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ABSTRACT 

Warner’s randomized response (RR) model is used to collect sensitive information 
for a broad range of surveys, but it possesses several limitations such as lack of 
reproducibility, higher costs and it is not feasible for mail questionnaires. To 
overcome such difficulties, nonrandomized response (NRR) surveys have been 
proposed. The proposed NRR surveys are limited to simple random sampling with 
replacement (SRSWR) design. In this paper, NRR procedures are extended to 
complex survey designs in a unified setup, which is applicable to any sampling 
design and wider classes of estimators. Existing results for NRR can be derived 
from the proposed method as special cases. 

Key words: complex survey designs, parallel model, randomized response, 

probability proportional to size, varying probability sampling. 
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1. Introduction 

In epidemiological, medical and sociological surveys among others, 
information is often collected on highly sensitive issues such as induced abortion, 
HIV/AIDS, drug addiction, domestic violence and cheating in examination, etc. In 
such situations, direct response (DR) surveys where sensitive questions are 
asked directly to the respondents, the respondents often provide wrong answers, 
or refuse to answer because of social stigma and/or fear. Under such 
circumstances the randomized response (RR) techniques may be used to collect 
more reliable data, protect respondents’ confidentiality and avoid unacceptable 
rate of nonresponse. The RR technique was introduced by Warner (1965). 
Warner’s technique was later modified by Horvitz et al. (1967), Greenberg et al. 
(1969), Raghavrao (1978), Franklin (1989), Arnab (1990, 1996), Kuk (1990) and 
Rueda et al. (2015) to increase co-operations from respondents and improve 
efficiencies of the proposed estimators. The applications of the RR technique to 
real life situations were reported by many researchers: Greenberg et al. (1969) 
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with regard to illegitimacy of offspring; Abernathy et al. (1970) concerning 
incidence of induced abortions; Goodstadt and Gruson (1975) concerning drug 
uses, Folsom et al. (1973) concerning drinking and driving; and Arnab and 
Mothupi (2015) concerning sexual habits of University students.  

In all randomised response models proposed in the literature, respondents 
have to perform randomized response experiments using devices such as 
spinners, the drawing of cards and the drawing of random numbers. So, in a 
survey involving RR methods, the investigators have to describe the methods and 
supply randomized devices to the respondents, which make the survey more 
expensive and time consuming rather than the direct response surveys. Tan et al. 
(2009) pointed out a few further limitations of RR which include (i) lack of 
reproducibility in the sense that the same respondent may provide different 
response depending on the outcome of the RR trial, (ii) uneven implementation of 
RR devices, which make it difficult to convince the respondents that their privacy 
is protected, (iii) some of the questions are alternative to sensitive questions (e.g. 
Warner (1965) model) and (iv) unfeasible for mail questionnaire. To overcome 
some of the aforementioned difficulties, nonrandomized response (NRR) model 
was proposed by Tian et al. (2007), Yu et al. (2008), Tan et al. (2009), Tian 
(2014) among others. In the proposed NRR models, independent non-sensitive 
questions were used to obtain indirect answers on sensitive issues. Obviously, 
NRR models reduce costs and are feasible for mail questionnaire. Tan et al. 
(2009) and Tian (2014) reported that the NRR model is more efficient than the RR 
model for estimating population characteristics. NRR techniques in real life 
surveys were used by Tang et al. (2014) to investigate homosexual experience 
among college students; Tian (2014) to investigate sexual behaviour and on 
plagiarism; and Wu and Tang (2016) to investigate pre-marital sex experience.  

All the NRR models available in the literature are limited to simple random 
sampling with replacement (SRSWR) sampling design only. However, in practice 
most surveys are complex and multi-character surveys. A sampling design other 
than simple random sampling is called a complex sampling design. Complex 
sampling often involves clustering, stratification and unequal probability sampling 
among others, while in multi-character surveys information of more than one 
character is collected at a time. Some of the characters are of a confidential 
nature and others are not. For example, Household Income and Expenditure 
Survey 2002/03 (HIES 2002/03) conducted by CSO (2004), Botswana, involved a 
selection of first stage units by inclusion probability proportional to size (IPPS) 
sampling design, and the second stage units by a systematic sampling procedure. 
The same survey design was used by Statistics South Africa (2005) for HIES 
2005/06 survey, Botswana Aids Impact Surveys (BAIS (2008)) conducted by CSO 
(2009) to collect data relating to sensitive issues such as sexual behaviour along 
with non-sensitive items such as socio-economic conditions. 

In this paper, we have extended Tian (2014) NRR model called “The parallel 
model” for estimating population characteristics when the data is collected using 
complex survey designs. The estimator of the population proportion, its variance 
and unbiased estimators of variances of the estimators are derived in a unified 
setup, which is applicable to any sampling design and estimators. The estimators 
of the population proportions, their variances and unbiased estimators of the 
variances for the existing NRR models can be obtained from the proposed 
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method as special cases. It was found that under the SRSWR sampling, both the 
estimator and variance of the estimator of the population proportion 𝜋𝑦 for the 

Greenberg et al. (1969) and Tian (2014) are the same. However, for the simple 
random sampling without replacement (SRSWOR) estimators of 𝜋𝑦 are the same 

while the variance of Greenberg et al. (1969) estimator is higher than the Tian 
(2014) estimator. Two pioneering RR techniques are described below. 

1.1. Warner’s model  

In Warner’s (1965) pioneering method, a sample of size n  was selected from 

a population by SRSWR method. Each of the respondents selected in the sample 
was asked to draw a card at random from a pack of well scaffolded cards 
consisting of two types of cards with known proportions and identical 

in appearance. Card type 1, with proportion 1( 1/ 2)P   contains the question “Do 

you belong to the sensitive group A ?” while card type 2 with proportion 11 P   

contains the question “Do you belong to group A ?” where A  is a sensitive group 

such as HIV positive and A  is the complement of group A (HIV negative). The 
respondent will supply a truthful answer “Yes” or “No” for the question mentioned 
in the selected card. The experiment is performed in the absence of the 
interviewer and hence the privacy of the respondent is maintained because the 
interviewer will not know which of the two questions the respondent has answered 
(See Arnab, 2017).  

1.2. Greenberg et al. model 

Greenberg et al. (1969) modified Warner’s method by incorporating 
a sensitive question (character y ) along with a non-sensitive question (character

x ). In this method, a sample of n  units is selected by SRSWR method and each 

of the respondents selected in the sample has to pick a card at random 
(unobserved by the interviewer) from a pack containing two types of identical 
cards with known proportions as in Warner’s model. The type 1 cards bear the 

sensitive question “Do you belong to the sensitive group A ?” with proportion 

2 ( 0)P  while card type 2 (with proportion 21 P  ) bears a question of unrelated or 

non-sensitive characteristic B  such as “Are you an African?”. Here also, the 
respondent will supply a truthful answer “Yes” or “No” for the question mentioned 
in the selected card (See Arnab, 2017). 

2. Tian’s NRR model 

Tian (2014) proposed the following NRR model called “The parallel model”, 
where the respondents need not require RR devices to provide responses. In this 
parallel model, respondents fill the questionnaire themselves unobserved by the 
interviewer. The questionnaire is a mixture of sensitive and non-sensitive 
questions. The parallel method is described below. 
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2.1. Parallel method 

Let A denote the group of people who possess a sensitive characteristic y

(such as HIV positive) and A denotes the people who do not possess the 
sensitive characteristic y (HIV negative). Further, let x  and w  be two non-

sensitive dichotomous variates, such that y , x  and w are mutually independent. 

For example, 1(0)x    if the respondent’s birthday 1 to 15 (16-31) days of a month 

while 1(0)w  if the respondent is born between July and December (January to 

June) of a year. Clearly x  and w  are independent of the HIV infection status y  

such that Pr ( 1) 0.5x ob x     and 1 Pr ( 1)p ob w   0.5 . Here a respondent 

has to answer truthfully “Yes” or “No” the unrelated non-sensitive question 1Q  if 

his/her birthday falls in the first half of the year, i.e. ( 0)w   or a sensitive question 

2Q  if his/her birthday falls within the second half of the year, i.e. ( 1)w  .The 

respondent should provide the answer “Yes” or “No” without disclosing which 
question he/she has answered. Hence, the confidentiality of the respondent is 
maintained. 

For example, the questions 1Q  and 2Q  are as follows: 

 1Q : Are you a vegetarian? 

2Q : Are you HIV positive? 

2.2. Sampling design and methods of estimation 

 Tian (2014) used SRSWR method of sampling for the selection of a sample. 
Let n  be the number of respondents selected and 'n be the number of 

respondents who answered “Yes”. Here, the probability of obtaining “Yes” answer 
from a respondent is  

                               Pr { 0 1} Pr { 1 1}t ob w x ob w y            

                           (1 ) x yp p                                                                  (2.1) 

Noting that 'n  follows binomial distribution, Tian (2014) obtained an unbiased 

estimator of y  as  

                              
ˆ (1 )

ˆ t x
ty

p

p

 


 
                                              (2.2) 

where ˆ '/t n n  = proportion of “Yes” answers.  

The variance ˆty  is given by 

                         2

(1 ) (1 ) ( | , )
ˆ

y y x y

ty

p g p
Var

n np

   


 
                           (2.3) 
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where 
2( | , ) ( 1) (1 2 )x y x y x yg p p p p          . 

For , .  

3. Parallel models for Complex survey designs 

In this section we propose a methodology of estimating population proportion 
of a sensitive characteristic of a complex multi-character survey design where the 
data of the sensitive characteristic is collected by using the parallel method.  

Consider a finite population {1,.., ,.., }U i N of N  units from which a sample s  of 

size n  units is selected with probability ( )p s using a sampling design P . Let 

( )i

s i

p s


  and 

,

( )ij

s i j

p s


  be the inclusion probabilities for the ith, and ith 

and jth ( )i j units of the population. From each of the units in the sample s , the 

information on the sensitive characteristic y  is obtained by using a parallel 

method. Let ( )B B
 
be the group of respondents whose birthday falls between first 

half of a month i.e. 01 and 15 days (after 15th day of a month) of a month; ( )W W

be the group of respondents born in the second half of the year, i.e. between July 

and December (January and June) and ( )A A be the group of respondents who do 

(do not) possess the sensitive characteristic y . Define 

 
1  if the ith unit 

0   if the ith unit 
i

B
x

B


 


,  

1  if the unit i

0   if the unit i
i

W
w

W


 

  

,  
1  if the ith unit 

0   if the ith unit 
i

A
y

A


 


 

and 
1  if the ith unit answers" "

0   if the ith unit answers " "
i

Yes
z

No


 


    

Under the parallel model, if a respondent belongs to the group W , he/she 

answers the question 1Q .  In this case if the respondent’s birthday falls between 

01 and 15th day of a month, the respondent provides “Yes” answers with 
probability one. Otherwise if the respondent is born after 15th day of a month, the 
respondent supplies “No” answers with probability 1. Hence, 

 i iz x        if i W                                              (3.1) 

Similarly, if a respondent belongs to the group W , then the respondent 

answers the question 2Q  . In this case the respondent answers “Yes” with 

probability one if he/she belongs to the sensitive group A  (HIV positive). On the 

other hand, if the respondent belongs to the complementary group A  
(HIV negative), then he/she supplies response answer “No” with probability one.  
Hence, in this cas 

i iz y      i W                                                  (3.2) 

1/ 2x 
( 1) 1

( | , )
4 2

x y

p
g p 


 
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Equations (3.1) and (3.2) yield 

                                                
(1 )i i i i iz w y w x                                            (3.3) 

and                                    

                                                      i

i U

Z z



  

                                                         i i

i W i W

x y

 

                                                               

                                                         

WAWB
N N   

where  WAWB
N N  is the number of individuals of the population belonging to the 

groups  W B   W A .  

Assuming that the membership of an individual to the group  A A , ( )W W , 

and ( )B B   is mutually independent, we make the following assumptions: 

;  (1 ) ;  ;  (1 )WB x x WA y yWB WAp p p N p                        (3.4) 

where  

  ,  , ,WB WB WA WA
WB WAWB WA

N NN N

N N N N
       , ,  B A

x y

N N

N N
    and 

 WN
p

N
 ; FN  and FGN  denote the number of individuals belonging to the 

group F  and F G  ; , , , , , ,F G A A B B W W . 

Under the assumption (3.4), we have 

                                   / (1 )y xZ Z N p p                                             (3.5)  

Here, we propose a linear homogeneous unbiased estimator of Z as 

                                         
1ˆ

si i

i s

Z b z
N



                                                     (3.6) 

Where ∑𝑖∈𝑠  denotes the sum over distinct units in s , sib ’s are known constants 

satisfying the unbiasedness condition  

                                        ( ) 1si

s i

b p s



 .                                                    (3.7) 

The variance of ˆ
Z  is 

                                                 2ˆ
/si i

i s

V Z V b z N



 
  

 
 
  
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                                    =

2

2 2/si i

i s

E b z Z N



  
  

  
  

                 

                                    =
2 2 2

2

1
( )si i si sj i j

s i s i j s

E b z b b z z p s Z
N   

  
   

  
  

    

(where ( )p s  is the probability of the selection of the sample s )  

                             
2 2

2

1
i i ij i j

i U i j U

z z z Z
N

 
  

 
   
  
                             (3.8) 

where  

                                      
2 ( )i si

s i

b p s


  and ( )ij si sj

s i

b b p s


 .              

The expression (3.8) yields  

                                   * 2 *ˆ
i i ij i j

i U i j U

V Z z z z 
  

                                 (3.9) 

where  *

2

1
1i i

N
    and  *

2

1
1ij ij

N
    

From expression (3.9), we set an unbiased estimator of   ˆV Z as 

                                          2ˆˆ
si i sj i j

i s i j s

V Z c z c z z

  

                                   (3.10) 

where sic  and sijc  are suitably chosen constants satisfying unbiasedness 

conditions 

                                 
*( )si i

s i

c p s 


   and 
*( )sij ij

s i

c p s 


                              (3.11) 

We may choose  sic  and sijc  in various ways. One of the obvious choices is 

* /si i ic    and 
* /sij ij ijc   .  

Substituting i i i i iz w y w x  , 1i iw w   in equation (3.9) and noting that 

, ,i i iw w y  and  ix  are indicator variables, we have the following simplifications:  

                         * *ˆ
i i i i i ij i i i i j j j j

i U i j U

V Z w y w x w y w x w y w x 
  

                                         

 

                            

* * * *
i i ij i j i i ij i j

i W i j W i W i j W

y y y x x x   

     

      
      
      
     
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* *

( ) ( )

i ij j j ij j

i W j i W j W i j W

y x x y 
     

  
  
  
   

    

                            

* * * *
i ij i ij

i W A i j W A i W B i j W B

   

         

      
      
      
          

                                 

* *

( ) ( )

ij ij

i W A j i W B j W B i j W A

 
         

  
  
  
    .  

The above results lead to the following theorem. 

Theorem 3.1.  

Under assumptions (3.4), 

(i)
ˆ

(1 )
ˆ x

y

Z p

p




 
 is an unbiased estimator of y when the population proportion 

x  is assumed to  be known.  

 

(ii)  The variance of ˆ y  is                        

  * * * * * *

2
( ) ( )

                                                                ˆ   
1

y i ij i ij ij ij

i W A i j W A i W B i j W B i W A j i W B j W B i j W A

V
p

      
                   

                      
            
                                                                   

      

(iii) An unbiased estimator of  ˆ yV   is 

  2

1ˆ ˆ y si i sij i j

i s i j s

V c z c z z
p



  

 
  
  
   .     

We now present expressions of ˆ y ,  ˆ yV   and  ˆ ˆ yV  for various sampling 

strategies as special cases of Theorem 3.1.  

3.1. Arbitrary sampling design with Horvitz-Thompson estimator  

For 1/si ib  , we have *

2

1 1
1i

iN




 
  

 
, *

2

1
1

ij

ij
i jN




 

 
  

 
 

 and the 

expression of the Horvitz- Thompson estimator for y  as  

                              

(1 )

ˆ

i
x

ii s
hte

z
p

N

p




 

 




                                    (3.12) 
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The expression of the variance of and its unbiased estimators are obtained 
from the Theorem 3.1 as follows: 

 
2 2

( ) ( )

1 1
1 1 1 1

 
1

ˆ

1 1

ij ij

i i j i i ji W A i j W A i W B i j W B

hte

ij ij

i j i ji W A j i W B j W B i j W A

V
N p

 

     


 

   

         

         

            
                  

            


     
          
     

     

   

 

 
 
 
 
 
 
 
 

 (3.13) 

and 

       
2 2

1 1 1 1ˆ ˆ 1 1
ij

hte i i j
i i ij i ji s i j s

V z z z
N p




    
  

   
             
           (3.14)  

 

3.2. Simple random sampling without replacement (SRSWOR)  

For SRSWOR, /i n N  , ( 1) /{ ( 1)}ij n n N N    , 
1

1
i

N n

n




  
   
 

 and 

1
( 1)

ij

i j

N n

n N




 

  
    
   

 . In this case, the expressions ˆhte ,  ˆhteV   and 

 ˆ ˆhteV  come out as follows: 

                                      
(1 )

ˆ s x
wor

z p

p




 
                                       (3.15) 

where /s i s

i s

z z n 


   = proportion of “Yes” answers in the sample s . 

2 2
( ) ( )

1
ˆ( )wor

i W A i j W A i W B i j W B i W A j i W B j W B i j W A

V
N p

     
                   

                      
            

         

      

       
2 2

1
1 1WA WA WA WA WBWB WB WB WB WA

N N N N N N N N N N
N p

            
 

         

   
2

1 1
1 (1 ) (1 ) (1 ) 1

( 1) ( 1)
y y y x x x

N n
p p Np p p N p

N NNnp
     

    
            

     

              

(1 )
2

( 1)
x y

N n p

n N p
 

 



 

              

 
    2

1
(1 ) (1 ) 1 (1 ) 2 (1 )

( 1)
y y x x x y

N f
p p p p p p

n N p
     


        
 

      

                                              

 where /f n N
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  2

2

(1 )(1 ) (1 )
( 1) 1 2

( 1)

y y

x y x y

N f p
p p p

N n np

 
   

  
      

  
             (3.16) 

From the expression (3.15), we set an unbiased estimator of  ˆworV   as 

                                   
 

 
2

2

11 1ˆ ˆ( )
1

wor i s

i s

f
V z z

n np





 


  

                  
 

2

11
(1 )

1
s s

f

np
 


 


                                        (3.17) 

3.3. Probability proportional to size with replacement (PPSWR)  

Let a sample of size n be selected from the population by PPSWR method 

using normed size measure  0, 1i ip p  attached to the ith unit. Let ( )z r be 

the response obtained from the respondent selected at the r th ( 1,.., )r n draw 

with probability ( )p r  so that ( ) jz r z  and ( ) jp r p  if rth draw produces the jth 

unit. The Hansen-Hurwitz estimator of the population proportion y  is given by 

                       
1

1 1 ( )
(1 )

( )
ˆ

n

x

r
hh

z r
p

N n p r

p






 
  

 
 




                                        (3.18) 

Noting that    
1 1

( )
(1 )

( )

N N

i i i i i y x

i i

z r
E z w y w x N p p

p r
 

 

 
      

 
  , we find 

that ˆhh  is an unbiased estimator of y .  

The variance of ˆhh  is  

             
2 2

1

1 1 ( )
ˆ

( )

n

hh

r

z r
V V

n p rN p




 
  

 
 
  

                       
2

2

2 2
1

1
N

i

ii

z
Z

pN p n 

 
  

 
 
  

           
 

 
22

2 2
1

1
(1 )

N
i i i i

y x
ii

w y w x
N p p

pN p n
 



 
    

  
                     (3.19) 

Further noting that 
( )

( )

z r

p r
 are independently distributed random variables, we 

find an unbiased estimator of ˆhh  as 

                          

2

2 2
1 1

1 ( ) 1 ( )ˆ ˆ
( ) ( )( 1)

n n

hh

r r

z r z r
V

p r n p rN p n n


 

  
  

   
                         (3.20) 
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3.4. Simple random sampling with replacement (SRSWR)  

The PPSWR sampling scheme reduces to SRSWR sampling scheme if 

1/ip N  for 1,...,i N . Substituting 1/ip N in the expressions (3.18), we find 

an unbiased estimator of y  for SRSWR sampling method as 

                                     
(1 )

ˆ s x
swr

p

p

 


 
                                            (3.21) 

The expression of the variance of ˆswr and its unbiased estimator come out as 

follows: 

                            
2

2
1

1 1
ˆ (1 )

N

swr i i i i y x

i

V w y w x p p
Np n

  


 
     

  
  

                                      
2

2

1
(1 ) (1 )y x y xp p p p

p n
         

  
 

                2

2

(1 ) (1 )
( 1) 1 2

y y

x y x y

p
p p p

n np

 
   

 
      
 

     (3.22) 

and 

           
 
2

1
ˆ ˆ

( 1)

s s
swrV

p n

 






                                                                   (3.23) 

Expressions (3.21), (3.22) and (3.23) are the same as those obtained by Tian 
(2014). 

3.5. Stratified multi-stage sampling design 

Consider a population comprising of H strata. The ( 1,.., )h H= th stratum 

consists of hM first-stage units (fsus) and the ith fsu of the hth stratum consists of 

( )1,..,hi hM i M=  second-stage units (ssus). The total number of ssus in the 

population is ∑ ∑ 𝑀ℎ𝑖 = 𝑀
𝑀ℎ
𝑖=1

𝐻
ℎ=1 . From the h th stratum, a sample hs of size 

hn  fsus is selected by using a suitable sampling scheme with 𝜋𝑖|ℎ  and 𝜋𝑖𝑗|ℎ as 

inclusion probabilities for the i th, and i th and 𝑗 (𝑗 ≠ 𝑖)th fsus. If the ith fsu is 

selected in the sample hs , a sub-sample his  of size hin  ssus is selected from it by 

using a suitable sampling scheme with inclusion probabilities 𝜋𝑘|ℎ𝑖  and 𝜋𝑘𝑙|ℎ𝑖  for 

the k th, and k and 𝑙(𝑙 ≠ 𝑘)th ssus. We denote the j th ssu of the i th fsu of the h

th stratum as hij th unit. We define the following notations similar to the Section 3. 

 

1  if  th unit 

0   if  th unit 

 
hij

hij B
x

hij B


 


 ,  

1   if th unit

0   if th unit
hij

hij W
w

hij W


 

  

,  
1  if th unit 

0   if th unit 
hij

hij A
y

hij A


 


, 

1  if th unit answers" "

0   if th unit answers " "
hij

hij Yes
z

hij No


 
  

. 
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Now, writing ( )1hij hij hij hij hijz w y w x= + -  and using the assumption similar to 

(3.4), we find that                               
 

           𝑍 = ∑ ∑ ∑ 𝑧𝑖𝑗𝑘
𝑁ℎ𝑖
𝐽=1 = 𝑀[𝑝𝜋𝑦 + (1 − 𝑝)𝜋𝑥]

𝑁ℎ
𝑖=1

𝐻
ℎ=1                   (3.24) 

 

Further, noting that �̂�ℎ𝑡𝑒 = ∑ ∑
�̂�𝑖|ℎ

𝜋𝑖|ℎ
𝑖𝜖𝑠ℎ

𝐻
ℎ=1   with �̂�𝑖|ℎ = ∑

𝑧ℎ𝑖𝑗

𝜋𝑗|ℎ𝑖
𝑗𝜖𝑠ℎ𝑖

 is an 

unbiased estimator of Z , we get the following theorem. 
 

Theorem 3.2. 

(i) �̂�𝑦 =
1

𝑝
[

�̂�ℎ𝑡𝑒

𝑀
− (1 − 𝑝)𝜋𝑥] is an unbiased estimator of 𝜋𝑦. 

 

(ii) The variance of  �̂�𝑦 is  

         𝑉(�̂�𝑦) =
1

𝑝2𝑀2
∑ [∑ ∑ (𝜋𝑖|ℎ𝜋𝑗|ℎ − 𝜋𝑖𝑗|ℎ) (

𝑍𝑖|ℎ

𝜋𝑖|ℎ
−

𝑍𝑗|ℎ

𝜋𝑗|ℎ
)

2

+ ∑
𝜎𝑖|ℎ

2

𝜋𝑖|ℎ

𝑀ℎ
𝑖=1

𝑀ℎ
𝑗=1

𝑀ℎ
𝑖≠ ]𝐻

ℎ=1  

 

where  

𝑍𝑖|ℎ = ∑ 𝑧ℎ𝑖𝑗
𝑀ℎ𝑖
𝑗=1  and 𝜎𝑖|ℎ

2 = 𝑉(𝑍𝑖|ℎ) = ∑ ∑ (𝜋𝑘|ℎ𝑖𝜋𝑙|ℎ𝑖 − 𝜋𝑘𝑙|ℎ𝑖) (
𝑍ℎ𝑖𝑘

𝜋𝑘|ℎ𝑖
−

𝑍ℎ𝑖𝑙

𝜋𝑙|ℎ𝑖
)

2
𝑀ℎ𝑖
𝑙=1

𝑀ℎ𝑖
𝑘≠  

 

 (iii) An unbiased estimator of 𝑉(�̂�𝑦) is 

 

�̂�(�̂�𝑦) =
1

𝑝2𝑀2
∑ [∑ ∑ (

𝜋𝑖|ℎ𝜋𝑗|ℎ − 𝜋𝑖𝑗|ℎ

𝜋𝑖𝑗|ℎ
) (

�̂�𝑖|ℎ

𝜋𝑖|ℎ
−

�̂�𝑗|ℎ

𝜋𝑗|ℎ
)

2

+ ∑
�̂�𝑖|ℎ

2

𝜋𝑖|ℎ

𝑀ℎ

𝑖∈𝑠ℎ𝑗∈𝑠ℎ𝑖≠

]

𝐻

ℎ=1

 

 

where  

�̂�𝑖|ℎ
2 = ∑ ∑

(𝜋𝑘|ℎ𝑖𝜋𝑙|ℎ𝑖 − 𝜋𝑘𝑙|ℎ𝑖)

𝜋𝑘𝑙|ℎ𝑖
(

𝑧ℎ𝑖𝑘

𝜋𝑘|ℎ𝑖
−

𝑧ℎ𝑖𝑙

𝜋𝑙|ℎ𝑖
)

2

𝑙∈𝑠ℎ𝑖𝑘≠

 

 

is an unbiased estimator of 𝜎𝑖|ℎ
2 .  

Proof:  

(i)  𝐸(�̂�𝑦) =
1

𝑝
[

𝐸(�̂�ℎ𝑡𝑒)

𝑀
− (1 − 𝑝)𝜋𝑥] 

               =
1

𝑝
[

𝑍

𝑀
− (1 − 𝑝)𝜋𝑥] 

              = 𝜋𝑦 
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(ii) 𝑉(�̂�𝑦) =
1

𝑀2𝑝2
∑ 𝑉(�̂�ℎ)𝐻

ℎ=1  

                 = 
1

𝑀2𝑝2
∑ [𝑉{𝐸(�̂�ℎ|𝑠ℎ)} + 𝐸{𝑉(�̂�ℎ|𝑠ℎ)}]𝐻

ℎ=1  

              =
1

𝑀2𝑝2
∑ [𝑉 {∑

𝑍𝑖|ℎ

𝜋𝑖|ℎ
𝑖∈𝑠ℎ

} + 𝐸 {∑
𝜎𝑖|ℎ

2

𝜋𝑖|ℎ
2𝑖∈𝑠ℎ

}]𝐻
ℎ=1  

              =
1

𝑀2𝑝2
∑ [∑ ∑ (𝜋𝑖|ℎ𝜋𝑗|ℎ − 𝜋𝑖𝑗|ℎ) (

𝑍𝑖|ℎ

𝜋𝑖|ℎ
−

𝑍𝑗|ℎ

𝜋𝑗|ℎ
)

2

+ ∑
𝜎𝑖|ℎ

2

𝜋𝑖|ℎ

𝑀ℎ
𝑖=1

𝑀ℎ
𝑗=1

𝑀ℎ
𝑖≠ ]𝐻

ℎ=1  

 

(iii) 𝐸[�̂�(�̂�𝑦)] 

=
1

𝑀2𝑝2
∑ 𝐸 [∑ ∑ (

𝜋𝑖|ℎ𝜋𝑗|ℎ − 𝜋𝑖𝑗|ℎ

𝜋𝑖𝑗|ℎ
) 𝐸 {(

�̂�𝑖|ℎ

𝜋𝑖|ℎ
−

�̂�𝑗|ℎ

𝜋𝑗|ℎ
)

2

|𝑠ℎ}

𝑗∈𝑠ℎ𝑖≠

𝐻

ℎ=1

+ 𝐸 (∑
�̂�𝑖|ℎ

2

𝜋𝑖|ℎ
𝑖∈𝑠ℎ

|𝑠ℎ)] 

 

=
1

𝑀2𝑝2
∑ 𝐸 [∑ ∑ (

𝜋𝑖|ℎ𝜋𝑗|ℎ − 𝜋𝑖𝑗|ℎ

𝜋𝑖𝑗|ℎ
) {(

𝑍𝑖|ℎ

𝜋𝑖|ℎ
−

𝑍𝑗|ℎ

𝜋𝑗|ℎ
)

2

+
𝜎𝑖|ℎ

2

𝜋𝑖|ℎ
2 +

𝜎𝑗|ℎ
2

𝜋𝑗|ℎ
2 }

𝑗∈𝑠ℎ𝑖≠

𝐻

ℎ=1

+ ∑
𝜎𝑖|ℎ

2

𝜋𝑖|ℎ
𝑖∈𝑠ℎ

] 

=
1

𝑀2𝑝2
∑ [∑ ∑(𝜋𝑖|ℎ𝜋𝑗|ℎ − 𝜋𝑖𝑗|ℎ) {(

𝑍𝑖|ℎ

𝜋𝑖|ℎ
−

𝑍𝑗|ℎ

𝜋𝑗|ℎ
)

2

+
𝜎𝑖|ℎ

2

𝜋𝑖|ℎ
2 +

𝜎𝑗|ℎ
2

𝜋𝑗|ℎ
2 }

𝑀ℎ

𝑗=1

𝑀ℎ

𝑖≠

+ ∑ 𝜎𝑖|ℎ
2

𝑀ℎ

𝑖=1

]

𝐻

ℎ=1

 

 

Now, noting that ∑ 𝜋𝑖|ℎ
𝑀ℎ
𝑖=1 = 𝑛ℎ and  ∑ 𝜋𝑖𝑗|ℎ

𝑀ℎ
𝑗(≠𝑖)=1 = (𝑛ℎ − 1)𝜋𝑖|ℎ, we find 

𝐸[�̂�(�̂�𝑦)] = 𝑉(�̂�𝑦). 

4. Comparison with Greenberg RR model 

Consider the Greenberg et al. (1969) model described in Section 1.2 with 

2P p= . Let 1(0)iy = if the ith unit does (does not) belong to the sensitive group A

, 1(0)ix = if the ith unit possesses (does not possess) the non-sensitive 

characteristic B and 1(0)iz =  if the ith respondent answers “Yes” (“No”). Denoting 
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( )R RE V  as expectation (variance) with respect to the RR model and noting ix  

and iy  are indicator variables, one finds that                                                

                    ( ) ( ) ( )21R i i i R iE z py p x E z= + - =                                       (4.1) 

                                ( ) ( ) ( ){ }
2

1 1R i i i i iV z py p x py p x= + - - + -  

                       ( )( )1 2i i i ip p x y x y= - + -                                         (4.2) 

 

Let a sample s  of size n  be selected from the population using SRSWR 

method, 
1

s ii s
z

n



   be the proportion of “Yes” answers in the population and 

i s denote the sum over the units in s  with repetition. In this case we have 

the following theorem: 
 

Theorem 4.1.  

Under SRSWR sampling 

(i)  �̂�𝐺 =
1

𝑝
[𝜆𝑠 − (1 − 𝑝)𝜋𝑥]   is an unbiased estimator of 𝜋𝑦 when 𝜋𝑥 is known. 

 

(ii) The variance of �̂�𝐺  is  

 

𝑉(�̂�𝐺) =
𝜋𝑦(1 − 𝜋𝑦)

𝑛
+

1 − 𝑝

𝑝2𝑛
[(𝑝 − 1)𝜋𝑥

2 + (1 − 2𝑝𝜋𝑦)𝜋𝑥 + 𝑝𝜋𝑦 ] 

 

(iii) An unbiased estimator of 𝑉(�̂�𝐺) is 

 

�̂�(�̂�𝐺) =
1

𝑝2𝑛
[

1

𝑛 − 1
∑(𝑧𝑖 − 𝜆𝑠)2

𝑖∈𝑠

] =
𝜆𝑠(1 − 𝜆𝑠)

(𝑛 − 1)𝑝2
 

 

Proof: 

(i) 𝐸(�̂�𝐺) =
1

𝑝
[𝐸(𝑧̅) − (1 − 𝑝)𝜋𝑥] 

                  =
1

𝑝
[𝐸𝑝 {

1

𝑛
∑ 𝐸𝑅(𝑧𝑖)𝑖∈𝑠 } − (1 − 𝑝)𝜋𝑥] 

 

                     =
1

𝑝
[

1

𝑁
∑{𝑝𝑦𝑖 + (1 − 𝑝)𝑥𝑖}

𝑖∈𝑈

− (1 − 𝑝)𝜋𝑥] 

                   
                  = 𝜋𝑦 
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 (ii) 𝑉(�̂�𝐺) = 𝑉𝑝[𝐸𝑅(�̂�𝐺)] + 𝐸𝑝[𝑉𝑅(�̂�𝐺)] 

                  = 𝑉𝑝 [
1

𝑛𝑝
∑ 𝐸𝑅(𝑧𝑖)𝑖∈𝑠 −

(1−𝑝)

𝑝
𝜋𝑥] + 𝐸𝑝 [

1

(𝑛𝑝)2
∑ 𝑉𝑅(𝑧𝑖)𝑖∈𝑠 ] 

                       = 𝑉𝑝 [
1

𝑛𝑝
∑{𝑝𝑦𝑖 + (1 − 𝑝)𝑥𝑖}

𝑖∈𝑠

] + 𝐸𝑝 [
1 − 𝑝

𝑛2𝑝
∑(𝑥𝑖 + 𝑦𝑖 − 2𝑥𝑖𝑦𝑖)

𝑖∈𝑠

] 

  =
1

𝑛𝑝2
[

1

𝑁
∑{𝑝𝑦𝑖 + (1 − 𝑝)𝑥𝑖}

2 − {𝑝𝜋𝑦 + (1 − 𝑝)𝜋𝑥}
2

𝑖∈𝑈

] +
1 − 𝑝

𝑛𝑝𝑁
∑(𝑥𝑖 + 𝑦𝑖 − 2𝑥𝑖𝑦𝑖)

𝑖∈𝑈

 

=
1

𝑛𝑝2
[𝑝2𝜋𝑦(1 − 𝜋𝑦) + (1 − 𝑝)2𝜋𝑥(1 − 𝜋𝑥) + 2𝑝(1 − 𝑝)(𝜋𝑥𝑦 − 𝜋𝑥𝜋𝑦)]

+
1 − 𝑝

𝑛𝑝
(𝜋𝑥 + 𝜋𝑦 − 2𝜋𝑥𝑦) 

 

Noting that 𝜋𝑥𝑦 = 𝜋𝑥𝜋𝑦, as x and y are independent, we obtain 

  

          𝑉(�̂�𝐺) =
𝜋𝑦(1−𝜋𝑦)

𝑛
+

1−𝑝

𝑝2𝑛
[(𝑝 − 1)𝜋𝑥

2 + (1 − 2𝑝𝜋𝑦)𝜋𝑥 + 𝑝𝜋𝑦 ] 

 

(iii) Further, 'iz s , 1, 2,..,i n=  are independent and identically distributed random 

variables, one finds that 𝐸[�̂�(�̂�𝐺)] = 𝐸[𝑉(�̂�𝐺)].  

Here, we note that for the SRSWR sampling, the expressions �̂�𝐺  and �̂�(�̂�𝐺) of 
the Greenberg et al. (1969) model are respectively the same as the expressions 
ˆswr (Eq. 3.21) and  ˆswrV  (Eq. 3.22) in the Parallel model proposed by Tian 

(2014).  
 
Consider the situation where a sample s  of size n is selected by the 

SRSWOR method and from each of the selected respondents randomized 
responses were obtained by using Greenberg et al. (1969) RR technique. Let 
𝜆𝑠 = 𝑧�̅� = ∑ 𝑧𝑖𝑖∈𝑠 /𝑛 denote the proportion of “Yes” answers in the sample. In this 
case we have the following results: 
 
Theorem 4.2.  

Under SRSWOR sampling, 
 

 (i)  �̂�𝐺
∗ =

1

𝑝
[𝜆𝑠 − (1 − 𝑝)𝜋𝑥]    is an unbiased estimator of 𝜋𝑦. 

 
(ii) The variance of �̂�𝐺

∗  is  
 

𝑉(�̂�𝐺
∗ ) =

𝑁 − 𝑛

(𝑁 − 1)𝑛
[𝜋𝑦(1 − 𝜋𝑦) +

1 − 𝑝

𝑝2
𝜋𝑥(1 − 𝑥)] +

1 − 𝑝

𝑛𝑝
(𝜋𝑥 + 𝜋𝑦 − 2𝜋𝑥𝜋𝑦) 

 
 (iii) An unbiased estimator of 𝑉(�̂�𝐺

∗ ) is 
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�̂�(�̂�𝐺
∗ ) =

𝑁 − 𝑛

𝑝2𝑁𝑛

1

𝑛 − 1
∑(𝑧𝑖 − 𝑧)̅2

𝑖∈𝑠

+
1 − 𝑝

𝑝
(�̂�𝐺 + 𝜋𝑥 − 2𝜋𝑥�̂�𝐺) 

 

               =
𝑁 − 𝑛

𝑝2𝑁

λ𝑠(1 − λ𝑠)

(𝑛 − 1)
+

1 − 𝑝

𝑝
(�̂�𝐺 + 𝜋𝑥 − 2𝜋𝑥�̂�𝐺) 

 
Proof: 

(i) 𝐸(�̂�𝐺
∗ ) =

1

𝑝
[𝐸(𝜆𝑠) − (1 − 𝑝) 𝜋𝑥  ] 

 

                =
1

𝑝
[𝐸𝑝 {

1

𝑛
∑ 𝐸𝑅(𝑧𝑖)𝑖∈𝑠 } − (1 − 𝑝)𝜋𝑥] 

 

                    =
1

𝑝
[

1

𝑁
∑{𝑝𝑦𝑖 + (1 − 𝑝)𝑥𝑖}

𝑖∈𝑈

− (1 − 𝑝)𝜋𝑥] 

                   
                  = 𝜋𝑦 
 

 (ii)  𝑉(�̂�𝐺
∗ ) = 𝑉𝑝[𝐸𝑅(�̂�𝐺

∗ )] + 𝐸𝑝[𝑉𝑅(�̂�𝐺
∗ )] 

 

                  = 𝑉𝑝 [
1

𝑛𝑝
∑ 𝐸𝑅(𝑧𝑖)𝑖∈𝑠 −

(1−𝑝)

𝑝
𝜋𝑥] + 𝐸𝑝 [

1

(𝑛𝑝)2
∑ 𝑉𝑅(𝑧𝑖)𝑖∈𝑠 ] 

 

                  =
𝑁−𝑛

𝑛𝑝2 [
1

𝑁
∑ {𝑝𝑦𝑖 + (1 − 𝑝)𝑥𝑖}2 − {𝑝𝜋𝑦 + (1 − 𝑝)𝜋𝑥}

2
𝑖∈𝑈 ]  

 

+
1 − 𝑝

𝑛𝑝𝑁
∑(𝑥𝑖 + 𝑦𝑖 − 2𝑥𝑖𝑦𝑖)

𝑖∈𝑈

 

 

=
𝑁 − 𝑛

𝑛𝑝2
[𝑝2𝜋𝑦(1 − 𝜋𝑦) + (1 − 𝑝)2𝜋𝑥(1 − 𝜋𝑥) + 2𝑝(1 − 𝑝)(𝜋𝑥𝑦 − 𝜋𝑥𝜋𝑦)]

+
1 − 𝑝

𝑛𝑝
(𝜋𝑥 + 𝜋𝑦 − 2𝜋𝑥𝑦) 

Now, noting that, 𝜋𝑥𝑦 = 𝜋𝑥𝜋𝑦 we find that 

 

𝑉(�̂�𝐺
∗ ) =

𝑁 − 𝑛

(𝑁 − 1)𝑛
[𝜋𝑦(1 − 𝜋𝑦) +

1 − 𝑝

𝑝2
𝜋𝑥(1 − 𝜋𝑥)] +

1 − 𝑝

𝑛𝑝
(𝜋𝑥 + 𝜋𝑦 − 2𝜋𝑥𝜋𝑦) 

 

    (iii)  𝐸[�̂�(�̂�𝐺
∗ )] =

𝑁−𝑛

𝑝2𝑁𝑛

1

𝑛−1
𝐸𝑝 [∑ 𝐸𝑅(𝑧𝑖

2) −
∑ 𝐸𝑅(𝑧𝑖

2)𝑖∈𝑠 +∑ ∑ 𝐸𝑅(𝑧𝑖 )𝑗∈𝑠 𝐸𝑅(𝑧𝑗 )𝑖≠

𝑛𝑖∈𝑠 ] 

                                                     + 
1 − 𝑝

𝑝
(𝜋𝑥 + 𝜋𝑦 − 2𝜋𝑥𝜋𝑦) 
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                     =
𝑁 − 𝑛

𝑝2𝑁𝑛
[∑{𝐸𝑅(𝑧𝑖)}2 + ∑ 𝑉𝑅(𝑧𝑖)

𝑖∈𝑈

−
1

𝑁
∑ ∑ 𝐸𝑅(𝑧𝑖)

𝑗∈𝑈

𝐸𝑅(𝑧𝑗)

𝑖≠𝑖∈𝑈

]  

+ 
1 − 𝑝

𝑝
(𝜋𝑥 + 𝜋𝑦 − 2𝜋𝑥𝜋𝑦) 

                          = 𝑉(�̂�𝐺
∗ ) 

                       

From the expressions of 𝑉(�̂�𝐺
∗ ) and (3.16), we find that 

 

      𝑉(�̂�𝐺
∗ ) − 𝑉(�̂�𝑤𝑜𝑟) =

𝑛−1

𝑁−1

1−𝑝

𝑛𝑝
[𝜋𝑥(1 − 𝜋𝑦) + 𝜋𝑦(1 − 𝜋𝑥)] 

                                   ≥ 0                                                                                  (4.3) 

 

From the Eq. (4.3), we conclude for the SRSWOR sampling, Tian’s (2014) 
estimator �̂�𝑤𝑜𝑟  based on NRR method is more efficient than the Greenberg et al.’s 
(1969) estimator �̂�𝐺

∗  based on RR technique for estimating the population 

proportion 𝜋𝑦. However, for large N , both are equally efficient. The percentage 

relative efficiency of �̂�𝑤𝑜𝑟  with respect to �̂�𝐺
∗  under SRSWOR sampling assuming 

𝑁−1

𝑁
≅ 1 is given by 

𝑉(�̂�𝐺
∗ ) 

𝑉(�̂�𝑤𝑜𝑟)
× 100 

=
(1 − 𝑓) [𝜋𝑦(1 − 𝜋𝑦) +

1−𝑝

𝑝2 𝜋𝑥(1 − 𝜋𝑥)] +
1−𝑝

𝑝
(𝜋𝑥 + 𝜋𝑦 − 2𝜋𝑥𝑦)

(1 − 𝑓) [𝜋𝑦(1 − 𝜋𝑦) +
1−𝑝

𝑝2 {(𝑝 − 1)𝜋𝑥
2 + (1 − 2𝑝𝜋𝑦)𝜋𝑥 + 𝑝𝜋𝑦}]

× 100 

           (4.4) 

The percentage relative efficiency ( E ) for different values of 𝜋𝑥, 𝜋𝑦, p  and 

f is given in the Table 4.1. For the given values of 𝜋𝑥,𝜋𝑦, the efficiency 

increases with p  until  0.50p = , then it decreases. Efficiency increases with the 

increase in the sampling fraction f . The maximum efficiency 148.6 is attained 

when  

f = 0.40, 𝜋𝑥= 0.10, 𝜋𝑦 = 0.75 and p = 0.40. 

Table 4.1. Efficiency of �̂�𝐺
∗  with respect to �̂�𝑤𝑜𝑟  

  
f = 0.1 

 
f = 0.2 

𝜋𝑦 

 

𝜋𝑥  

 

p  
 

p  

0.1 0.25 0.4 0.5 0.75 

 

0.1 0.25 0.4 0.5 0.75 

0.10 
 
 

0.10 102.0 104.2 105.3 105.6 104.2 
 

104.5 109.4 112 112.5 109.4 

0.25 101.7 103.7 105.2 105.8 105.3 
 

103.8 108.4 111.7 113.0 111.9 

0.40 101.8 104 105.6 106.2 106.1 
 

104.1 109.0 112.5 114.0 113.6 

0.50 102.0 104.3 105.9 106.6 106.5 
 

104.5 109.8 113.4 114.9 114.6 

0.75 103.2 106.0 107.5 108.0 107.5 
 

107.3 113.5 116.8 117.9 116.9 
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Table 4.1. Efficiency of �̂�𝐺
∗  with respect to �̂�𝑤𝑜𝑟   (cont.) 

  
f = 0.1 

 
f = 0.2 

𝜋𝑦 

 

𝜋𝑥  

 

p  
 

p  

0.1 0.25 0.4 0.5 0.75 

 

0.1 0.25 0.4 0.5 0.75 

0.25 
 
 

0.10 102.9 105.3 106.0 105.8 103.7 
 

106.6 111.9 113.4 113.0 108.4 

0.25 102.0 104.2 105.3 105.6 104.2 
 

104.5 109.4 112,0 112.5 109.4 

0.40 101.9 104.1 105.3 105.7 104.6 
 

104.3 109.1 112.0 112.8 110.3 

0.50 102.0 104.2 105.6 105.9 104.8 
 

104.5 109.5 112.5 113.3 110.9 

0.75 103.0 105.6 106.7 106.9 105.6 
 

106.7 112.5 115.2 115.6 112.5 

              
 
0.40 
 
 

0.10 103.7 106.1 106.5 106.2 104.0 
 

108.4 113.6 114.7 114.0 109.0 

0.25 102.3 104.6 105.6 105.7 104.1 
 

105.2 110.3 112.6 112.8 109.1 

0.40 102.0 104.2 105.3 105.6 104.2 
 

104.5 109.4 112.0 112.5 109.4 

0.50 102.0 104.2 105.4 105.6 104.3 
 

104.5 109.4 112.1 112.6 109.6 

0.75 102.7 105.1 106.2 106.3 104.6 
 

106.1 111.5 113.9 114.1 110.3 

             

  0.50 
 
 
 

0.10 104.2 106.5 106.9 106.6 104.3 
 

109.3 114.6 115.6 114.9 109.8 

0.25 102.5 104.8 105.9 105.9 104.2 
 

105.6 110.9 113.2 113.3 109.5 

0.40 102.1 104.3 105.4 105.6 104.2 
 

104.7 109.6 112.2 112.6 109.4 

0.50 102.0 104.2 105.3 105.6 104.2 
 

104.5 109.4 112.0 112.5 109.4 

0.75 102.5 104.8 105.9 105.9 104.2 
 

105.6 110.9 113.2 113.3 109.5 

             

0.75 
 
 

0.10 105.1 107.5 108.1 108.0 106.0 
 

111.4 116.9 118.2 117.9 113.5 

0.25 103.0 105.6 106.7 106.9 105.6 
 

106.7 112.5 115.2 115.6 112.5 

0.40 102.2 104.6 105.9 106.3 105.1 
 

105.0 110.3 113.3 114.1 111.5 

0.50 102.0 104.2 105.6 105.9 104.8 
 

104.5 109.5 112.5 113.3 110.9 

0.75 102.0 104.2 105.3 105.6 104.2 
 

104.5 109.4 112.0 112.5 109.4 

 

f  = 0.3 

 

f  = 0.4 

0.10 
 
 
 

0.10 107.7 116.1 120.6 121.4 116.1 
 

112.0 125.0 132.0 133.3 125.0 

0.25 106.4 114.4 120.1 122.3 120.3 
 

110.0 122.4 131.2 134.6 131.6 

0.40 106.9 115.4 121.4 124.0 123.4 
 

110.8 123.9 133.3 137.3 136.4 

0.50 107.8 116.7 122.9 125.5 125.1 
 

112.1 126.0 135.7 139.7 139.1 

0.75 112.5 123.2 128.8 130.7 129.1 
 

119.5 136.1 144.8 147.7 145.2 

             

 0.25 
 
 
 

0.10 111.4 120.3 123.0 122.3 114.4 
 

117.7 131.6 135.7 134.6 122.4 

0.25 107.7 116.1 120.6 121.4 116.1 
 

112.0 125.0 132.0 133.3 125.0 

0.40 107.3 115.6 120.6 122.0 117.7 
 

111.4 124.3 132.1 134.2 127.5 

0.50 107.7 116.3 121.4 122.9 118.7 
 

112.0 125.4 133.3 135.6 129.1 

0.75 111.5 121.4 126.0 126.8 121.4 
 

117.9 133.3 140.4 141.7 133.3 

0.40 
 
 
 

0.10 114.3 123.4 125.2 124.0 115.4 
 

122.3 136.4 139.2 137.3 123.9 

0.25 108.9 117.7 121.6 122.0 115.6 
 

113.9 127.5 133.7 134.2 124.3 

0.40 107.7 116.1 120.6 121.4 116.1 
 

112.0 125.0 132.0 133.3 125.0 

0.50 107.7 116.1 120.7 121.6 116.4 
 

112.0 125.1 132.2 133.7 125.6 

0.75 110.4 119.8 123.8 124.1 117.7 
 

116.2 130.7 137.0 137.5 127.5 

             

0.50 
 
 
 

0.10 116.0 125.1 126.7 125.5 116.7 
 

124.9 139.1 141.6 139.7 126.0 

0.25 109.7 118.7 122.6 122.9 116.3 
 

115.0 129.1 135.2 135.6 125.4 

0.40 108.0 116.4 120.9 121.6 116.1 
 

112.4 125.6 132.5 133.7 125.1 

0.50 107.7 116.1 120.6 121.4 116.1 
 

112.0 125.0 132.0 133.3 125.0 

0.75 109.7 118.7 122.6 122.9 116.3 
 

115.0 129.1 135.2 135.6 125.4 

             

0.75 
 
 
 

0.10 119.6 129.1 131.3 130.7 123.2 
 

130.5 145.2 148.6 147.7 136.1 

0.25 111.5 121.4 126.0 126.8 121.4 
 

117.9 133.3 140.4 141.7 133.3 

0.40 108.6 117.7 122.8 124.1 119.8 
 

113.4 127.5 135.4 137.5 130.7 

0.50 107.7 116.3 121.4 122.9 118.7 
 

112.0 125.4 133.3 135.6 129.1 

0.75 107.7 116.1 120.6 121.4 116.1 
 

112.0 125.0 132.0 133.3 125.0 
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5. Conclusion 

The Randomized Response technique was introduced by Warner (1965) to 
collect data on sensitive characteristics. In this technique, the respondents have 
to perform randomized response experiments using devices which make the 
survey more expensive and time-consuming than the direct response surveys. 
Apart from these limitations, the procedure may yield different response 
depending on the outcome of the RR trial and it is unfeasible for mail 
questionnaire. To overcome some of the aforementioned difficulties, nonrandomized 
response (NRR) model was proposed by Tian et al. (2007), Yu et al. (2008), Tan 
et al. (2009), Tian (2014), among others. All the proposed procedures are limited 
to SRSWR sampling design and are unusable in real life complex multi-character 
surveys. In this paper, NRR models have been extended to complex surveys in a 
unified setup, which is applicable to any sampling design and estimators. The 
estimators of the population proportions, their variances and unbiased estimators 
of the variances for the existing NRR models can be obtained from the proposed 
method as special cases. It has been found for the SRSWR sampling, 
expressions of the estimators of the population proportion 𝜋𝑦, its variance for the 

Greenberg et al. (1969) and Tian (2014) are the same. However, for the 
SRSWOR sampling, the variance of Tian (2014) estimator is smaller than that of 
the Greenberg et al. (1969) estimator. But for large population they are equal. 
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