 
(gminas) from which the respondents were drawn to the respective surveys (TUS 
and Social Diagnosis). Initially, it was arbitrary decided that 20 persons is the 
minimum number of respondents needed to be identified in a gmina to have it 
included to the MADb5. But for some calculations 10 persons were also used. 

 

TUS_2013

N=23 283 /

Diag. Społ.

12 352 Hhlds

/ 26 308 os. (16+) 

BDL_2014

2478

(gmin)

Level 1 : 23 285  persons,   

Level 2: (a) 386 gminas (NUTS5 units) w/ 20+ TUS respondents

(b) 1036 gminas w/10+ TUS respondents

L1
L2

Communes/gminas:

(a) ≥20 TUS respondents

(b) ≥10 TUS respondents

 

Figure 1.  Multi-source analytical database: BDL & TUS (& DS). The NUTS5 unit’s 
(commune's/gmina’s) territorial KODTERYT was used as key merging 
code (X, Y– coordinates) 

Community wellbeing – Multidimensional Index of Local Deprivation (MILD)  

An objective measure of community wellbeing was applied to calculate the 
level of local deprivation of each of 2478 communes (gminas) using data from 
public file, Local Data Bank. The index – Multidimensional Index of Local 
Deprivation (MILD) – is composed of 11 domain-specific scales constructed by 
confirmatory Factor Analysis (each domain was pre-defined in a single-factor 
version of the FA, Okrasa 2013b6). The following domains of deprivation are 

                                                           
5 The 20 persons cluster drops into interval 15-30 persons which is most often used in 

multilevel analysis under the rule of thumb, a rationale for which is that it satisfies the 
requirement of sufficient sparseness in defining a 'synthetic neighborhood' (Clarke and 
Wheaton 2007).     

6 The selection procedure consisted of:  selection of domains – selection of indicators within each of 
the areas on the basis of factor analysis (principal component analysis) – standardization in the 
indicators – aggregation in the index for a given area – normalization of indicators for each area – 
composite aggregation in the global index (Okrasa 2013). 
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included: ecology, finance, economy, infrastructure, municipal utilities, culture, 
housing, social welfare, labor market, education, and health. Since Cronbach's 
alpha exceeded. 75, they were combined into as synthetic measure, MILD. As 
suggested by the term 'deprivation' all the component scales and composed of 
them MILD are of negative type measure (destimulants): the higher the index 
(scale) value the worse the community situation with respect to a given domain or 
to the total local deprivation (MILD). The values of  MILD are strongly place 
dependent, decreasing sharply as moving from rural to urban areas, and along 
with the growing size of town – see Figure 2 a and b.   

Figure 2. Multidimensional Index of Local Deprivation (MILD) by 

 

(a) size of place of living                    (b) component scales over years 2004-2012  

 
 
 
 
  
 
 
 
 
 
 
 
 
 
 

 
There was also a subjective community well being measure calculated using 

data from Social Diagnosis – on the basis of answers to questions about 
satisfaction from selected aspects of quality of life in a community: (1) locality 
(place), housing, and security (LHS); (2 social relations in family and in 
neighborhood, life achievements, and self-esteem (FSE); (3) life perspective while 
living ‘in here’, financial situation, and work possibilities (LPH). While regressed 
on the local deprivation (MILD), all these measures showed to negatively 
associated. It should be noted, however, that some items expressing community 
subjective wellbeing, such as 'sense of belongingness' or 'place attachment and 
identity" and so on, are also present among the items constituting scales of 
community cohesion. 

Individual (subjective) wellbeing – the Time Use Survey data-based U-index   

Following various definitions of individual (subjective) wellbeing there is 
variety of well advanced measures proposed in the literature. Nevertheless, there 
are still some doubts raised by psychometricians concerning validity of particular 
scales, while some statisticians and econometricians express reservations toward 
employing strong analytical tools to ordinal-level measurement data, as most of 
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the scales is built up of the Likert-type items. Therefore, an alternative approach 
consisting of use of the time use survey data (usually collected with the day 
reconstruction method – Kahneman et al., op cit. 2004) met recently with growing 
interest. Especially, the TUS-based methodology developed (notably, due to 
Krueger et al., 2008) which combines objective information about the time 
respondent spent on performing activities with subjective rating of feeling 
associated with this performance. In the TUS conducted by the Central Statistical 
Office in 2013 three-point scale was used: 'positive' – 'neutral' – 'negative'. 
In accordance with the above methodology, U-index is defined as follows:: 

   Ui  = Σj Iijhij / Σjhij     (where I = -1 or 0 or +1)  

and    U = Σi(Σj Iijhij / Σjhij ) / N  for N-persons (in population)   

In calculation, it shown that the share of time spent for performing negatively 
rated activities was relatively low for most of the performed activities, hence to the 
U-index included were also 'neutral' cases – so, its interpretation should be rather 
as reflecting 'non-positive' than 'unpleasant state'.     

At a glance, the relationship between objective CWB,  as measured by MILD, 
and the U-index for all activities (excluding sleep) can be characterized by the 
relative odds of the U-index for MILD-quintiles of communes (gminas) – see 
Fig. 3, where the highest quintile, i.e. the 'most deprived' communes is set for the 
reference category. It suggests a tendency to generally bigger chance of being 
discontent due to spending relatively more time in 'non-positive state' among 
people living, on average, in more affluent communes (though the tendency is not 
strictly linear). 

 

Figure 3.  Odds of experiencing 'non-positive' feeling associated with activities, 
U - index, depending on 

(a) the level of local deprivation/MILD          (b) the size of the living place 
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The negative pattern of tendencies – i.e. residents in more affluent urban 
environment (commune) are on average less satisfied with their life (in term of the 
U-index) than in less developed rural areas and small towns – should be 
interpreted with some caution due to the fact that they may perform different type 
of activities in different environments. For instance, shares of highly disliked 
activities associated with work or learning or house maintenance may be higher 
among city and big town dwellers, while shares of such activities like leisure time 
or social life or physical exercise or hobby and other performed on non-obligatory 
basis can be proportionally bigger among residents in small towns and rural 
areas. Validity of such observations can be supported indirectly by looking at 
some personal level characteristics which also are strongly related to the kind and 
size of the living place like income and education – Fig. 4, below.   

 
Figure 4. Odds of experiencing 'non-positive' feeling associated with performed 

activities, U - index, depending on  

(a) level of household pc income                      (b) level of education        

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The emerging pattern of  tendencies presented by the above figures suggests 
that behind a given level of local deprivation (i.e. MILD score, used here as the 
key indicator of CWB) operates a pretty consistent configuration of place-related 
factors: Urban (rather big) areas populated by on average better educated and 
wealthier people, who also seem to function in qualitatively different way 
(e.g. they are more likely to engage in activities which are generally less valued 
than those performed by dwellers in apparently less displeased rural areas and 
small town). 

Community deprivation, community cohesion, and individual wellbeing. 
The following questions were asked in the analysis prior to multilevel 
modeling:    

• Does the level of community deprivation /MILD affect the measures of 
community cohesion?  
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• Does the level of community cohesion influence the level of individual 
wellbeing (U-index)? 

• How community deprivation and community cohesion affect jointly the 
individual wellbeing (U-index)?  

 Community cohesion – meant here synonymously with the Community 
Subjective Wellbeing (CSWB) – entails 3 scales calculated from the Social 
Diagnosis data and concerning satisfaction from three aspects of life in the 
community: 1. Locality, housing, security (LHS); (2. Social relations in family and 
in neighborhood, and life achievements (FSE) 3. Life perspective while living 
where s/he lives (‘in here’, LPH). Regressed on the local deprivation (MILD) all 
these measures remain with it, as it could be expected, in negative relation – 
Table1.  

 

Table 1.  Influence of the community level of (overall) deprivation (MILD_2014) 
on the measures of subjective of community wellbeing/CSWB   

Predictor: 
1. Locality 
etc/LHS 

2. Social 
relations /FSE 

3. Life 
perspective  

‘here’ 

4. IWB/U-
index 

(all activities) 

Community 
deprivation/MILD_2014 

- 0.027** -0.120
 **

 -0.237
**

 -0.034
**

 

**) significant at p < 0.01  

 

The relationships between the three datasets-based measures – CWB  
(in terms of local deprivation/MILD-2014), community cohesion (SD-based scales, 
used in Table 1 as measure of subjective-CWB), and individual wellbeing  
(U-index) were preliminary explored to determine the influence of the former two 
variables on the latter – results are in Table 2.  

 
Each of the three measures of community cohesion (or subjective community 

wellbeing/S-CWB) – that was negatively associated with local deprivation  
(MILD-2014, in Table 2) – remains in also inverse relations with individual 
wellbeing. The U-index is consistently negatively affected by locality (place), 
housing, and security (LHS); by social relations in family and in neighborhood, 
(FSE), and by life perspective (LPH). However, the interaction effect, i.e. joint 
influence of such combination like, say, high gmina's deprivation and high level of 
satisfaction from own locality (gmina) is generally positive: higher (lower) 
satisfaction from their localities of the residents in better-off (worse-off) gminas 
reinforces the impact of the latter on lowering (increasing) the level of their 
displeasure (U-index).  
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Table 2.  Regression of individual well-being – U-index – on community 
deprivation (MILD) and community cohesion (CSW-B) 

Model 
St. 

coeff 
t Signific 

 
  

Predictors: Beta   df F Signif. 

I       

(Constant)  -1,530 ,126 

3 
 

22368 
16,180 

,000 

Comm. deprivation/MILD_2014 ,188 3,239 ,001  

FSE – Soc. relations, family and 
neighborhood, self-esteem 

-,170 -3,653 ,000  

Interaction MILD*FSE ,304 3,893 ,000  

II       

(Constant)  ,379 ,704 

3 
 

22368 
15,972 

,000 

Comm. deprivation/MILD_2014 ,105 1,787 ,074  

PPH – Life perspective – ‘in here’ -,118 -2,694 ,007  

Interaction MILD*PPH ,181 2,444 ,015  

III       

(Constant)  -1,530 ,126 

3 
 

22368 
13,607 

,000 

Comm. deprivation/MILD_2014 ,188 3,239 ,001  

LHS – Locality, housing, security -,170 -3,653 ,000  

Interaction MILD*LHS ,304 3,893 ,000  

III.  The cross-level interplay – issues in modeling 

Effect of interaction 

Multilevel modeling of individual wellbeing and community wellbeing starts 
with a basic structure of a model to deal with cross-level relationships, which 
should have the following elements and features (following Goldstein 2003, 
Subramanian 2010, and Okrasa 2017): 

 yij; wellbeing of i individual in j commune/gmina;  

 x1ij  predictor of individual (level-1) – such as: income, age, education, or 
satisfaction (e.g. from life in a community, family life, etc. 

 predictor of level-2/(macro-level) – CWB, here Multidimensional Index of 
Local Deprivation for j-gmina; MILDj  
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Model for level-1:   yij  = β0j + βl x1ij + e0ij                                                                          (1) 

where: β0j – refers to x0ij  average score on a wellbeing scale in j-th commune 
/gmina; (e.g. ‘less affluent'  or ‘more disadvantageous', etc.’, < Me, x0ij =1);  

βl – average differentiation of individual wellbeing associated with individual 
material status,  (x1ij), across  all gminas; 

e0ij – residual term for the level-1.  

Treating β0j as random variable: (β0j – β0) + u 0j,   where u0j is locally-specific 
associated with average  value of β0) for a specified group (e.g. less satisfied from 
a community)  and grouping  them into fixed and random part components  
(e0ij + u0j )  we obtain  variance component model, or  random-intercept model:    

  yij  = β0 + βl x1ij + (e0ij + u0j )                                                (2) 

Modeling fixed-effect we include a level-2 predictor – MILD – (index of local 
deprivation) along with individual characteristics, including interaction term 
between the two levels characteristics  

 β0j = β0 + α1MILD1j + u0j                                              (3) 

      β1j = β1 + α2MILD1j + u1j                                             (4)  

where MILD1j –  context variable, predictor of differences between gminas.  

Two-level model can be specified as below (following Subramanian, op cit., 
p. 520-21): 

yij  = β0 + βl x1ij + α1w1j + α2w1j x1ij + (u0j  + u1j x1ij + e1ij x1ij  + e2ij  x2ij )      (5) 

where w1j  is a 2-level predictor, i.e. the index of local deprivation, MILD1j. 

According to the above structure, α1 provides an estimate of the (marginal) 
change in individual wellbeing (U-index) for a unit change in the level of gmina's 
deprivation for those below the median, or not in the 'unpleasant state'; while α2 
estimates the extent to which the marginal change in subjective wellbeing  
(U-index) for unit change in the gmina deprivation index (MILD) differs from that 
for those in the 'unpleasant state'.  

Formally, such a specification of cross-level (between individual and 
community/gmina measures of wellbeing) modification or interaction effect should 
ensure robust estimation (e.g. Subramanian, op cit., p. 521, Hox et al., 2018). 
However, as already noted, the available data related limitations impose some 
restriction on the exactness of the employed calculation strategy. Therefore, the 
following  model was calculated using data from Time Use Survey: 

IWB(U-index)ij = β00 + β10educationij  + β20ageij + α1MILDj  + α11educationij * MILDj 

                       +  α21ageij * MILDj + u1jeducationij  + u2jage + u0j + eij                                 (6) 

Preliminary results are in Table 3. 
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Table 3.  Multilevel regression of individual wellbeing – U-index for all activities – 
on individual and commune/gmina level variables with cross-level 
interaction terms. 

 Model: 
    predictors 

Weekdays Weekend /holiday 

Beta t Beta t 

Constant (.726) 
**

 (6.316) (.333) 
**

 (3.515) 

Education -.085 -1.136 -.089 -1.209 

Age -.299
**

 -4.015 -.008 -.105 

Multidimensional   
Index of Local 
Deprivation 
/MILD_2014 

-.098
*

 -2.556 -.046 -1.209 

Education * 
MILD_2014 .142

*

 1.900 .145
*

 1.97 

Age * MILD_2014 .115 1.497 -.029 -.383 

Urban (rural omitted) .011 1.280 .016
*

 1.966 

 F (6.22698) = 174.860
**

 F (6.24068) = 23.515
**

 

 

Since the additional but crucially important focus was on spatial aspects of the 
relationships (interactions), the working strategy shown to be in practice spatial 
regression with both level variables included in the respective equations, as an 
explicitly interaction term. Neglecting for the time being this path of analysis, the 
next modeling issue concerns searching for a causal mediating mechanism. 

IV. Bringing space into the question  

Estimation of the spatial regression model parameters   (notation for individual 
observation i):  

         yi = ρ ∑n
j=1 Wij yj  + ∑k

r=1  Xir βr + εi       (7)  

where: yi – the dependent variable for observation i;  Xir  k – explanatory variables, 

r = 1, …, k with associated coefficient  βr; εi is the disturbance term; ρ is parameter 
of the strength of the average association between the dependent variable values 
for region/observations and the average of them for their neighbors (e.g. LeSage 
and Pace, 2010, p. 357)  

The above specification of the spatial regression model assumes that εi is 
meant as the spatially lagged term – versus spatial error formulation – for the 
dependent variable (which is correlated with the dependent variable), that is: 

 εi  = ρ Wi.yi  + Xi. β  + ϵi         (8) 

These two types of models allow us to examine the impact that one 
observation has on other, proximate observations. The results in Table 4, below,  
are for the spatial error model.  
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Table 4.  Spatial dependence/spatial regression of SW-B (U-index) on 
commune’s attributes and compositional characteristics 

DIAGNOSTICS FOR HETEROSKEDASTICITY -- RANDOM COEFFICIENTS

TEST                                                DF VALUE PROB

Breusch-Pagan test                       7           54.7759         0.00000

DIAGNOSTICS FOR SPATIAL DEPENDENCE -- SPATIAL ERROR DEPENDENCE

TEST                                               DF VALUE PROB

Likelihood Ratio Test                    1        36.1346     0.00000

SPATIAL ERROR MODEL - MAXIMUM LIKELIHOOD ESTIMATION 

Dependent Variable  : U –index Number of Observations:  937; Mean dep var :    0.361195  Number of Variables   :    8; 

Degrees of Freedom    :  929

Lag coeff. (Lambda) :    0.431769 ; R-squared    :  0.123681

Variable Coefficient Std.Error z-value Probability

CONSTANT 0.523731 0.042847 12.2233 0.00000

MONTHLY INCOME -0.002730 0.001960 -1.40359 0.16044

AGE_avg (%) -0.014313 0.005653 -2.53177 0.01135 *

EDUCATION_HS+ (%)    0.000381 0.000222 1.71849 0.08571 * 

NOT WORKING POP. (%) -0.001304 0.000273 -4.77623 0.00000 *

ILD_ECOLOGY 0.000560 0.000462 1.21309 0.22510

ILD_SOCIAL POLICY -0.000415 0.000312 -1.32693 0.18453

SUBSIDIES_pc 1.2323e-005 1.1588e-05 1.06344 0.28758

LAMBDA 0.431769 0.0677941 6.36883 0.00000

 

Few variables that  represent commune's compositional characteristics  
(average percentage) influence significantly the individual (subjective) wellbeing 
in a negative way: age, education, population not in work is the factors operating 
in space dependent manner. Other two – monthly income and deprivation in the 
domain of social policy – which also affect residents' wellbeing negatively (though 
not in statistically significant way) indicate important direction of further 
exploration and of clarification from the development policy standpoint accounting 
for spatial aspects. Some illustration is given below, in Fig. 6 and 7, following 
presentation of the scatter plot and map jointly for subjective wellbeing (U-index) 
and  local community deprivation (MILD), Fig. 5.   

Figure 5.  Individual SWB/U-index (all activities) and the level of commune 
(gmina) local deprivation/MILD2014. Moran I = 0.103 
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Compared to earlier results concerning the relationship between community 
(deprivation) and subjective wellbeing (according to U-index) addition of spatial 
aspects to its exploration  brings clarification with respect to the question of where 
there are low-low or high-high levels of its occurrence. 

While checked in a separate way, the spatial association between some of the 
above variables and subjective wellbeing in a particular type of activity (U-index) 
indicate different direction. For instance, local deprivation in social policy and U-
index for 'caring for children', below Fig. 6, or deprivation in local labor market and 
U-index for commuting (work and other  'target places'), Fig. 7. 

 

Figure 6.  U-index for caring for children by the level of local deprivation in social 
policy. Moran I= 0.18  

    

 
 

Figure 7. Individual wellbeing/U-index for commuting, i.e. associated with 
traveling to work and similar (target places or commuting), and gmina's 
(local) deprivation in the domain of local labor market (Masovian)  
Moran-I = 0.44) 

  

 
Several conclusions can be drawn from the above patterns of spatially related 

association between quality of local environment (community constituting 
household's immediate surroundings) and subjective wellbeing, two of them are 
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worthwhile to note here. First, more specifically defined relations – for concrete 
type of activities and of domains of local deprivation – can be analyzed in the 
multilevel spatial analytical perspective more effectively than using synthetic 
measures. Also, lower level of territorial cross-section values rather than 
countrywide global values is more appropriate in search for identification of 
spatially dependent phenomena and their interconnections.   

Conclusion 

In view of the doubts and critique coming from experts of different disciplines - 
including psychometricians and econometricians – concerning the measurement 
of individual (subjective) wellbeing, the Time Use Survey data seem to provide a 
unique opportunity to explore relationships between individual and community 
wellbeing, using at the same time public statistics files created for other purposes. 

In general, the level of dissatisfaction accompanying the performance of 
everyday activities – experiencing ‘unpleasant state’ and lower subjective 
wellbeing – increases along with greater household income. Paradoxically 
enough, individual wellbeing is diminishing (U-index grows) along with the lower 
level of commune's local deprivation. [In other words, overall conditions in less 
developed gminas constitute in general more favorable environment for individual 
(subjective) wellbeing – such aspects like social interaction, interpersonal 
relations might be of importance].  

Community wellbeing reinforces significantly the subjective wellbeing  effect of 
individual income. Since the influence of CWB on individual wellbeing is on 
average quite visible also in spatial terms – due to a tendency to cluster amongst 
gminas which are high-high or low-low on both dimensions – there is a need to 
analyze further such relationships, assuming availability of the appropriate data.  

  



374                                                             Okrasa W., Rozkrut D.: The Wellbeing Effect… 

 

 

REFERENCES 

ALDSTADT, J., (2010). Spatial Clustering. Chapt B.4. [in] Fischer M. M., Getis A., 
Handbook of Applied Spatial Analysis: Software Tools, Methods and 
Applications, Springer.  

ALKIRE, S., (2015). The Capability Approach and Well-Being Measurement for 
Public Policy, Oxford Poverty & Human Development Initiative (OPHI) 
Working Paper, No. 94.  

ANSELIN, L., SYABRI, I., KHO, Y., (2010). GeoDa: An Introduction to Spatial 
Data Analysis. Chap. A.4 , [in] Fischer M. M., Getis A. Handbook of Applied 
Spatial Analysis: Software Tools, Methods and Applications, Springer. 

ARCAYA M., BREWSTER, M, ZIGLER, C M., SUBREMANIAN, S, V., Area 
Variations in Health, A Spatial Multilevel Modelling Approach. Health Place. 
18 (4), pp. 824–831  

BERNINI, C., GUIZZARDI, A., ANGELINI, G., (2013). DEA-Like Model and 
Common Weights Approach for the Construction of a Subjective Community 
Well-Being Indicator, Soc Indic Res 114. 

BRADBURN, N., (1969). The Structure of Psychological Wellbeing. Aldine. 
Chicago. 

CHAVIS, D. M., LEE, K. S., ACOSTA, J. D., (2008). Sense of Community (SCI), 
Lisboa, Portugal. 

CAPELLO, R., Space, growth and development. Capello, R., Nijkamp, P., (eds) 
Handbook of Regional Growth and Development Theories. Edward Elgar, 
Cheltenham, UK. 2009 Clarke, Ph., Wheaton, B., 2007. Addressing Data 
Sparseness in Contextual Population Research Using Cluster Analysis to 
Create Synthetic Neighborhoods. Sociological Methods & Research, Vol. 35, 
No. 3, February 2007, 2007 Sage, pp. 311–351, 

CORRADO, L., FINGLETON, B., (2011). Multilevel Modelling with Spatial Effects. 
Strathclyde Discussion Papers in Economics, No. 11–05, Department of 
Economics University of Strathclyde, Glasgow. 

FISCHER, M. M., GETIS, A., (2010). Handbook of Applied Spatial Analysis: 
Software Tools, Methods and Applications. Springer.  

FORREST, R., KEARNS, A, (2001). Social Cohesion, Social Capital and the 
Neighbourhood, Urban Stud 2001, 38, 2125.  

GIBSON, J., (2016). Poverty Measurement: We Know Less than Policy Makers 
Realize. Asia & the Pacific Policy Studies, Vol. 3, No. 3, pp. 430–442.  
DOI: 10.1002/app5.141. 

GOLDSTEIN, H., (2003). Multilevel Statistical Models. Edward Arnold, Loondon. 

GUS (Central Statistical Office), (2015). Time Use Survey, 2013, GUS, 
Warszawa. 



STATISTICS IN TRANSITION new series, June 2018 

 

375 

HEWES, S., BUONFI, A., ALI, R., MULGAN, G., (2010). Cohesive communities – 
the benefits of effective partnership working between local government and 
the voluntary and community sector, The Young Foundation IDeA. 

HONG, G., (2015). Causality in a Social World: Moderation, Mediation and Spill-
over. Wiley.  

HOX J. J., MOERBECK, M., SCHOOT, R. van de, (2018). Multilevel Analysis: 
Techniques and Applications, 3rd ed., N. Y. Routledge. 

KAHNEMAN, D., KRUEGER, A. B., (2006). Developments in the measurement of 
subjective well-being, Journal of Economic Perspectives, 20, pp. 3–24.   

KALTON, G., MACKIE, CH., OKRASA, W.,(eds.), (2015). The Measurement of 
Subjective Well-Being in Survey Research, Statistics in Transition new series. 
Vol. 16, No. 3. 

KIM, Y., LUDWIGS, K., (2017). Measuring Community Well-Being and Individual 
Well-Being for Public Policy: The Case of thr Community Well-Being Atlas" [in] 
Phillips, R., Wang, C., (eds.), Handbook of Community Well-Being Reseach. 
Springer.  

KRUEGER, A. B., KAHNEMAN, D., SCHKADE, D. A., SCHWARTZ, N., 
STONE, A., (2009). National Time Accounting: The Currency of Life, [in:] A. B. 
Krueger (ed.) Measuring Subjective Well-Being of Nations: National Account 
of Time Use and Well-Being. University of Chicago Press. Lee, S. J., Kim, Y., 
Phillips, R., (eds.), Community Well-Being and Community Development. 
Conceptions and Applications, 2015, Springer,  

  http://www.springer.com/978-3-319-12420-9. 

LESAGE, J. P., PACE, R. K., (2010). Spatial Econometric Models, [in] Fischer 
M. M., Getis A., op cit. 

NATIONAL RESEARCH COUNCIL, (2013). Subjective Well-Being: Measuring 
Happiness, Suffering, and Other Dimensions of Experience. Panel on 
Measuring Subjective Well-Being in a Policy-Relevant Framework. A. A. 
Stone and C. Mackie (eds.), Committee on National Statistics, Division of 
Behavioral and Social Sciences and Education, Washington, DC: The 
National Academies Press. 

OECD, (2015). Better Life Index, OECD Publishing. Paris. 

OECD, (2013). OECD Guidelines on Measuring Subjective Well-being, OECD 
Publishing.  

OKRASA, W., (2017). Community Wellbeing, Spatial Cohesion and Individual 
Wellbeing – towards a multilevel spatially integrated framework, [in] 
W. Okrasa (ed.) Quality of Life and Spatial Cohesion: Development and 
Wellbeing in the Local Context. Cardinal Stefan Wyszynski University Press. 
Warsaw.  

OKRASA, W., (2013). Spatial Aspects of Community Wellbeing. Analyzing 
Contextual and Individual Sources of Variation using Multilevel Modeling. 
Paper at th 59th World Statistics Congress, Hong Kong, August, pp. 25–30. 



376                                                             Okrasa W., Rozkrut D.: The Wellbeing Effect… 

 

 

RAO, J. N. K., MOLINA, I., (2015). Small Area Estimation, 2nd ed., Wiley, 
Hoboken, New Jersey.  

ROZKRUT, D., ROZKRUT, M., (2006). Analysis of the economic development of 
districts in Poland as a basis for the framing of regional policies. [in]: 
Spiliopoulou, M.; Kruse, R.; Borgelt, C.; Nürnberger, A.; Gaul, W. (eds.), From 
Data and Information Analysis to Knowledge Engineering – Studies in 
Classification, Data Analysis, and Knowledge Organization, Springer, Berlin 
2006, pp. 518–525.  

STIGLITZ, J., SEN, A., FITTOUSSI, J-P., (2010). Measuring our lives. New York.: 
The New Press. 

SUBRAMANIAN, S. V., (2010). Multilevel Modeling [in] Fischer M. M., Getis A., 
Handbook of Applied Spatial Analysis: Software Tools, Methods and 
Applications, Springer.  



STATISTICS IN TRANSITION new series, June 2018 

 

377 

STATISTICS IN TRANSITION new series, June 2018  

Vol. 19, No. 2, pp. 377 

 

 

 

 

    
 

 

 

 
On behalf of the co-organizers of the Q2018 – the Statistics Poland (CSO) 

and Eurostat – we are pleased to inform that 

 the 2018 European Conference on Quality in Official Statistics  

is being held on 26-29 June in Kraków, Poland.  

“The Q2018 Conference will be one of the series of scientific gatherings covering 

methodological and quality-related issues that are relevant to the development of 

the European Statistical System”.  

http://ec.europa.eu/eurostat/web/ess/-/q2018-conference 
 
 
 

 

https://ec.europa.eu/eurostat/cros/lexicon/18/letter_c_en#CSO
https://ec.europa.eu/eurostat/cros/lexicon/18/letter_e_en#Eurostat
http://ec.europa.eu/eurostat/web/ess/-/q2018-conference
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The 2nd Congress of Polish Statistics organised on the occasion of 

the 100th anniversary of the establishment of the Statistics Poland 

will be held on July 10-12, 2018 in Warsaw. 

 

“The Congress will last three days. The framework program of the event contains 

a series of thematic sessions, including a jubilee panel on the history of Polish 

statistics, as well as sessions devoted to Polish statistics on the international 

arena, methodology of statistical surveys, mathematical statistics, regional 

statistics, population statistics, social and economic statistics, statistical data 

issues and, also sports and tourism statistics. 

 

In the Congress, which will emphasise the contribution of Poles to the global 

treasury of statistical knowledge, representatives of foreign institutions and 

scientific units will participate. 

We are convinced that the Congress will constitute a unique opportunity for the 

representatives of official statistics, research centres and other partners involved 

in the study of social, economic and environmental processes to meet and 

exchange their knowledge, views and experiences.” 

https://kongres.stat.gov.pl/en/ 
 
 
 

  

 

https://kongres.stat.gov.pl/en/
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end. Among other things, this style dictates that the title for a table is placed above the 

table, while the title for a figure is placed below the graph or chart. If you do use tables, 

charts or graphs, choose a format that is economical in space. If needed, modify charts 

and graphs so that they use colours and patterns that are contrasting or distinct enough 

to be discernible in shades of grey when printed without colour. 

 References. Each listed reference item should be cited in the text, and each text 

citation should be listed in the References. Referencing should be formatted after the 

Harvard Chicago System – see http://www.libweb.anglia.ac.uk/referencing/harvard.htm. 

When creating the list of bibliographic items, list all items in alphabetical order. 

References in the text should be cited with authors’ name and the year of publication. If 

part of a reference is cited, indicate this after the reference, e.g. (Novak, 2003, p.125). 
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