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MODIFIED RECURSIVE BAYESIAN ALGORITHM FOR

ESTIMATING TIME-VARYING PARAMETERS
IN DYNAMIC LINEAR MODELS

0. Olawale Awe', A. Adedayo Adepoju?
ABSTRACT

Estimation in Dynamic Linear Models (DLMs) with Fixed Parameters (FPs) has been
faced with considerable limitations due to its inability to capture the dynamics of
most time-varying phenomena in econometric studies. An attempt to address this
limitation resulted in the use of Recursive Bayesian Algorithms (RBAs) which is also
affected by increased computational problems in estimating the Evolution Variance
(EV) of the time-varying parameters. In this paper, we propose a modified RBA for
estimating TVPs in DLMs with reduced computational challenges.

Key words: discounted variance, dynamic models, granularity range, estimation
algorithm.

1. Introduction

Generally speaking, a model is dynamic each time the variables (or parameters) are
indexed by time or appear with different time lags (Ravines et al., 2006). In recent
times, estimation of time-varying parameters in econometric models has become
more relevant especially as the length of the observed time series increases and
the series itself is subject to changes in the dynamic structure. Particular examples
can be found in world economic time series where key monthly, quarterly or annual
economic indicators are commonly available from the 1950s and cover periods of
different economic conditions. For example, the periods of strong economic growth
in the 1950s and 1960s, periods with oil crises in the 1970s, periods of major mon-
etary policy changes in the 1980s, rapid changes of financial markets in the 1990s
and the collapse of the financial and banking systems more recently (Doh and Con-
nolly, 2013). Although, not all economic structures are subject to changes due to
these developments, it is expected that the dynamic properties of longer time series
require parameters that are allowed to change over time. Models with fixed param-
eters have been found to perform poorly for analysis of these kinds of data because
basic econometric time series analysis lies in the possibility of finding a reasonable
regularity in the phenomenon under study (Petris, 2010). In a dynamic economy,
for instance, the relations between economic agents are subject to change. As the
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knowledge of production techniques improved, as the means of transportation al-
low for long-distance trade, and as the society changed its preferences for certain
goods or services, the structure of the economy varies accordingly. It is also natural
to think that as time changes, information decays thereby necessitating the need
for discounting the variance of the underlined evolution of the dynamic parameter
as adopted in this work.

In a surprisingly short period of time, Markov chain Monte Carlo (MCMC) algo-
rithms, especially the Metropolis-Hastings algorithm (Hastings, 1970) and the Gibbs
sampling algorithm (Geman and Geman, 1984; Gelfand et al., 1990) have emerged
as extremely popular tools for the analysis of complex statistical and economet-
ric models. Bayesian analysis requires the evaluation of complex and often high-
dimensional integrals in order to obtain posterior distributions for the unobserved
quantities of interest in the model. In many such settings, alternative methodolo-
gies such as asymptotic approximation and non-recursive Monte Carlo algorithms
are either infeasible or fail to provide sufficiently accurate results. Properly defined
and implemented, MCMC methods enable the user to successively sample values
from a Markov chain process. Important features of MCMC methods that enhance
their applicability include their ability to reduce complex multidimensional problems
to a sequence of much lower-dimensional ones. While MCMC algorithms allow an
enormous expansion of the class of candidate models for a given data, they also
suffer from a well-known and potentially serious problem: it is often difficult to de-
cide when it is safe to terminate them and conclude their "convergence" (Zellner,
2009).

The algorithms for recursive estimation and Kalman filtering are being used increas-
ingly in applied econometrics, but econometricians have been slower than other
statisticians to explore them (Pollock, 2003). In recursive estimation, the knowl-
edge about the parameters of a model is updated continuously as new measure-
ments are collected. It is suitable in problems where the parameters have dynamic
properties that make them change with time. Several measurements y;,yz, ...,y
are considered alongside their joint probability density function f(6,y1,y2,¥3,..,¥n)-
New measurements are received and estimation done one at a time. After measur-
ing y1, we construct an estimate 6;, when y;, is received again, parameter §; would
be updated. This process continues recursively. To initiate the recursion, we need
an initial estimate of the parameter 6 and its variance-covariance matrix.

Another reason for the burgeoning popularity of the recursive approach in econo-
metrics is the increased importance of numerical simulations in statistics and econo-
metrics, hence, most computational algorithms rely on recursive methods . A sig-
nificant breakthrough in the application of recursive methods in econometrics was
achieved by several researchers including Cooley and Prescott (1973, 1976); Bert-
sekas (1976); Spear and Srivastava (1987); Blanchard and Fischer (1989); Abreu
et al. (1990), Ng and Young (1990); Pollock (2003); Young (2011). Although,
economic theory rarely provides a useful guide to distinguish between fixed and
time-varying parameters, estimation of Dynamic Linear Models (DLMs) with Fixed
Parameters (FPs) has been faced with considerable limitations due to its inability



STATISTICS IN TRANSITION new series, June 2018 241

to capture the dynamics of most time-varying phenomena in econometric studies.
This is because the classical linear regression model with fixed parameters pre-
sumes that the relationship between the explanatory and the explained variable re-
mains constant through the estimation period. However, there are situations when
this kind of assumption becomes unreasonable and totally non-implementable be-
cause assuming time-invariant parameters and variances turn out to be quite re-
strictive in capturing the evolution dynamics of most economic time series. For
instance, business cycle dynamics and monetary policy in United States and other
major economies of the world has changed substantially over the post-war period.
In addition, the introduction of time-varying parameters in linear models can lead to
different levels of complexities including the fact that they gain new evolution vari-
ance parameters which are also time-varying and, in turn, need to be estimated. In
literature, the choice of the evolution variance (say Q,) has been found to be com-
plex and usually difficult to characterize because of a number of practical problems
associated with it which includes:

1. it varies with the measurement scale of regressor variables as specified in the
observation equation of DLM.

2. it can be ambiguous i.e there may not be an optimal value of Q, suitable for
all times.

3. it is often grossly mis-specified because most modellers have great difficulty
in directly quantifying its variance and covariance elements.

4. the predictive performance of the dynamic linear model depends on the choice
of the evolution variance Q, (West and Harrison, 1997).

An attempt to address these problems resulted in the use of Recursive Bayesian Al-
gorithms (RBAs) which is also affected by increased computational problems in es-
timating the Evolution Variance (Q;) of the Time-Varying Parameters (TVPs). Con-
sequently, researchers require a better way of structuring the evolution variance
which previous studies have failed to effectively address. The aim of this study,
therefore, was to modify an existing RBA of Fuquene et al. (2015) for estimating
TVPs in DLMs. Discounting is proposed as an alternative way of coping with the
system evolution variance of economic series in order to portray a clearer picture
of the volatility of the parameters in the model under study over time.

The proposed recursive Bayesian estimation algorithm will be useful for proper
choice of discount values to represent the evolution variance which is inevitable
in order to address problems (2) and (3) above with reduced computational chal-
lenges.

2. Dynamic Linear Models with Time-Varying Parameters

It has been argued severally in literature that the parameters in econometric models
cannot, in general, be expected to remain constant and hence Time-Varying Pa-
rameter (TVP) models should be considered in almost all circumstances (Soloviev
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et al., 2011; Primiceri, 2005; Doh and Connolly, 2013). The difficulty in estimat-
ing such models is however often exacerbated by the fact that the econometrician
would have only some idea regarding the most likely value that a parameter may
assume (as indicated by, say, the Ordinary Least Squares (OLS) and maximum
likelihood estimators); with a range of uncertainty surrounding this nominal value
and consequently, misleading policy prescriptions are likely to arise from a straight-
forward optimization exercise based on such a set of nominal values especially in
the presence of structural breaks in the underlying economic, technological, be-
havioural and institutional patterns. However, because discontinuities are a crucial
feature of modern economic systems, there is the need to consider models with
time-varying parameters. According to literature, such TVP models can be classi-
fied into three types:

First, the parameters can vary across subsets of observations within the sample
but be non-stochastic. Examples of such models include the general systematically
varying parameter model of Belsley and Kuti (1973) and a variety of switching re-
gression models with either known joint points (see McZgee and Carleton (1970);
Hinkley (1971); Goldfeld and Quandt (1973)) or unknown joint points of Gallant and
Fuller (1973). A second class of models is where the parameters are stochastic,
and are assumed to be generated by a stationary stochastic process. Examples
of such models include the pure random coefficient model of Harvey and Phillips
(1982) which includes the adaptive and varying-parameter regression models of
Cooley and Prescott (1973) and the stochastically convergent parameter model of
Rothenberg (1973). Finally, the third class of models consists of those where the
stochastic parameters are generated by a process that is not stationary. These
include the mixed estimation model of Cooper (1972), the Kalman filter model
of Athans (1974), the stochastic variations model of Cooley and Prescott (1976),
the systematically varying parameter model of Kalaba and Tesfatsion (1980) which
was then extended to the flexible least squares (FLS) approach Kalaba and Tes-
fatsion (1988), the recursive and optimal control model of Ng and Young (1990)
which have gained tremendous popularity in literature and become more relevant
in recent times. Some of the rationale behind time-varying parameter models are
documented in Sarris (1973). The archetypical (existing) dynamic linear model in
literature with fixed variances has the following general form:

yi =F'B +v; v ~N(0,V) (1)
B =GBi—1 +w, wy ~ N,(0,Q) (2)
Bo ~ Ny(mo,Co) (3)

where y; is a vector of dimension m x 1

Equation (1) is known as the observation equation while equation (2) is a first
order Markov process called the evolution equation.



STATISTICS IN TRANSITION new series, June 2018 243

The matrices F, V, G and Q are known as the system matrices and contain non-
random elements. If they do not depend deterministically on t, the model is time
invariant, otherwise it is time varying. The initial state distribution is assumed to be
Normally distributed with parameters my and Cy as shown in (3) where E(v,/) =
0,E(w,B/)=0fore=1,...,T.

The dynamic linear model with state space approach offers attractive features
with respect to their generality, flexibility and transparency. The lack of publicly
available software to estimate these models has been the main reason why only
relatively few economic and finance related problems have been analyzed with dy-
namic linear models so far. Basically, the estimation of DLM involves three stages:
prediction, filtering and smoothing. Prediction has to do with forecasting future val-
ues of the time-varying state parameters. Filtering makes the best estimate of the
current values of the time-varying state parameter from the record of observations
including the current observation. Smoothing involves making the best estimate of
past values of the states given the record of observations.

3. Model Specification and Methodology

A typically difficult problem in econometrics is to formulate a stationary model that
best resembles the model dictated by economic theory, but which does not pose
serious problems of estimation (Chetty, 1971). This section, lays out the speci-
fied dynamic linear model proposed in this work. It also contains details of the
developed recursive Bayesian algorithm. Remove (RBA) employed for the poste-
rior estimation of the specified dynamic linear model in the presence of discounted
evolution variance.

A concrete mathematical formulation of the proposed dynamic linear model
specification in this work takes the form of the two equations:

Vi =X 6; +v; Ve ~ N(O, (P)7 (4)
6, =G 61 +w; wr ~N(0,9), (5)
90 ~ N(mg,Co).

where equation (4) is known as the observation equation while equation (5) is the
evolution equation. G, is a known transition matrix of order p x p that determines
how the observation and evolution equations evolve in time. Since each parameter
at time ¢ only depends on results from time 7 — 1, the state parameters are time-
varying and constitute a Markov chain. X; is a matrix of observed time series of
known order. 6, is the time-varying parameter associated with the predictor matrix
X;. It is assumed that information decays arithmetically through the addition of fu-
ture evolution error variance which we estimate with discount values. Parameters
of interest to be estimated are the time-varying parameter 6;, the error variances ¢
and €, and the one-step-ahead forecasts error f;. ¢ is assumed to be distributed
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inverse-gamma a priori, while we estimate Q, via discounting method which is ex-
plained later in this section. The difference between this model and the one stated
in Fuguene et al. (2013) is that the observational variance is presumed to be fixed
and the evolution variance is estimated by the method of discounting unlike the use
of Wishart prior which is common in literature. Also, in contrast to the Box-Jenkins
methodology, which still plays an important role in time series analysis today, the
specified dynamic linear model approach allows for structural analysis of univariate
as well as multivariate problems without initial differencing or log transformation of
the observed series. The different components of a series, such as trend and sea-
sonality, as well as the effects of explanatory variables can be modelled explicitly.
They do not have to be removed prior to the main analysis as is the case in the
Box-Jenkins methodology.

3.1. Existing Recursive Bayesian Algorithm (RBA) and Gibbs Sampler for Es-
timating TVPs

The recursive Bayesian algorithms in literature usually takes the following form: Let
0, = [6y,6,...,6], 6, is estimated from the conditional density p(®,|yr) which is
denoted by

p(0,yr) = p(Yr|®7)p(Or)

where p(yr|®7) and p(@®r) are given by

T

pr|®r) =[] r(:l6) (6)

t=1

and ,
p(®7) = p(60) [ 1(6:16:-1), (7)

t=1

where p(y|6,) and p(6,|6,_1) were derived from the observational and evolution
equations (4) and (5) specified above to give

1
202

p(1]6) = <2noz>%exp<— O —x,ez>2)

where V = 62,
k1 1 _
p(0[|9t71) = (27[,') 2 IQ[| 26‘)Cp<_ 5(6; — G[fol)lgl 1(6; — G[@fl))
The recursive algorithm alternatively compute the densities of the current and
the future parameter 6 conditional on all available observations. Using the notation

v = y1.4, the prediction equation is given by

P(6r1) = /p(6t+176t|yt)d9t (8)
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= [ p@alo)p(@lr)d8:

Applying Bayes’ rule, the filtering equation gives

p(6ilyis) = P(:16:)p(6:6:—1,y1:1-1) (9)
pelyra—1)

o< P(Yt|9t)17(3t|9t—17)’1:t—1)

The denominator, p(y/|y1.—1) is constant relative to 6, and thereby ignored. These
recursive equations were initialized with the density of the initial parameter

p(ilyo) = p(61).

This posterior is then used to update the prior recursively until convergence is
achieved. The forward filtering step is the standard Kalman filtering analysis to give
p(6,|D,) at each ¢, for t = 1,...,n. The backward sampling step uses the Markov’s
property to sample 6; from p(6r|Dr) and then for r = 1,...,7 — 1, sample 6;* from
p(6:|D;,6;, ;) in order to generate samples from the posterior parameter structure.
In particular, denote

T
p(6o,....6r[yr) =[] p(6:16:+1,..., 01, y1)
t=0

and note that, by the Markov’s property,

P(9t|9t+1,~~,9t7yt) :p(9t|9t+17yt) (10)

and
p(O1) = [ P8Ol )dr

:/p(6t+1|Yt)p(ef‘61‘+l7yt)d9f+1

_ " P(Or11y:) (P(01+116,)d 611
_p(9t|yt>/ P(9t+1|J’t) ()

which follows again from the recursive application of Bayes’ rule and Markov
property of 6;.

Since the sampling is done from ¢t = T to ¢+ = 0, recursively, this procedure is
referred to as recursive backward sampling.

In particular, Fuquene et al. (2013) proposed a dynamic linear model which
is specified by a normal prior distribution for the p-dimensional state vector for
macroeconomic modeling with prior 6y) as follows: 6y ~ N,(mg,Co) with the set
of equations

yt:E9t+vt7VtNNm(07‘/t) (12)

er:Gtez+Vz;WtNan(07“/t) (13)
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with t = 1: T where F; and G; are known matrices of order p x p and m x p, respec-
tively. Let 6 ~ Student —t(u,t,v) where v is the degree of freedom, u and t are the
location and scale parameters of the student-t density respectively. Then,

n(6|12):k;<1+\1/<9;u)2) B (14)

where v > 0, —oo < [l < o0, —00 < 6 < o0, and
(v+1)

kl = Fr(z)zr we have that 7(0) = [ z(8|7?)x(?)d 7> Let W, ; denote the i'h diag-
v VT
onal element of the evolution variance W, ;, i = 1, ...,n, the observation and evolution

variances were given as V,”! = L,w,¢
and W, ;' =216,iw8,

In order to obtain posterior inference on the time-varying parameter, 6,, they
used the recursive Forward Filtering Backward Sampling (FFBS) algorithm which
proceeds as follows

1. Use the Kalman filter equations for (14) above.
Let mo Co be known with (90|D0) ~ N(m(),Co) and 9,|y1;,,1 ~ N(m,,1 ,C,,1),
The one-step predictive distribution of 6, given y;,_, is Gaussiani.e 6;|D,_; ~
N(a,R,) with parameter a, = Gymy_1, R, = G,C,_ G;.
The one step ahead predictive distribution of y, given y;.,_; is Normally dis-
tributed as (y;|D;—1) ~ N(f;,Q;) with parameters f; = F/a;, O; = F/RF, + V.
The filtering distribution of 6, given yi,_ is (6;|D,) ~ N(m,,C;) with parameters
m; = a, +Ace;, C; = R, — A, Q;Al where A, = R.F,Q; ' and ¢, =y, — f;.

2. Attime r =T, sample 6r from N(6r|m;,Cr)

3. Fort =T —1, sample 6, from N(6;|m},C;) where m} =m; +b;(6,+1 —ar41) C; =

C[ - btRH—lb; Where bt = Cth+1Rt_+1]

This algorithm does not specify a block for the evolution variance of the time-varying
parameter 6, which is often difficult to characterize. Additionally, the algorithm pre-
sented in this work specifies a sub-algorithm for optimal selection of Average Gran-
ularity Range (AGR) of the discounting parameter A which also plays an important
role in determining convergence of the parameters. First, the observational vari-
ance ¢, was specified as constant and estimated via Gibbs sampling as presented
in the next section.

3.2. Recursive Estimation of Time-Varying Parameters in the Presence of Dis-
counted Evolution Variance

In this section, we propose an algorithm to estimate the time-varying parameters in
dynamic linear models in the presence of discounted evolution variance. This ap-
proach makes use of the Recursive Forward Filtering Backward Sampling algorithm
within the Kalman filter framework to improve the efficiency of the adapted Gibbs
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sampler by discounting the evolution variance. The main idea of this procedure is
to make use of Markov’s property of the specified evolution equation so that

P(9r|9t+laDz) :P(91+1|9taDt) (15)

where 6, denotes the time-varying parameters at time r and D; = (y1,...,Y,X1, ..., X; ).
Due to the Markovian structure of the time-varying parameter 6,, it is estimated by
computing the predictive and filtering distributions of 6, recursively starting from the
prior 8y ~ N(mg,Cp). This recursive method allows us to draw the parameter vectors
jointly. Consider a vector of unknown time-varying slope parameters 6, = (6i,...,6,),
the Gibbs sampling algorithm employed proceeds by sampling recursively the con-
ditional posterior distribution where the most recent values of the conditioning pa-
rameters are used. Following the Bayesian paradigm, the specification of the model
is complete only after specifying the prior distribution of all the unknown quantities
of interest in the model. We assign a distribution to 6, at time t=0, conditional on all
the information available before any observation is made. Let Dy be the set contain-
ing all this information, then the prior distribution is 6y|Dy ~ N(mo,Co) where mo and
Cy are known vector and matrix respectively. Next, an update is made for 6, and
Dy which is also normally distributed. Based on this update, the one step-ahead
forecast follows from the conditional distribution y|6y,Dy. Once the value of y; at
time ¢t = 1 is known, the posterior distribution of 6; is obtained recognizing that the
information available at time r = 1 is Dy = y;,Dy. The inference is made in this re-
cursive fashion for every time . The Kalman filter was used to calculate the mean
and variance of the parameter 6;, given the observations D;. It is a recursive algo-
rithm because the current best estimate is updated whenever a new observation is
obtained. This recursive Bayesian technique of model estimation can be stated in
form of prediction, filtering and update equations. The prediction and update step
requires a few basic calculations of which only the conditional means and variances
of the filtering and prediction density is stored in each step of the iteration.

To describe the filtering procedure, let

my :E(6,|D,) (16)
be the optimal estimator of 6, based on D, and let
C[:E((etfmt)(elfm()qD() (17)

be the mean square error matrix of m,. Let 6,_1|y14—1 ~ N(m;—1,C;—1), where yi,,_
denote all observations up to time r — 1. Then the one-step-ahead predictive density
0;|y1+—1 is Gaussian with parameters:

E(et‘yl:rfl) =m— EA,(Say) (18)
Var(6;|y14—1) = Ci—1 +Q; = R(say) (19)
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The one-step-ahead predictive density of y,|y;,—; is Gaussian with parameters:

fi= E()’tb’l:t—l) = XA, (20)
Ql = Var(yl‘ylztfl) = Xthth + V (21)

The filtering density of 6, given y;., is Gaussian with parameters:

—E(9t|yl:z) :Al+Rle,Q;Iel (22)
C, = Var(6/|y14) =R — R X, Q; 'X,R, (23)

where ¢, =y, — f; is the forecast error.

3.2.1 Posterior Estimation of Unknown Observational Variance (¢) with In-
dependent Priors

In the simulation excercise for estimating the static observational variance, ¢, the
following Gibbs sampler of Nakajima et al. (2011) was adopted with slight modifi-
cations: Consider the linear equation which is the observational equation specified
n (4) above
v =X, 6, +v;,v; ~ N(0,0), (24)

let g =c?and 6, =

and assume a normal prior for the parameter 8 and inverse gamma prior for the
parameter o2, to sample from ¢|@ we impose a gamma prior on ¢~ and derive the
posterior hyperparameters. Let ¢! ~ Gamma(ay, bo), then

o6~ Gamma(ang sbo+ = Z —X,6,)?

We start with
_n 1
P16, X) = (27) 2 exp(—5 5 (y = X6)' (y=X6)) (25)
The priors are given as follows:

p(6,9)=p(0)p(e)

where
N(po, Po) (26)

and
¢ ~1G(v,70) (27)



STATISTICS IN TRANSITION new series, June 2018 249

Uo is the prior mean for 6 and ¢y is the prior variance- covariance matrix for 0

with
T0

:V()—l

E(o) (28)

2
0

(o~ 12(vo—2) (29)

Vip)=

We chose the form given in Gelman (2004) where vy and 1, are the shape and
scale parameters respectively. Using Bayes rule to combine the priors (26) and
(27) above with the likelihood and dropping all unrelated terms to the parameters of
interest yields the following posterior kernels:

—n—2vp—2

P(8, 0 X) o= (02) 3" exp(— 5 5 (2m)
conp (5 (30 X60) (- X6) + (0 )0y (0~ ) ) (30)

First, we find the posterior density of 6, conditional on ¢ while treating ¢ as a
constant.
This leaves us with the posterior kernel:

p(0]0,y,X) o<

I

exp(—5 (5 =X0) (s = X6)-+ (61 () (6~ o). (31)

Transformations

Let 1
o= (¢, +6X/X)‘1

and
_ 1 B 1
= @1(9y ' po+ EX’XM = @1 (gy "o+ 5X’y)

Then from (3.34),

$<y—xe>'<y—xe>+(e—u())’w(;l(e—uo)
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1 / /1 / 1 / /1 / 7 —1
= —yy4+0—-XX0—-——yX0-0'—Xy+0¢@, 0
¢ ® ¢ ¢ 0
— Py 0 —6 9y o+ o9y o
_ 1 I 1
= 9’(<p01+6XX)9—9(<p01u0+6Xy)

r 1 1 r
- (ﬂo‘Pol+6y/X)9+6)’)’+ﬂo‘PollJO

= 07000 e '6
r_ r_ 1 r_
i 1#1‘#1‘!’1 llil‘f'ay/)"i‘ﬂo% "o

_ _ _ 1
= (0—wm) o (60— m)—puior e+ 5y’y

+ 1@y o

Therefore, the conditional posterior kernel in (31) above can be written as :

p(6]@,y,X) o

1 B 11 - B
exp(=5(0—)'e, 1(9—u1)exp(—§(6y/y+u6% 'wo—uier ') (32

Since none of the terms in the second exponent include 8, we simplify the full
conditional distribution in (32) to

1

P(6]9,y.X) < exp(—3 (0 =) o (6 — ) (33)

Therefore, we have again, the kernel of a multivariate normal density, and we can
say that

6“[”)’7}( NN(,u'la(pl)
where |
o= (%‘Wax/x)—l

and
—1 1 /
U1 = ¢1(9, H0+6Xy)

to sample from.

Posterior Inference on ¢

In order to derive the conditional posterior density for ¢, we return to our original
expression for the joint posterior given in (30). Ignoring terms that are not related
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to ¢, we have :

—n—2vp—2

P(0]6.3.X) o< ()~ exp(—ﬁum<y—xe>’<y—xe>>> (34)

Comparing this expression with the kernel of the inverse gamma prior specified in
(29) above, we have the kernel of another inverse gamma density: Hence

(Pleay7XNIG(vl>T1) (35)
where
v 2vo+n
)
and

_ 2%+ (y—X0)'(y—X0)
B 2

71

3.3. Estimation of Evolution Variance (Q,) with Discount Values

Consider the evolution equation in (5) above,

et:Gth—l‘i‘Wt’WtNN(O»Qt) (36)

where Q, is the evolution variance and other parameters are as defined earlier.
Let
V(6,_1|D;—1) =V(G,6,_1|D;_1)

- G[C17] Gl{
=G

so that
V(9t|Dt71) =G+

The prior distribution for 6,_, is
011Dy ~N(my—1,C1)
where D,;_ = (y1,y2,.-,y.—1) and the prior distribution for 6, is
0,|Di—1 ~ N(my—1,0;)

where
Qt =C_1+ Qt

Therefore,
Q =0, —C (37)
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We introduce the discount factor as a quantity A such that
Qt = Ct—l/A (38)

can be interpreted as the percentage of information that passes from time ¢t — 1 to ¢.

Therefore, we select the discounting grid 4 € [0.01,0.99]. We next develop a
sub-algorithm to select optimal granularities of the discount values A which enable
us to conlude the convergence of the model.

4. Parsimonious Model Selection Algorithm (PMSA) for Optimal
Model and Discount Value Selection

Since the choice of the evolution variance determines the forcasting performance
of DLM, a sub-algorithm for optimal discount value selection with Mean Squared
Prediction Error was developed as follows:

1. Init: i=0
Let A; € [0.01..0.99]
Compute Q; in the DLM with 4;

Estimate one-step ahead predictive density of the specified Bayesian DLM

o > w0 D

Compute concurrent MSPE of DLM in 3 and cross-validate with the discount
value of Q;;

6. Seti=i+1

7. Is the current MSPE lower than the previous one?
8. If No, Go To 6

9. If Yes, Go To 10

10. Stop: Pick the current discount value and DLM as the best.

4.1. Convergence Diagnostics

The convergence diagnostics of Geweke (1993) was used to compare values in the
early part of the Markov chain to those in the latter part of the chain in order to detect
failure of convergence. The statistic is constructed as follows: Two sub-sequences
of the Markov chain 6 are taken out, with 6] : 7 =1,...,n; and 6} : r = n,,...,n where
1<n <n,<n.

Let n, = n—n, + 1 and define 6, = ﬁﬂl] 0" and 6, = %Z?:,m 0’ . Geweke test

statistics was used to test whether the mean estimates have converged by compar-
ing means from the early and latter part of the Markov chain. Assuming the ratios
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M and 22 are fixed, "2 < 1, then the following statistic converges to standard
normal distribution as n approaches « we have
6,6
Zy = —— (39)
\/Sl )/n1+82(0)/n2

where §1(0) and s>(0) respresent spectral density estimates at zero frequencies.
This is a two-sided test and large absolute value Z — score indicates rejection of the
null hypothesis of non-stationarity. Effective sample size relates to autocorrelation
and measures mixing of the Markov chain. Most often, much discrepancy between
the effective sample size and the simulation sample size indicates poor mixing.
Effective Sample Size (ESS) is defined as

n n
ESS ) AT (40)
where n is the total sample size and p,(6) is the autocorrelation at lag k for 6. The
quantity n is autocorrelation time. The Bayesian process for estimating it is to first
find a cut off point k after which the autocorrelations are very close to zero and then
sum all the p; to that point. The cut-off point k is such that p, < 0.01 or p; < 2s;
where s is the standard deviation defined as

k—1
=2V (142 p2(0)) (@1)
j=1

In this method, the Lowest Average Granularity Range (AGR) of A required for
convergence and for minimum Mean Squared Prediction Error (MSPE) would be
used to determine optimal performance of the DLMs.

4.2. The Modified Recursive Bayesian Algorithm

In summary, the modified recursive Bayesian algorithm for estimating time-varying
parameter proceeds as follows:

1. Sample from p(67|Dr) using the filtering density in section 3.2 . This distribu-
tion is assumed to be Normally distributed with parameter N(k;, H;) where:
hy =m +CGR (611 —a1) (42)

H[ = C[ CtG Rt+1 G[C/ (43)

2. Sample from p(6r_1|6r,Dr).

3. For the filtering algorithm to run, estimate ¢ using the Gibbs sampler in section
3.2.1.

4. Given (6,|D;), obtain Q, = C;(1 —1)/A via the discounting method in section
3.3
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10.

Proceed by sampling recursively in this manner for s+ 1,¢ 42, ...

Use the sub-algorithm in section 3.4 to determine AGR required for conver-
gence and when to stop sampling.

Sample from p(6o, ..., 6r|Dr).

Starting from the final density sampled in equation (7) above, the smoothing
recursion proceeds backwards in time, using the previously computed filtering
and prediction densities.

Employ the convergence diagnostics discussed in section 3.4.1 to detect fail-
ure or otherwise of convergence of the Markov chain.

Use A and minimum MSPE to assess the performance of the modified algo-
rithm for DLM with FPs and TVPs for various sample sizes.

5. Conclusion

A sound theoretical exposition of how recursive Bayesian algorithms can be em-
ployed to model dynamic relationships over time in the presence of discounted evo-
lution variance constituted a major portion of this paper. The modelling of change
in the context of widely established concepts in econometrics was addressed by
proposing a conceptually implementable Recursive Bayesian Algorithm (RBA) for
estimating of time-varying slope parameters (6,) in dynamic linear model in the
presence of discounted evolution variance. A fast and efficient sub-algorithm for
optimal discount value and model selection was also proposed, to determine the
average granularities of discount values required for convergence in estimation of
time-varying parameters. Future studies will explore the application of this algorithm
to simulated and real financial, economic and environmental time series data.
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