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ABSTRACT 

This paper deals with the measurement of polarization for ordinal data. 
Polarization in the distribution of an ordinal variable is measured by using the 
decomposition of the Leti heterogeneity index. The ratio of the between-group 
component of the index to the within-group component is used to measure the 
degree of polarization for an ordinal variable. This polarization measure does not 
require imposing cardinality on ordered categories to quantify the degree of 
polarization in the distribution of an ordinal variable. We address the practical 
issue of identifying groups by using classification trees for ordinal variables. This 
tree-based approach uncovers the most homogeneous groups from observed 
data, discovering the patterns of polarization in a data-driven way. An application 
to Italian survey data on self-reported health status is shown.  
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Introduction 

Surveys frequently comprise one or more questions asking a respondent to 
self-assess his status (e.g., health, well-being, satisfaction) by choosing a 
response category from a set of ordered categories. When analyzing polarization 
in the distribution of an ordinal variable, one approach consists in imposing 
cardinality on ordinal categories to calculate conventional polarization measures. 
However, Apouey (2007) argued that transforming ordinal data into cardinal data 
is a supra-ordinal assumption, and she proposed bi-polarization indices which do 
not require supra-ordinal assumptions. Apouey’s indices measure bi-polarization 
in the distribution (Wolfson, 1994); that is, the disappearing of the central class 
induced by the distribution of the observations towards the lower and upper 
categories rather than around the central categories. The concept of bi-
polarization differs from that of polarization, since the latter is the tendency of 
grouping around local poles (Deutsch et al., 2013), which can be more than two 
and different from the extreme categories. In this paper, we use classification and 
regression trees (CART) (Breiman et al., 1984) for uncovering polarization 
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patterns when dealing with ordinal data. The use of regression trees to explore 
polarization in income distribution has been recently investigated by Mussini 
(2016). Classification trees for ordinal variables (Piccarreta, 2008) are used to 
handle ordinal data. To quantify the polarization uncovered from ordinal data 
exploration, a measure based on the decomposition of the Leti heterogeneity 
index by group is applied. We show that this polarization measure is coherent 
with a criterion for identifying groups of observations in classification trees for 
ordinal variables. 

Polarization is a relevant topic in studies on income distribution (Esteban and 
Ray, 1994; Duclos et al., 2004; Palacios-González and García-Fernández, 2012; 
Jenkins, 1995; Bossert and Schworm, 2008; Wang and Tsui, 2000; Yitzhaki, 
2010; Gigliarano and Mosler, 2009; Foster and Wolfson, 2010) and its original 
notion is based on the concept of identification-alienation: individuals identify 
themselves with those having similar income levels, whereas they feel alienated 
from those with different income levels. When measuring polarization for an 
ordinal variable whose categories describe the status of an individual, there is 
polarization when groups of individuals characterized by within-group 
homogeneity (identification) and between-group heterogeneity (alienation) are 
observable. A similar approach was suggested by Fusco and Silber (2014), who 
defined the situations with the lowest and highest levels of polarization under the 
assumption that groups are defined a priori. According to Fusco and Silber 
(2014), polarization is lowest if each group shows the same relative frequency 
distribution of individuals between the various ordered categories; that is, if an 
individual cannot identify himself with the members of his group or distinguish 
himself from those of the other groups. Polarization is highest if all the individuals 
within a group belong to one category and such category varies according to the 
group considered; that is, if an individual can fully identify himself with the 
members of his group and feel alienated from those of the other groups. This 
approach based on within-group homogeneity and between-group heterogeneity 
is in line with that suggested by Zhang and Kanbur (2001) for measuring income 
polarization2, however it suffers from the practical limitation that groups must be 
defined a priori (Duclos et al., 2004). We overcome this limitation by identifying 
groups through data exploration. We show that groups can naturally emerge from 
data by using classification trees to recursively partition individuals into groups. 
We assume that the ordinal variable is the response variable and some variables 
describing respondents (e.g., earned income, age, gender, education) are the 
explanatory variables. The population is recursively partitioned to maximize the 
between-group heterogeneity, which is equivalent to searching for the partition 
maximizing the gain in homogeneity within groups. A classification tree can 
uncover groups of homogeneous respondents in a data-driven way by selecting 
the explanatory variables which play a role in the polarization of the distribution of 
the response variable. Thus, polarization is examined on the basis not only of the 
response variable distribution but also of the socio-demographic characteristics of 
individuals, as suggested by Permanyer and D’Ambrosio (2015).   

The classification tree is obtained by applying the ordinal Gini-Simpson 
criterion proposed by Piccarreta (2008), which is based on a measure of 

                                                           
2 Given an inequality index (e.g. the Theil index), Zhang and Kanbur (2001) suggested measuring 
polarization by the ratio of the between-group component of the index to the within-group component.  
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heterogeneity for ordinal variables that can be expressed as a function of the 
between-group component of the Leti index of heterogeneity for ordinal variables 
(Leti, 1983). Grilli and Rampichini (2002) decomposed the Leti index of 
heterogeneity into two components: a within-group component measuring 
heterogeneity within groups, and a between-group component measuring 
heterogeneity between groups.3 Building on the Zhang and Kanbur approach to 
the measurement of polarization for numerical variables, polarization in the 
distribution of an ordinal variable is measured by the ratio of the between-group 
component of the Leti index to the within-group component. Since both the 
recursive partition and the polarization measure depend on the between-group 
component of the Leti index, this link is used to define a procedure for measuring 
polarization which consists of two phases. First, the most homogeneous groups 
are identified by using classification trees for ordinal variables. Second, 
polarization is measured by breaking down the Leti index into between-group and 
within-group components. 

We measure polarization in self-reported health data for a sample of Italian 
householders interviewed in the Survey on Household Income and Wealth in 
2010 (Banca d’Italia, 2012). Our findings show that polarization is low and that the 
interaction effect of income and age contributes to explaining the polarization 
pattern. 

The paper is organized as follows. Section 2 introduces the measure of 
polarization for ordinal variables. Section 3 outlines the procedure to recursively 
partition individuals into homogeneous groups. In section 4, an application to 
Italian household data on self-reported health status is shown. Section 5 
concludes. 

2. Measuring Polarization for Ordinal Variables 

We briefly review the Leti heterogeneity index and its decomposition by group 
(subsection 2.1); we then introduce the measure of polarization based on the 
decomposition of the Leti index (subsection 2.2). 

2.1 The Leti Index and Its Decomposition 

Suppose that 𝑌 is an ordinal variable with 𝑘 ordered categories 

𝑦1, ⋯ , 𝑦𝑗 , ⋯ , 𝑦𝑘. Let 𝑛 be the number of individuals and 𝑛1, ⋯ , 𝑛𝑗 , ⋯ , 𝑛𝑘 be the 

frequencies observed for the 𝑘 ordered categories of 𝑌. Let 𝐹(𝑦𝑗) be the 

cumulative relative frequency of 𝑦𝑗: 

 𝐹(𝑦𝑗) =
∑ 𝑛𝑖

𝑗
𝑖=1

𝑛
.           (1) 

The Leti index (Leti, 1983, pp. 290-297) is 

𝐿 = 2 ∑ 𝐹(𝑦𝑗)[1 − 𝐹(𝑦𝑗)]𝑘−1
𝑗=1 ,              (2) 

                                                           
3 Shorrocks (1980) defined a class of decomposable inequality measures for the measurement of 
inequality in the distribution of a numerical variable. Shorrocks (1984) also studied the properties of 
the inequality measures which can be decomposed by population subgroups.  
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and measures the degree of heterogeneity in the distribution of 𝑌. The Leti index 
equals 0 if frequencies are concentrated in one category. The Leti index equals 
(𝑘 − 1) 2⁄  if heterogeneity is highest; that is, when frequencies are equally split 

between the lowest category 𝑦1 and the highest category 𝑦𝑘. The Leti index can 

be normalized by dividing 𝐿 by (𝑘 − 1) 2⁄ .4 Building on the conceptualization of 
maximum heterogeneity for an ordinal variable suggested by Leik (1966), Blair 
and Lacy (1996, 2000) developed a measure of heterogeneity for ordinal 
variables, which is equivalent to the normalized version of the Leti index. This 
index was used by Reardon (2009) to measure segregation in the case of an 
ordinal variable. In addition, the index is a member of a class of inequality 
measures for ordinal data that was axiomatically derived by Lv et al. (2015).     

Grilli and Rampichini (2002) showed that the Leti index is decomposable by 
groups. Suppose the 𝑛 individuals are split into ℎ groups. Let 𝑛𝑗,𝑔 be the 

frequency observed for category 𝑦𝑗 within group 𝑔 (with 𝑔 = 1, ⋯ , ℎ) and 𝑛𝑔 be the 

size of group 𝑔. Let 𝐹(𝑦𝑗|𝑔) be the cumulative relative frequency of 𝑦𝑗 within 

group 𝑔: 

𝐹(𝑦𝑗|𝑔) =
∑ 𝑛𝑖,𝑔

𝑗
𝑖=1

𝑛𝑔
.         (3) 

The heterogeneity within group 𝑔 can be measured by using the Leti index:  

𝐿𝑔 = 2 ∑ 𝐹(𝑦𝑗|𝑔)[1 − 𝐹(𝑦𝑗|𝑔)]𝑘−1
𝑗=1 .       (4) 

 𝑝𝑔 = 𝑛𝑔 𝑛⁄  being the population share of group 𝑔, the within-group component of 

the Leti index is 

𝐿𝑊 = ∑ 𝑝𝑔𝐿𝑔
ℎ
𝑔=1 .           (5) 

The between-group component of the Leti index is 

𝐿𝐵 = 2 ∑ 𝑝𝑔
ℎ
𝑔=1 ∑ 𝐹(𝑦𝑗|𝑔)[𝐹(𝑦𝑗|𝑔) − 𝐹(𝑦𝑗)]𝑘−1

𝑗=1 .    (6) 

𝐿𝐵 in eq. (6) measures the heterogeneity between the cumulative relative 
frequency distribution in the population and the cumulative relative frequency 
distributions in the various groups. 

Since 𝐹(𝑦𝑗) = ∑ 𝑝𝑔𝐹(𝑦𝑗|𝑔)ℎ
𝑔=1 , 𝐿𝐵 can be rewritten as 

𝐿𝐵 = 2 ∑ ∑ 𝑝𝑔𝐹(𝑦𝑗|𝑔)[∑ 𝑝𝑖𝑖≠𝑔 𝐹(𝑦𝑗|𝑔) − ∑ 𝑝𝑖𝐹(𝑦𝑗|𝑖)𝑖≠𝑔 ]𝑘−1
𝑗=1

ℎ
𝑔=1 .  (7) 

Hence, after simple manipulations, an alternative expression for 𝐿𝐵 is 
obtained: 

𝐿𝐵 = 2 ∑ ∑ 𝑝𝑔𝐹(𝑦𝑗|𝑔) {∑ 𝑝𝑖
𝑖≠𝑔

[𝐹(𝑦𝑗|𝑔) − 𝐹(𝑦𝑗|𝑖)]}
𝑘−1

𝑗=1

ℎ

𝑔=1
 

                                                           
4 When 𝑛 is odd, the maximum value of the Leti index is  

𝑘−1

2
(1 −

1

𝑛2
) instead of  

𝑘−1

2
. However, this 

difference is negligible when 𝑛 is sufficiently large. 
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𝐿𝐵 = 2 ∑ ∑ {∑ 𝑝𝑖
𝑖≠𝑔

𝑝𝑔𝐹(𝑦𝑗|𝑔)[𝐹(𝑦𝑗|𝑔) − 𝐹(𝑦𝑗|𝑖)]}
𝑘−1

𝑗=1

ℎ

𝑔=1
 

𝐿𝐵 = 2 ∑ ∑ 𝑝𝑔𝑝𝑖
𝑖≠𝑔

∑ 𝐹(𝑦𝑗|𝑔)[𝐹(𝑦𝑗|𝑔) − 𝐹(𝑦𝑗|𝑖)]
𝑘−1

𝑗=1

ℎ

𝑔=1
 

𝐿𝐵 = 2 ∑ ∑ 𝑝𝑔𝑝𝑖 ∑ [𝐹(𝑦𝑗|𝑔) − 𝐹(𝑦𝑗|𝑖)]
2𝑘−1

𝑗=1

ℎ

𝑖=𝑔+1

ℎ

𝑔=1
 

 𝐿𝐵 = 2 ∑ ∑ 𝑝𝑔𝑝𝑖𝐷𝑔𝑖
ℎ
𝑖=𝑔+1

ℎ
𝑔=1 .                 (8) 

In eq. (8), 𝐷𝑔𝑖 measures the heterogeneity between the cumulative relative 

frequency distributions of groups 𝑔 and 𝑖. If the two groups have the same 

cumulative relative frequency distribution, then 𝐷𝑔𝑖 = 0. 𝐿𝐵 in eq. (8) is expressed 

as a function of the pairwise differences between the within-group cumulative 

relative frequency distributions. In this respect, there is a similarity between 𝐿𝐵 
and an index of inequality in life chances suggested by Silber and Yalonetzky 
(2011).5 When all groups have the same cumulative relative frequency 

distribution, 𝐷𝑔𝑖 is 0 for every 𝑔, 𝑖 = 1, ⋯ , ℎ (with 𝑔 ≠ 𝑖) and 𝐿𝐵 equals 0 since there 

is no heterogeneity between the cumulative relative frequency distributions of 

different groups. 𝐿𝐵 coincides with 𝐿 if the frequencies are concentrated in one 
category within every group; that is, when heterogeneity is fully explained by the 
between-group heterogeneity.  

Originally, Grilli and Rampichini (2002) interpreted the ratio of 𝐿𝐵 to 𝐿 as the 
share of heterogeneity explained by a generic variable 𝑋 used to form groups 
(Grilli and Rampichini, 2002, pp. 114). In the next section, we show that the ratio 
of the between-group component to the within-group component can be seen as 
a measure of polarization for ordinal variables. 

2.2 A Measure of Polarization for Ordinal Variables 

Polarization is the tendency of individuals to concentrate around local poles, 
forming groups of reasonable size in which every individual can identify himself 
with the members of his group and feel alienated from those of the other groups 
(Esteban and Ray, 1994; Duclos et al., 2004). The concept of polarization has 
been applied to studies on income distribution in which the original notion of 
identification-alienation has been adapted to the topic: individuals identify 
themselves with those having similar income levels, whereas they feel alienated 
from those with different income levels. This idea of polarization can be extended 
to the distribution of an ordinal variable by observing that there is polarization if 
groups have different relative frequency distributions and the relative frequency 
distribution within each group tends to converge towards a single category; that 

                                                           
5 Silber and Yalonetzky (2011) proposed a set of new indices for measuring inequality in life chances 
in the case of an ordinal variable. One of these indices is based on pairwise comparisons between the 
within-group cumulative relative frequency distributions of the ordinal variable. 
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is, polarization occurs if groups are characterized by within-group homogeneity 
(identification) and between-group heterogeneity (alienation). For example, Figure 
1 shows the relative frequency distribution of an ordinal variable with five 
response categories (ranging from “Very Poor” to “Excellent”). If we suppose that 
the individuals belonging to the same response category form a group of 
respondents with the same characteristics, we can say that the population is 
“polarized” in line with the Esteban and Ray general idea of polarization (Esteban 
and Ray, 1994). Fusco and Silber (2014) defined the situations with the lowest 
and highest levels of polarization for an ordinal variable, under the assumption 
that groups are pre-established. Polarization is lowest if each group has the same 
relative distribution of individuals between the various ordered categories; that is, 
if an individual cannot identify himself with the members of his group and 
distinguish himself from those of the other groups. Polarization is highest if the 
individuals within a group belong to a single category, and this category varies 
according to the group considered; that is, if an individual can fully identify himself 
with the members of his group and feel alienated from those of the other groups. 

 

Figure 1. Relative frequency distribution of an ordinal variable 
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In this framework, we establish a link between the measurement of 

polarization and the decomposition of the Leti index. Since the between-group 

component measures between-group heterogeneity and the within-group 

component measures within-group heterogeneity, we note that polarization 

increases as the share of the Leti index attributable to the between-group 

component increases. The higher the between-group heterogeneity, the lower the 

within-group heterogeneity. In line with the Zhang and Kanbur approach (2001), 

the ratio of the between-group component to the within-group component can be 

interpreted as a measure of polarization: 

𝑃𝑂 =
𝐿𝐵

𝐿𝑊 =
2 ∑ ∑ 𝑝𝑔𝑝𝑖𝐷𝑔𝑖

ℎ
𝑖=𝑔+1

ℎ
𝑔=1

∑ 𝑝𝑔𝐿𝑔
ℎ
𝑔=1

.         (9) 

𝑃𝑂 equals 0 if the cumulative relative frequency distribution within each group 

is the same; that is, the cumulative relative frequency distribution within each 

group is equal to that of the whole population. In this case, polarization is lowest 

since there is no between-group heterogeneity. 𝑃𝑂 increases as the share of 

overall heterogeneity due to the between-group heterogeneity increases. While 

the index equals 0 in the case of minimum polarization, there is no upper limit for 

the index. In this respect, 𝑃𝑂 differs from conventional inequality indices, which 

usually range from 0 (perfect equality) to 1 (maximum inequality). The polarization 

index satisfies the principle of population size invariance, which is a desirable 

property for inequality indices. This property states that the value of the index 

does not change if every individual is replicated 𝑚 times.6  

The formulation of 𝑃𝑂 takes the between-group heterogeneity, within-group 

homogeneity and group population shares into account; that is, the three main 

features of polarization (Esteban and Ray, 1994, p. 824) are included in the 

polarization measure. While the role of between-group heterogeneity is clear, 

those of the other two features deserve some additional explanations. The role of 

within-group homogeneity is considered by the within-group heterogeneity 

component in the denominator of the ratio in eq. (9). The higher the within-group 

homogeneity, the lower the denominator. Therefore, a gain in within-group 

homogeneity increases polarization, all other things being equal. From eq. (9), we 

see that smaller groups carry less weight in the measurement of polarization than 

larger groups. In addition, considering groups 𝑔 and 𝑖 and holding the sum of their 

population shares constant, the more similar their population shares, the greater 

the weight assigned to the heterogeneity between their cumulative relative 

frequency distributions. In eq. (9), 𝐷𝑔𝑖 is weighted by the product 𝑝𝑔𝑝𝑖, which 

increases as 𝑝𝑔 and 𝑝𝑖 become closer, holding the sum of the population shares 

of the two groups constant. 

                                                           
6 Silber and Yalonetzky (2011) introduced an alternative property linked to population replication for 
indices measuring inequality in the case of ordinal data, named population composition invariance. 
The property of population composition invariance states that the value of the index is unchanged if 

every individual within a group 𝑔 is replicated 𝑚 times. This property is not satisfied by 𝑃𝑂 since the 
population share of group 𝑔 and those of other groups would change if the population of group 𝑔 were 
replicated a certain number of times. 
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To apply the Leti-based measure of polarization, the partition of individuals 

into groups is required. However, assuming that groups are pre-established does 

not necessarily reflect the actual polarization in the distribution of an ordinal 

variable. Moreover, the choice of the criterion to form groups is a practical issue 

to be addressed (Duclos et al., 2004). We overcome these issues by letting 

homogeneous groups be formed in a data driven way. To uncover the most 

homogeneous groups, we use classification trees for ordinal variables (Piccarreta, 

2008), in which the recursive partition relies on a heterogeneity measure that can 

be expressed as a function of the between-group component of the Leti index. In 

the next section, we show that classification trees are useful to detect the most 

homogenous groups, since each group is composed of individuals who have the 

same characteristics (e.g. age, gender, occupational attainment, education) and 

are similar in terms of ordinal response categories. In fact, the classification tree 

procedure includes some individuals in the same group if they are similar in terms 

of a set of variables and the variable values characterizing that group differ from 

those characterizing the other groups, in line with the original idea of polarization 

proposed by Esteban and Ray (1994). 

3. Using Classification Trees for Detecting Homogenous Groups 

Classification and regression trees (Breiman et al., 1984) are nonparametric 

methods for exploring data or predicting new observations. If the response 

variable is categorical (numerical), a classification (regression) tree is produced. 

In a classification tree, the variation of a response categorical variable is 

explained by a set of explanatory variables. The classification tree is produced by 

recursively partitioning individuals into more homogeneous groups, each of which 

is characterized by both the within-group distribution of the response variable and 

the values of explanatory variables describing the members of the group. When 

dealing with an ordinal response variable, the conventional criteria for partitioning 

individuals into groups may not lead to the best partition (Piccarreta, 2008). 

Piccarreta (2008) extended the classification tree method and introduced splitting 

criteria to deal with an ordinal response variable. Here, we use ordinal 

classification trees as an explorative statistical tool for uncovering the 

relationships between an ordinal response variable and a set of individual’s 

characteristics. 

3.1 Classification Trees for Ordinal Variables 

Let (𝑌, 𝑿): Ω → (𝑆𝑌 × 𝑆𝑋1
× ⋯ × 𝑆𝑋𝑝

) ≡ 𝑆 be a vector random variable on the 

probability space (Ω, 𝐹, 𝑃), where 𝑌 is an ordinal variable and 𝑿 =
{𝑋1, ⋯ , 𝑋𝑚, ⋯ , 𝑋𝑝} are 𝑝 explanatory variables. Assume that 𝑌 is the response 

variable, with 𝑘 ordered categories (𝑦1, ⋯ , 𝑦𝑗 , ⋯ , 𝑦𝑘), and 𝑿 is the vector collecting 

𝑝 individual’s characteristics. The classification tree is built by recursively 

partitioning the space 𝑆 into disjoint subsets, such that each subset includes 

individuals who are as homogeneous as possible in terms of 𝑌. Initially, all 

individuals are included in one set, called the root node, and then are split into 
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subsets, called nodes. The degree of heterogeneity of the response variable 

within a node is measured by defining an impurity measure. In the case of an 

ordinal response variable, impurity can be measured by using the Gini index of 

heterogeneity of an ordinal variable (Gini, 1954): 

𝐼𝑡(𝑌) = ∑ 𝐹(𝑦𝑗|𝑡)[1 − 𝐹(𝑦𝑗|𝑡)]𝑘
𝑗=1 ,         (10) 

where 𝑡 is a generic node, which coincides with the root node at the beginning of 

the recursive partitioning procedure. The partitioning procedure starts by splitting 

a parent node (the root node) into two descendent nodes according to a cut-off 

value chosen among all the observed values of the explanatory variables 𝑿. Such 

a cut-off value is selected to maximize the decrease in the impurity measure in 

eq. (10). In the next step, each descendent node is split into two further subsets 

according to the partition maximizing the decrease in impurity. In each step of the 

splitting procedure, the decrease in impurity is measured by subtracting the 

impurity within the descendent nodes from the impurity of the parent node. To 

explain the criterion for partitioning a parent node into two descendent nodes, 

consider a generic node 𝑡 with 𝑛𝑡 individuals. Without loss of generality, we may 

assume that 𝑋𝑚 is a numerical explanatory variable. Let 𝑐 ∈ 𝑆𝑋𝑚
|𝑡 stand for a 

value of 𝑋𝑚, with the domain of 𝑋𝑚 restricted to node 𝑡. Let 𝑡𝑙 and 𝑡𝑟 be the 

descendent nodes obtained by splitting 𝑡 at the cut-off 𝑐. Let 𝑛𝑡𝑙
= ∑ 𝐼{𝑋𝑚,𝑖≤𝑐}

𝑛𝑡
𝑖=1  

and 𝑛𝑡𝑟
= ∑ 𝐼{𝑋𝑚,𝑖>𝑐}

𝑛𝑡
𝑖=1  be the numbers of individuals in nodes 𝑡𝑙 and 𝑡𝑟, 

respectively. The decrease in impurity obtained by splitting 𝑡 into two nodes, 𝑡𝑙 

and 𝑡𝑟, at 𝑐 is 

∆𝑡(𝑌, 𝑐) = 𝐼𝑡(𝑌) −
𝑛𝑡𝑙

𝑛𝑡
 𝐼𝑡𝑙

(𝑌) −
𝑛𝑡𝑟

𝑛𝑡
 𝐼𝑡𝑟

(𝑌),        (11) 

where 𝐼𝑡𝑙
(𝑌) = ∑ 𝐹(𝑦𝑗|𝑡𝑙)[1 − 𝐹(𝑦𝑗|𝑡𝑙)]𝑘

𝑗=1  and 𝐼𝑡𝑟
= ∑ 𝐹(𝑦𝑗|𝑡𝑟)[1 − 𝐹(𝑦𝑗|𝑡𝑟)]𝑘

𝑗=1  are 

the impurity measures calculated for nodes 𝑡𝑙 and 𝑡𝑟, respectively. After simple 
manipulations, eq. (11) can be rewritten as 

∆𝑡(𝑌, 𝑐) =
𝑛𝑡𝑙

𝑛𝑡𝑟

𝑛𝑡
2 ∑ [𝐹(𝑦𝑗|𝑡𝑙) − 𝐹(𝑦𝑗|𝑡𝑟)]

2𝑘
𝑗=1 .        (12)  

Piccarreta (2008) suggested the use of the expression in eq. (12) for 
measuring the decrease in impurity due to splitting 𝑡 into 𝑡𝑙 and 𝑡𝑟, with the 
exclusion of the comparison between 𝐹(𝑦𝑘|𝑡𝑙) and 𝐹(𝑦𝑘|𝑡𝑟): 

∆𝑡
∗(𝑌, 𝑐) =

𝑛𝑡𝑙
𝑛𝑡𝑟

𝑛𝑡
2 ∑ [𝐹(𝑦𝑗|𝑡𝑙) − 𝐹(𝑦𝑗|𝑡𝑟)]

2𝑘−1
𝑗=1 .         (13) 

For node 𝑡, the splitting variable and the variable threshold c are selected 
from all the observed values of the explanatory variables to maximize the impurity 
reduction in eq. (13). This splitting procedure recursively runs until a stopping rule 
establishes that no further partition is useful since it does not produce any 
important gain in terms of within-group homogeneity and between-group 
heterogeneity. At the end of the procedure, the individuals in a subset (terminal 
node) constitute a group characterized by the distribution of 𝑌 within the group 
and the combination of the values of the explanatory variables which identifies 
that group. 
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3.2 Linking the Decomposition of the Leti Index with the Splitting Criteria for 
a Classification Tree 

We show that maximizing ∆𝑡
∗(𝑌, 𝑐) is equivalent to searching for the 

breakdown maximizing the between-group component of the Leti index calculated 
for node 𝑡. The Leti heterogeneity index for 𝑡 is 

𝐿𝑡 = 2 ∑ 𝐹(𝑦𝑗|𝑡)[1 − 𝐹(𝑦𝑗|𝑡)]𝑘−1
𝑗=1 .      (14) 

Supposing that 𝑡 is split into 𝑡𝑙 and 𝑡𝑟, the decomposition of 𝐿𝑡 is 

𝐿𝑡 = 𝐿𝑡
𝑊 + 𝐿𝑡

𝐵,          (15) 

where the within-group component is 

𝐿𝑡
𝑊 =

𝑛𝑡𝑙

𝑛𝑡
2 ∑ 𝐹(𝑦𝑗|𝑡𝑙)[1 − 𝐹(𝑦𝑗|𝑡𝑙)]𝑘−1

𝑗=1 +
𝑛𝑡𝑟

𝑛𝑡
2 ∑ 𝐹(𝑦𝑗|𝑡𝑟)[1 − 𝐹(𝑦𝑗|𝑡𝑟)]𝑘−1

𝑗=1 =

𝑝𝑡𝑙
 𝐿𝑡𝑙

+ 𝑝𝑡𝑟
 𝐿𝑡𝑟

                     (16) 

and the between-group component is  

𝐿𝑡
𝐵 = 2 {

𝑛𝑡𝑙

𝑛𝑡
∑ 𝐹(𝑦𝑗|𝑡𝑙)[𝐹(𝑦𝑗|𝑡𝑙) − 𝐹(𝑦𝑗|𝑡)]𝑘−1

𝑗=1 +
𝑛𝑡𝑟

𝑛𝑡
∑ 𝐹(𝑦𝑗|𝑡𝑟)[𝐹(𝑦𝑗|𝑡𝑟) −𝑘−1

𝑗=1

𝐹(𝑦𝑗|𝑡)]}  

𝐿𝑡
𝐵 = 2𝑝𝑡𝑙

𝑝𝑡𝑟
∑ [𝐹(𝑦𝑗|𝑡𝑙) − 𝐹(𝑦𝑗|𝑡𝑟)]

2𝑘−1
𝑗=1 .           (17) 

Irrespective of the multiplicative factor 2 in eq. (17), the comparison of eq. (17) 
and (13) leads to the conclusion that the decrease in heterogeneity produced by 
splitting node 𝑡 is measured by the between-group component of the Leti index 
calculated for that subset. The partitioning procedure iteratively searches for the 
breakdown maximizing the between-group component of the Leti index.  

The splitting procedure can be repeated until the terminal nodes are very 
small, resulting in an overlarge tree that could be difficult to interpret. Therefore, a 
stopping rule is needed to select the optimal tree size. A tree pruning procedure 
(Breiman et al., 1984) is used to find the best tree. Pruning can be performed by 
minimizing the following cost-complexity function for a tree 𝑇: 

𝑅𝛼(𝑇) = 𝑅(𝑇) + 𝛼 ∙ |𝑇|.          (18) 

In eq. (18), |𝑇| is the tree size (i.e. the number of terminal nodes), 𝛼 is a 

complexity parameter ranging within the interval (0, ∞), and 𝑅(𝑇) is the 

resubstitution error. The functional form of 𝑅(𝑇) depends on the nature of the 

response variable 𝑌. If 𝑌 is ordinal, 𝑅(𝑇) may coincide with either the total 
misclassification rate or the total misclassification cost. A misclassification occurs 
when the true response category of an individual is different from that assigned to 
him by the tree. Following Galimberti et al. (2012), the response category 
assigned to an individual is equal to the median category of the terminal node in 
which the individual is included. The total misclassification rate is equal to ratio of 
the number of misclassified individuals to the total number of individuals. The total 
misclassification rate is commonly used when dealing with a nominal variable. 
Piccarreta (2008) suggested assigning a cost to each misclassification given that 
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the response variable is ordinal instead of nominal. The misclassification cost is 
set equal to the number of categories separating the true response category of an 
individual from the response category assigned to him by the tree: for example, if 
the two categories are adjacent, the misclassification cost equals 1; if the true 
response category of an individual is 𝑦𝑗 and the response category assigned to 

him is 𝑦𝑗−2, then the misclassification cost equals 2. The total misclassification 

cost is equal to the sum of misclassification costs. 
As shown in Breiman et al. (1984), for any 𝛼 there is a unique smallest tree 

minimizing eq. (18), therefore, finding the best tree reduces to selecting the 
optimal tree size. Since 𝑅(𝑇) in eq. (18) is always minimized by the largest tree, 
Breiman et al. (1984) suggested using V-fold cross-validation to improve the 
reliability of misclassification error estimates. V-fold cross-validation is performed 
in various steps: (i) individuals are divided into V (usually V is set equal to 10) 
subsets of approximately equal size; (ii) each subset in turn is left out, a tree of 
size |𝑇| is built by using the remaining subsets and this tree is used to predict the 
response categories for the members of the omitted subset; (iii) the 
misclassification costs are calculated for each omitted subset; (iv) the 
misclassification costs calculated for the V subsets are added up and the cross-

validated total misclassification cost is obtained, 𝑅𝐶𝑉(𝑇); (v) steps (i)-(iv) are 

repeated for every tree size. Then, 𝑅(𝑇) is replaced with 𝑅𝐶𝑉(𝑇) in eq. (18) to 
select the optimal tree size.  

After pruning the classification tree, the terminal nodes identify groups 
characterized by within-group homogeneity and between-group heterogeneity in 
terms of a set of variables comprising the response ordinal variable and the 
explanatory variables used to produce the tree. Different from the Silber and 
Fusco (2014) approach, groups are directly identified through data exploration by 
clustering individuals who are similar. Therefore, using classification trees, 
polarization patterns can be naturally uncovered in a data driven way. A further 
advantage of the tree-based approach to the identification of groups is the 
selection of the most important explanatory variables in determining between-
group heterogeneity, since only the explanatory variables producing an 
appreciable decrease in impurity are shown in the classification tree.  

4. Application to Data on Self-Reported Health Status 

We measure the polarization in the distribution of data on self-reported health 
status (hereafter, SRHS) collected by the Survey on Household Income and 
Wealth (henceforth, SHIW) carried out by the Bank of Italy in 2010 (Banca d’Italia, 
2012). SRHS data include respondents’ perceptions of their general health 
condition, with the response categories ranging from “Very Poor” to “Excellent”. 
The use of SRHS is very common in epidemiological surveys since it is a good 
predictor of mortality (Allison and Foster, 2004); moreover, socio-economic 
surveys frequently ask SRHS to investigate the relationship between health status 
and socio-economic status (Kakwani et al., 1997; Idler and Benyamini, 1997). In 
our analysis, polarization in SRHS is measured by exploring the relationship 
between SRHS and a set of explanatory socio-economic variables collected in the 
2010 SHIW. First, we run the classification tree procedure to partition 
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respondents into homogeneous groups. Second, we measure polarization in the 
SRHS distribution by using 𝑃𝑂.  

The 2010 SHIW collected information on income, wealth and socio-economic 
variables for a sample of 7,951 households. In addition, the survey asked each 
householder to assess his health status and that of each household member. We 
focus our attention on the householder SRHS and 7,950 householders are 
considered7. Table 1 shows the description and coding for the ordinal response 
variable and explanatory variables. SRHS is measured with an ordinal variable 
having five response categories: “Very Poor”, “Poor”, “Fair”, “Good”, “Excellent”.  

Table 1. Variable description and coding. 

Response variable 

name description type ordered categories 

SRHS 
self-reported 
health status 

ordinal "Very Poor", "Poor", "Fair", "Good", "Excellent"; 

Explanatory variables 

name description type 
categories coding (for categorical variables) or range (for 

numerical variables) 

AGE_CLASS age class ordinal up to 34 years, 35-44, 45-54, 55-64, more than 64 years 

AREA 
geographical 

area of 
residence 

nominal N="North", C="Centre", S="South and Islands" 

INCOME 
household 

income 
numerical (0,∞) 

EMPLOYMENT 
employment 

status 
nominal 

(BC="blue-collar worker", OW="office worker or school 
teacher", M="cadre or manager", P="sole 

proprietor/member of the arts or professions", SE="other 
self-employed", R="retired", NE="other not-employed") 

EDUCATION 
educational 
qualification 

ordinal 

N="none", P="primary school certificate", LS="lower 
secondary school certificate", VS="vocational secondary 
school diploma", US="upper secondary school diploma", 

B="3-year university degree", G="5-year university degree", 
PG="postgraduate qualification" 

ACTIVITY 
sector of 
activity 

nominal 
A="agriculture, fishing", I="industry", G="general 

government", O="other", NA="do not know" 

GENDER gender dichotomous F="Female" 

SIZE_TOWN 
size of the 

town of 
residence 

ordinal  
ST="0-20,000 inhabitants", MT="20,000-40,000", 

LT="40,000-500,000", C="more than 500,000 inhabitants" 

 
Figure 2 shows the relative frequency distribution of SRHS data. We observe 

that the median category is “Good” and that the relative frequencies in the upper 
categories (“Good” and “Excellent”) are greater than those in the others. We 
initially run the recursive partitioning procedure by setting a small value of the 

                                                           
7 SRHS is not available for one of the surveyed householders; therefore, he is excluded from the 

empirical analysis. In all calculations, we use the sample weights provided by the SHIW.  
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complexity parameter (CP=0.01) to produce a large tree.8 An overlarge tree 
avoids that the interaction effects between explanatory variables are not 
discovered because none of the associated main effects produces a split with an 
appreciable decrease in terms of misclassification costs.9  

 

Figure 2. Relative frequency distribution of SRHS 

 

                                                           
8 We use the R package rpartScore (Galimberti et al., 2012) for recursive partitioning and we set the 

complexity parameter equal to the default value CP=0.01. The CP value in rpartScore is directly 
linked to α in eq. (18), since CP is equal to the ratio of α to the total misclassification cost calculated 
for the tree with no splits (i.e. the tree having no subsets). Therefore, α can be determined by setting 
CP. 

9 Setting a large CP value serves the scope of excluding a split if it does not produce an appreciable 
reduction in total misclassification cost. However, if that split is made, one of the descendent subsets 
may be split in a way to produce an appreciable decrease in total misclassification cost. This can 
occur when a split based on the interaction between variables produces an appreciable decrease in 
total misclassification cost but none of the associated variable main effects produces an appreciable 
misclassification cost reduction.  
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Table 2 shows the tree size |𝑇| (column 1), the minimum CP value for a tree 

of size |𝑇| (column 2), the total misclassification cost (column 3), the 10-fold 
cross-validated total misclassification cost (column 4), and the standard error of 
the 10-fold cross-validated total misclassification cost (column 5).  

 

Table 2. Tree size, total misclassification cost and 10-fold cross-validated total 
misclassification cost. 

 |𝑇| 𝐶𝑃 𝑅(𝑇) 𝑅𝐶𝑉(𝑇) 𝑆𝐸 

1 0.0491 1.0000 1.0000 0.0172 

3 0.0170 0.9018 0.9047 0.0174 

6 0.0100 0.8507 0.8566 0.0220 

 
Table 2 shows that the tree is not particularly successful in classifying 

individuals since the 10-fold cross-validated total misclassification cost is 0.8566. 
However, our aim is not finding a tree performing a good classification but 
exploring whether there are homogenous groups emerging from the data. From 
this standpoint, we need to handle the trade-off between the gain in within-group 
homogeneity and the tree size increase. We observe that passing from three to 
six terminal nodes does not imply a remarkable reduction of misclassification 
cost; that is, increasing the number of groups from three to six produces a small 
gain in terms of within-group homogeneity. Hence, we prune the tree by setting a 
complexity parameter greater than 0.01 to reduce the tree size. Figure 3 shows 
that the pruned tree has three terminal nodes in which the householders are split 
(groups 2, 6 and 7 in Figure 3). Figure 3 shows the size and the median category 
for each group. AGE_CLASS and INCOME are the explanatory variables playing 
a role in the partition of householders into groups. As expected, age has an effect 
on SRHS. SRHS of householders aged 65 years or older (group 3) is lower than 
SRHS of those younger than 65 years (group 2). Among householders aged 65 
years or older (group 3), SRHS is better for householders with household income 
higher than 20,960.5 euros (group 7).  
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Figure 3. Classification tree for SRHS 

 
Figure 4 shows the relative frequency distribution within each of the three 

groups. Although the median category of groups 2 and 7 is the same, the relative 
frequencies are concentrated in the upper two categories within group 2 whereas 
the relative frequencies spread towards the middle category within group 7. We 
observe that the SRHS distribution within group 2 is quite different from that within 
group 6, however group 6 is not very homogeneous in terms of SRHS. The 
normalized Leti index of the overall SRHS distribution equals 0.4542, indicating 
an intermediate level of heterogeneity. We break down the Leti index by group 
and we find that the within-group component is 0.3880 while the between-group 
component is 0.0662. The polarization measure 𝑃𝑂 is equal to 0.1706 and 
indicates that polarization is low. This means that the groups are not particularly 
characterized by within-group homogeneity and between-group heterogeneity 
with respect to SRHS and the socio-economic variables considered.  
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Figure 4. Relative frequency distributions of SRHS by group 

5. Conclusion 

This article deals with the measurement of polarization for ordinal variables. 
The contribution of the article is two-fold. First, we propose a synthetic measure of 
polarization based on the decomposition of the Leti heterogeneity index by group. 
Given a set of individuals split into groups by a certain criterion, the ratio of the 
between-group component of the Leti index to the within-group component 
indicates the extent to which the distribution of the ordinal variable is 
homogeneous within each group and heterogeneous between groups. If the 
within-group distributions are equal, the members of a group cannot distinguish 
themselves from those of the other groups. In this case, the measure of 
polarization equals 0, indicating that polarization is minimum. If the ordinal 
variable distribution within each group is mainly concentrated in a single category 
and this category varies according to the group considered, the within-group 
homogeneity is high. In this case, each member of a group can identify himself 

group 2

SRHS

R
e
la

ti
v
e
 f

re
q
u
e
n
c
y

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

V
e

ry
 P

o
o

r

P
o

o
r

F
a

ir

G
o

o
d

E
x
c
e

lle
n

t

group 6

SRHS

R
e
la

ti
v
e
 f

re
q
u
e
n
c
y

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

V
e

ry
 P

o
o

r

P
o

o
r

F
a

ir

G
o

o
d

E
x
c
e

lle
n

t

group 7

SRHS

R
e
la

ti
v
e
 f

re
q
u
e
n
c
y

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

V
e

ry
 P

o
o

r

P
o

o
r

F
a

ir

G
o

o
d

E
x
c
e

lle
n

t



STATISTICS IN TRANSITION new series, June 2018 

 

293 

with the members of his group and feel alienated from those belonging to the 
other groups. The greater the within-group homogeneity, the greater the measure 
of polarization. An advantage of this polarization measure is that it does not 
require imposing cardinality on the ordered categories of an ordinal variable. 
Indeed, imposing cardinality is a supra-ordinal assumption altering the original 
variable type. 

The second contribution of the article is the use of a tree-based approach to 
partition individuals into homogeneous groups when exploring polarization in the 
distribution of an ordinal variable. As noted by Duclos et al. (2004), a practical 
issue in polarization studies is finding groups characterized by within-group 
homogeneity and between-group heterogeneity in terms of a set of variables. We 
show that the between-group component of the Leti index is equivalent to the 
impurity measure used in the process generating a classification tree for an 
ordinal response variable. Using classification trees, we can uncover whether 
individuals are naturally split into homogeneous groups, each of which comprises 
individuals who are similar in terms of the ordinal response variable and a set of 
explanatory variables. In addition, this approach is useful for selecting the 
explanatory variables which play a role in the polarization of the ordinal variable. 
Since the recursive partitioning procedure also explores the interaction effects 
between the explanatory variables, analysts can discover polarization patterns 
which cannot be assumed a priori. 

We measure the polarization of SRHS data for a sample of Italian 
householders interviewed in the 2010 SHIW. The polarization measure is equal to 
0.1706, indicating that polarization is low. The classification tree for SRHS shows 
that the age and household income of respondents are the most important 
variables in the partition of householders in terms of SRHS. All other explanatory 
variables, like employment status, educational qualification or gender, do not play 
an important role in the polarization of SRHS. 
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