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ABSTRACT 

Survival data is a special type of data that measures the time to an event of 
interest. The most important feature of survival data is the presence of censored 
observations. An observation is said to be right-censored if the time of the 
observation is, for some reason, shorter than the time to the event. If no censoring 
occurs in the data, standard statistical models can be used to analyse the data. 
Pseudo-observations can replace censored observations and thereby allow 
standard statistical models to be used.  
In this paper, a pseudo-observation approach was applied to single-event and 
competing-risks analysis, with special attention paid to the properties of the 
pseudo-observations. In the empirical part of the study, the use of regression 
models based on pseudo-observations in credit-risk assessment was investigated. 
Default, defined as a delay in payment, was considered to be the event of interest, 
while prepayment of credit was treated as a possible competing risk. Credits that 
neither default nor are prepaid during the follow-up were censored observations. 
Typical application characteristics of the credit and creditor were the covariates in 
the regression model. In a sample of retail credits provided by a Polish financial 
institution, regression models based on pseudo-observations were built for the 
single-event and competing-risks approaches. Estimates and discriminatory power 
of these models were compared to the Cox PH and Fine-Gray models. 

Key words: generalised estimating equations, cumulative incidence function, 

probability of default, credit risk, survival analysis. 

1. Introduction 

In the past few decades, survival analysis methods have become more widely 
used, not only in biostatistics, where their roots are, but also in many other 
branches of science, including economics, and the social sciences. Survival 
analysis is a term that covers a vast collection of different methods that focus on 
timing and duration prior to an event’s occurrence (Mills, 2011). Among these 
methods are parametric and non-parametric estimation of survival time 
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distributions, and parametric and semiparametric regression models. The 
common goal of these methods is to handle censored observations that are 
inevitable in time-to-event analysis. A quite new and innovative approach to the 
problem of censoring is the idea of pseudo-observations that can replace both 
complete and censored actual observations. Pseudo-observations can be applied 
to many different objectives; this paper focuses on the usefulness of pseudo-
observations in the development of regression models for survival functions in the 
case that a single event is analysed and in the competing risk analysis. The first 
objective was to review the properties of pseudo-observations in these two 
situations. The second goal was to compare the results and performance of the 
regression models for pseudo-observations with some of the more classical 
survival models that are currently most popular – in this case, the Cox 
Proportional Hazards model for single events (Cox, 1972) and the Fine-Gray 
model for competing risks (Fine and Gray, 1999). 

2. Pseudo-observations for single events and competing risks 

The methodology of pseudo-observations was first proposed by Andersen et 
al. (2003). The main idea of this approach is to replace censored observations by 
the function of event times 𝑓(𝑇), for which an expected value is 𝐸(𝑓(𝑇)). The 

condition is that an unbiased estimator �̂� of 𝜃 = 𝐸(𝑓(𝑇)) exists. Let 𝑛 be the 
sample size (𝑖 = 1, … , 𝑛). A pseudo-observation for 𝑓(𝑇) for individual 𝑖 at 

a predefined series of time points 𝑡 = 1, … , 𝐻 is defined as 

�̂�𝑖(𝑡) = 𝑛�̂�(𝑡) − (𝑛 − 1)�̂�(−𝑖)(𝑡) (1) 

and is evaluated by the leave-one-out method. �̂�(𝑡) is the estimator in the sample 

of size 𝑛 at time 𝑡, and �̂�(−𝑖)(𝑡) is the estimator at time 𝑡 in the sample of size 

 𝑛 − 1, consisting of all units except the 𝑖-th individual. The pseudo-observation is 

then a contribution of the 𝑖-th unit to the 𝐸(𝑓(𝑇)) estimate in the sample of size 𝑛. 
Although the aim of using pseudo-observations is to replace the censored 
observations, pseudo-observations are calculated for all units in the sample (both 
completed and censored observations). Therefore, an 𝑛 × 𝐻 matrix of pseudo-
observations is obtained. Subsequently, pseudo-observations are used as 
dependent variables in a generalised regression model with some link function 𝑔: 

 𝑔(𝐸(𝑓(𝑡)|𝑋)) = 𝛽0 + ∑ 𝛽𝑗𝑋𝑗 = 𝛽𝑇𝑋. (2) 

For each unit 𝐻 pseudo-observations are calculated. Multiple measurement is 
a source of correlation in the data set; a possible solution to this deficiency would 
be to use generalised estimating equations (GEE), which are the generalisation of 
regression models for the case of correlated data (Andersen et al., 2003). 

2.1. Single event 

Assume that there is only one type of event and 𝑇 is the time to that event, 

while 𝑇𝐶 is the time to censoring. Due to the right censoring, we can observe 
min(𝑇, 𝑇𝐶). The survival function is the probability that the unit does not 

experience the event until time 𝑡 

 𝑆(𝑡) = 𝑃(𝑇 > 𝑡). (3) 



STATISTICS IN TRANSITION new series, March 2019 

 

173 

In the survival analysis to the assumed sole type of event (single event), the 
survival function 𝑆(𝑡) can be estimated with the use of the Kaplan-Meier (KM) 
estimator 

 �̂�(𝑡) = ∏ (1 −
𝐷𝑗

𝑁𝑗
)𝑡𝑗≤𝑡 ,         (4) 

where 𝐷𝑗 is the number of events at time 𝑡𝑗, 𝑁𝑗 is the number at risk just prior to 

time 𝑡𝑗, and 𝑡𝑗 for 𝑗 = 1, … , 𝑟 (𝑟 ≤ 𝑛) are distinct event times. The KM estimator is 

a maximum likelihood estimator (Klein and Moeschberger, 2003). 

The 𝑖-th pseudo-observation based on the survival function is 

�̂�𝑖(𝑡) = 𝑛�̂�(𝑡) − (𝑛 − 1)�̂�(−𝑖)(𝑡),       (5) 

where �̂�(𝑡) is the estimated survival function at time 𝑡 in a sample of size 𝑛 and 

�̂�−𝑖(𝑡) is the estimated survival function derived from the 𝑛 − 1 sample (without 

the 𝑖-th observation) (Andersen and Perme 2010). At 𝑡 = 0, the pseudo-
observations for survival functions for all units are equal to one. 

As 𝑡 increases, the values of pseudo-observations for units in the cohort 
increase at each event time observed in the cohort (see Figure 1). Between any 
two successive event times, the values of pseudo-observations do not change. 
As a result, the curve of pseudo-observations over time for a particular unit is 
a step function with a varying length of steps depending on the successive event 
times. If the event for a unit is observed, the pseudo-observation drops below 
zero at the event time. At the subsequent time points, the unit that has just been 
excluded from the cohort has negative and increasing pseudo-values. If the unit is 
censored, then, beginning at the next event time after censoring, the values of 
pseudo-observations for that unit start decreasing. They remain, however, 
positive until the end of the follow-up (see Figure 1). 

 

 

Figure 1.  The pseudo-observations for the survival function over time in 

a censored data set for the individual with event time 𝑡=7 (risk 1) and 
the individual with censored time 𝑡𝑐=7 (censored) 

 
As long as the units are in the cohort, they have similar pseudo-values. The 

values of pseudo-observations increase at each event time observed in the 
cohort. Therefore, the value of the pseudo-observation for the unit at its event 
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time is greater if the event occurred later in time. The later the event occurs, the 
greater the drop is (see Figure 2). The same pattern is observed if the 
observation is censored (see Figure 3).  

 

 

Figure 2.  Pseudo-observations for the survival function over time for the units 
with event times 𝑡=4,..9 

 

 

 

Figure 3.  Pseudo-observations for the survival function over time for the units 

with censoring times 𝐶=4,..9 

 

In the absence of censoring, the pseudo-value at time 𝑡 reduces to the 

indicator that 𝑇 > 𝑡. Therefore, the pseudo-observations are equal as long as the 
unit is observed in the cohort; after the event, the value of the pseudo-observation 
falls to zero and is constant until the end of the follow-up (see Figure 4). In this 
case, pseudo-observations are also independent. 
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Figure 4.  Pseudo-observations for the survival function over time for an individual 

with a survival time 𝑡=7 in a data set with no censoring 

 

2.2. Competing risks 

Let (𝑇, 𝐶) be a bivariate random variable, such that 𝑇 is a continuous variable 

representing the time of the first event, and 𝐶 = 𝑘 (𝑘 = 1, … , 𝑝) is a discrete 
variable denoting the type of event. If the time of the observation for some units is 
shorter than the time of the first event, we encounter right censoring. In such 
a situation, 𝐶 = 0 and 𝑇𝑐 is the time at which the observation was censored; what 

we only know is that 𝑇 > 𝑇𝑐. Due to the right censoring, the variable (𝑇, 𝐶) is only 

partially observable, and we observe a pair (min{𝑇 , 𝑇𝑐}, 𝐶). As a result, the joint 
distribution of (𝑇, 𝐶) is difficult to identify and can be estimated only by making 
some unverifiable assumptions (Pintilie, 2006, p. 41). 

The subdistribution of event 𝑘 (cumulative incidence function, CIF) is the 

probability, until time 𝑡, that event 𝑘 will occur 

 𝐹𝑘(𝑡) = 𝑃(𝑇 ≤ 𝑡, 𝐶 = 𝑘).        (6) 

The subdistribution is not a proper distribution because 

 𝑙𝑖𝑚
𝑡→∞

𝐹𝑘(𝑡) = 𝑃(𝐶 = 𝑘) ≤ 1.        (7) 

The equality 𝑃(𝐶 = 𝑘) = 1 holds if there is only one type of event (no 
competing risks). The sum of the subdistributions for all types of events is 
a marginal distribution of the variable 𝑇 

 𝐹(𝑡) = 𝑃(𝑇 ≤ 𝑡) = ∑ 𝐹𝑘(𝑡)
𝑝
𝑘=1 .       (8) 

The maximum likelihood estimator of the subdistribution is 

 �̂�𝑘(𝑡) = ∑ ℎ̂𝑘𝑗�̂�(𝑡𝑗−1)𝑡𝑗≤𝑡 ,        (9) 

where ℎ̂𝑘𝑗 is the cause-specific hazard at time 𝑡𝑗 for event 𝑘. This can be defined 

as ℎ̂𝑘𝑗 =
𝐷𝑘𝑗

𝑁𝑗
, where 𝐷𝑘𝑗 is the number of events of type 𝑘 at time 𝑡𝑗, 𝑁𝑗 is the 

number at risk just prior to time 𝑡𝑗, and 𝑡𝑗, for 𝑗 = 1, … , 𝑟 (𝑟 ≤ 𝑛) are distinct event 

times. �̂�(𝑡𝑗−1) is the survival function for all types of events just before time 𝑡𝑗. 
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It is worth noting that the estimate depends not only on the number of 
individuals who have experienced the 𝑘-th type of event, but also on the number 
of individuals who have not experienced any type of event (Binder et al., 2014). 
Usually, only one type of event is of interest and other types of event are treated 
as competing risks to it. In such a situation, it is reasonable to consider only two 
types of event: the event of interest (risk 1) and every other event combined 
(risk 2). This approach will be considered later in this paper. 

The pseudo-observation for the unit 𝑖, at time 𝑡, for the event type 𝑘, based on 
the CIF, has the form 

 �̂�𝑖𝑘(𝑡) = 𝑛�̂�𝑘(𝑡) − (𝑛 − 1)�̂�𝑘
(−𝑖)

(𝑡).      (10) 

Here, �̂�𝑘(𝑡) is the estimated CIF for the 𝑘-th event at time 𝑡 using all 

observations, and �̂�𝑘
(−𝑖)

(𝑡) is the estimated CIF derived from all but the 𝑖-th 
observation. When units are in a cohort, have the same pseudo-observation 
values for the CIF at subsequent times. At 𝑡 = 0, a pseudo-observation for the 
CIF equals zero. Then, as time increases, pseudo-observations decrease, taking 
negative values. Figure 4 shows pseudo-observations over time for a unit that 
leaves the cohort at time 7. If the unit leaves the cohort due to an event of type 1, 
the pseudo-observation jumps above one at the time of the event, and then, at 
subsequent times, gradually decreases towards one. When the unit leaves the 
cohort due to an event of type 2, the pseudo-values remain negative and 
decreasing at all subsequent times (Andersen and Perme, 2010). If an individual 
is censored at time 𝑡, the pseudo-observations start increasing as of the next 
event time recorded in the data set (see Figure 5). 

 

 

Figure 5.  A comparison of the development of pseudo-values over time for three 
units that leave a cohort at time 7 due to either risk 1, risk 2, 
or censoring 

 
As we compare the pseudo-observations for units with the same cause of 

leaving a cohort but at different times, we can see greater changes in the pseudo-
values for later departures (see Figure 6). Jumps in the values of pseudo-
observations are higher if the event of type 1 happens later, due to the reduction 
in time of the risk set. 
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Figure 6. Pseudo-observations for units that experienced (a) risk 1 or (b) risk 2 or 
were (c) censored at different times (t=4,...9). Different scales are used 
in each figure 

 
In a special case with no competing risks, the estimated CIF for the type-1 

event reduces to the estimation of the distribution function (�̂�𝐶𝐼𝐹), and the survival 

function can be estimated as �̂�𝐶𝐼𝐹(𝑡) = 1 − �̂�𝐶𝐼𝐹(𝑡). If survival functions are 

estimated directly with a Kaplan-Meier estimator or as �̂�𝐶𝐼𝐹(𝑡), the estimations are 
equal. However, as we show in the empirical part of the study, in the case of 
pseudo-observations based on these estimators, this equality no longer holds. 



178                                              E. Wycinka, T. Jurkiewicz: Survival regression models… 

 

 

If no censoring occurs in the data set, the pseudo-observations for risk 
1 reduce to the indicator 𝐹1(𝑡) = 1[𝑇1 ≤ 𝑡]. They equal zero as long as the unit is 
in the cohort and rise towards one as the event of type 1 (risk 1) happens. The 
pseudo-observations for risk 2 equal zero at all time points, even after the 
occurrence of the event of type 2 (risk 2) (see Figure 7). 

 

 

Figure 7.  Pseudo-observations for the CIF for risk 1 and risk 2 over time in a data 
set with no censoring 

3. Regression models based on pseudo-observations 

For each unit there are 𝐻 pseudo-observations – one for each predefined 
point in time. As a result, the data transformed into pseudo-observations is no 
longer independent, and generalised linear models (GLM) cannot be applied. 
Generalised estimating equations (GEEs) are the generalisation of GLM models 
for correlated data, as introduced by Liang and Zeger (1986). This is a method for 
analysing data collected in clusters where observations within a cluster may be 
correlated, but observations from different clusters are independent. The variance 
is a function of the expectation, and a monotone transformation of the expectation 
is linearly related to the explanatory variable (Højsgaard et al., 2005). The 
pseudo-observations are dependent variables in GLMs for a given link function 
𝑔(. ). The regression model is 

𝑔(�̂�𝑘(𝑡)|𝑋) = 𝛽0 + ∑ 𝛽𝑗𝑋𝑗
∗𝑚+𝐻

𝑗=1        (11) 

Here, the vector 𝑋∗ includes indicators of time points 𝑋 = (𝑋𝑚+1, … , 𝑋𝑚+𝐻) for 𝑡 =
1, … , 𝐻 (as dummy variables), as well as the covariates 𝑋 = (𝑋1, … , 𝑋𝑚). When a 

complementary log-log link function is used, such as 𝑔(𝑥) = log (− log(𝑥)) for a 
single event, then the regression model has the form 

 log (− log(𝑆(𝑡|𝑋))) = 𝛽0 + ∑ 𝛽𝑗𝑋𝑗
∗𝑚+𝐻

𝑗=1       (12) 

and can be depicted as 

 𝑆(𝑡|𝑋) = exp (−exp (𝛽0 + ∑ 𝛽𝑗𝑋𝑗
∗))𝑚+𝐻

𝑗=1 .      (13) 

Estimated coefficients for time points can be put into the model as time-
dependent coefficients 𝛽0(𝑡): 

 𝑆(𝑡|𝑋) = exp (−exp (𝛽0 + 𝛽0(𝑡) + ∑ 𝛽𝑗𝑋𝑗))𝑚
𝑗=1 .    (14) 
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Finally, the survival function can be expressed as 

 𝑆(t|X) = 𝑆0(t)exp ∑ 𝛽𝑗𝑋𝑗
𝑚
𝑗=1 ,        (15) 

which is a formula for the Cox PH model. Coefficients can be interpreted as a 
logarithm of a proportional hazards ratio. 

In the case of competing risks, the link function 𝑔(𝑥) = log (− log(1 − 𝑥)) is 
used, and the regression model has the form 

 log (− log(1 − 𝐹𝑘(𝑡|𝑋))) = 𝛽0 + ∑ 𝛽𝑗𝑋𝑗
∗𝑚+𝐻

𝑗=1 ,      (16) 

which can also be expressed in the form 

 𝐹𝑘(𝑡|𝑋) = 1 − exp (−exp (𝛽0 + 𝛽0(𝑡) + ∑ 𝛽𝑗𝑋𝑗))𝑚
𝑗=1 .    (17) 

This form is analogous to the proportional hazard model on the subdistribution 
hazard function in the Fine-Gray model. Coefficients 𝛽𝑗  can be interpreted as 

logarithms of the subdistribution hazard ratios, if all covariates are time 
independent (Haller et al., 2013, p. 44). 

Estimations of the parameters are based on the estimating equations 

 ∑ (
𝜕

𝜕𝛽
𝑔−1(𝛽𝑇𝑋𝑖

∗))𝑇𝑉𝑖
−1 (�̂�𝑖 − 𝑔−1(𝛽𝑇𝑋𝑖

∗)) = 0𝑖 .    (18) 

Here, 𝑉𝑖 is a working covariance matrix. The efficiency of the estimators 
depends on the choice of 𝑉𝑖 matrix, which should resemble the true covariance. 
The GEE method fits marginal mean models and, as a result, only the correct 
specification of marginal means is required for the parameter estimation to be 
consistent and asymptotically normal (Højsgaard et al., 2005). The covariance 
structure does not need to be specified correctly; however, it is necessary to 
make an assumption about the type of this structure (considered the working 
covariance matrix or working correlation matrix). Four different types of working 
correlation matrix are usually considered. 

The simplest – the independent working correlation structure – assumes that 

𝜌𝑡1,𝑡2
= 𝑐𝑜𝑟𝑟 (�̂�(𝑡1), �̂�(𝑡2)) = 0 for each pair (�̂�(𝑡1), �̂�(𝑡2)) and 𝑡1 ≠ 𝑡2. The 

compound symmetry (exchangeable) structure treats 𝜌𝑡1,𝑡2
= 𝑐𝑜𝑟𝑟 (�̂�(𝑡1), �̂�(𝑡2)) 

for all pairs as equal but unknown. The autoregressive structure of order 1 (AR1) 

has the form 𝑐𝑜𝑟𝑟 (�̂�(𝑡1), �̂�(𝑡2)) = 𝜌𝑡1−𝑡2, which reflects that observations further 

apart in time are less correlated. Finally, the unstructured working correlation 

matrix consists of a set of 𝑐𝑜𝑟𝑟 (�̂�(𝑡1), 𝜃(𝑡2)) that differs for each pair. 

Agresti (2007) pointed out that if correlations are small, all working correlation 
structures yield similar estimates of parameters in GEE models and similar 
standard errors. In the Monte Carlo study, Klein and Andersen (2005) showed 
that there are no significant differences in estimations of GEE models for pseudo-
observations with different working covariance matrices and recommended the 
use of the independent working covariance matrix. 

The choice of the number of time points has little influence on the model fit. 
In the Monte Carlo simulations, Klein and Andersen (2005) showed that it is 
enough to choose five to ten time points, equally spaced on the event scale, to 
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evaluate pseudo-observations for the fitting model for the entire curve. Parameter 
estimates are quite insensitive to the number of time points. However, Andersen 
and Perme (2010) suggested that, nevertheless, all time points should be used if 
possible. 

One of the problems with the implementation of GEE models is that GEE is 
a non–likelihood-based method. Therefore, information criteria such as Akaike 
Information Criterion (AIC) or Bayesian Information Criterion (BIC) cannot be 
directly applied, which creates problems with the choice of best model. The GEE 
models for pseudo-observations with the log-log link function are analogues to the 
Cox PH and Fine-Gray models; therefore, in the empirical study, a variable 
selection, and consequently a choice of models, was performed for the last 
models. The Akaike selection criterion (Akaike 1974) was used to choose the best 
subset of covariates separately in the Cox PH and Fine-Gray models (Kuk and 
Varadhan, 2013). Subsequently, these sets of covariates were used in the 
equivalent GEE models. 

4. Empirical study 

We considered a cohort of 5,000 retail credits granted during 12 consecutive 
months by a Polish financial institution. All credits were granted for a fixed term of 
24 months. The cohort was followed for 15 months from the moment the first 
credit was granted. Each credit could terminate in one of two ways: being 
completely paid back earlier than scheduled (early repayment) or by defaulting. 
A defaulted credit was considered one that had a delay in instalment payments of 
at least 90 days. We observed both types of termination in the cohort, as well as 
censoring. Censored observations were credits for which neither default nor early 
repayment were observed during the follow-up. That is, for those credits, all 
instalments were paid on time or with a delay shorter than 90 days. Figure 8 
shows the distribution of events and censoring over the months of the credits’ life, 
observed at the end of the follow-up. 

 

Figure 8. Distribution of the causes of termination during the follow-up of credits 
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Due to its definition, default cannot be observed for the first three months after 
credit granting. Early repayments and censoring were not lagged. Through the 
specificity of the analysed problem in the data set, we observed single events for 
particular time points with no censoring (𝑡=1,2) and competing events with 

censoring (𝑡=3,…,15). The objective was to evaluate one model of the probability 
of default for all time points in the presence of competing risk and heavy 
censoring. 

To evaluate the probability of default, we laid down pseudo-observations and 
built GEE models for those pseudo-observations. Variables describing a creditor 
and a credit at the time of credit granting were used as covariates in these 
models. These variables included information such as age of the applicant, 
property, educational level, purpose of the credit, amount and instalment 
payments. To comply with the requirements of the financial institution sharing the 
data, the names of the variables were anonymised and are denoted in this paper 
by the letter X and one or more numbers. 

All the variables were categorised and included in models as dummy 
variables. Two approaches were applied that resulted in different methods of 
assessing the pseudo-observations. The first assumed that the only type of 
analysed event was default; all other reasons for leaving the cohort of credits 
were considered to be censoring. In this approach, pseudo-observations were 
evaluated for the survival function (formula 5). 

The second approach considered two causes of events: default and early 
repayment. Regular payments were handled as censored observations. Pseudo-
observations were calculated (formula 10) for all event times due to the small 
number of analysed time points. To choose the set of covariates for GEE models, 
variable selection for the Cox PH model for single events, and the Fine-Gray 
model for competing events, was conducted at the first step with AIC using a 
stepwise algorithm (Venables and Ripley, 2002). Four different working 
covariance matrices were then applied. 

Parameter estimations for all of the types of matrices were very close. 
Differences were only observed for estimates of parameters of dummy variables 
for time points, but these differences had no influence on the models’ fit. The 
independence matrix was a slightly better fit for the model, and the results for this 
matrix are presented in the latter part of the paper. Table 1 shows the results of 
estimations of the GEE model for the CIF and estimates of the Fine-Gray model 
with the same set of covariates. Estimates of the parameters in both models are 
very similar. The GEE model, apart from covariates, also includes dummy 
variables for time points for which pseudo-values were calculated. Time point 1 
(t1) is not included in the model because it is a reference group. 

The CIF changes not only at the time of the considered event, but also at the 
time of the competing event. This is why time point 2 is included in the model, 
despite no default having occurred – this is one of the differences between 
competing- and single-event approaches. Values of the estimates for the 
subsequent time points increase, which is associated with higher wages for the 
units leaving a cohort later (compare Figure 6). Standard errors of estimators of 
covariates in the GEE model are slightly higher than for the Fine-Gray model; this 
observation is consistent with the findings of Andersen and Perme (2010). 
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Table 1. Estimates of the GEE model for the CIF and for the Fine-Gray model, 
both for the risk of default. 

GEE model for CIF Fine-Gray model 

Time point  SE() p-value Cov.  SE() p-value Cov  SE() p-value 

Int. -20.11 0.24 0.000 . . . . . . . . 

t2 -4.67 0.40 0.000 X1_2 -0.34 0.11 0.0027 X1_2 -0.30 0.10 0.0036 

t3 17.27 0.40 0.000 X2_2 -0.19 0.13 0.1434 X2_2 -0.17 0.11 0.1300 

t4 17.79 0.39 0.000 X2_3 -0.19 0.17 0.2651 X2_3 -0.31 0.15 0.0330 

t5 18.18 0.39 0.000 X3_2 -0.30 0.12 0.0098 X3_2 -0.40 0.10 0.0001 

t6 18.40 0.39 0.000 X4_2 0.28 0.12 0.0168 X4_2 0.21 0.10 0.0330 

t7 18.57 0.39 0.000 X5_2 0.41 0.13 0.0013 X5_2 0.44 0.11 0.0000 

t8 18.71 0.39 0.000 X6_2 -0.46 0.15 0.0016 X6_2 -0.61 0.13 0.0000 

t9 18.78 0.39 0.000 X6_3 -1.51 0.16 0.0000 X6_3 -1.59 0.15 0.0000 

t10 18.87 0.39 0.000 X7_1 -0.49 0.12 0.0000 X7_1 -0.52 0.10 0.0000 

t11 18.98 0.39 0.000 X7_2 1.33 0.63 0.0355 X7_2 1.21 0.48 0.0120 

t12 19.05 0.39 0.000 X8_1 -0.15 0.28 0.5859 X8_1 -0.31 0.22 0.1700 

t13 19.19 0.39 0.000 X8_2 -0.55 0.26 0.0308 X8_2 -0.55 0.22 0.0110 

t14 19.33 0.39 0.000 X9_1 0.22 0.15 0.1385 X9_1 0.27 0.13 0.0400 

t15 19.58 0.39 0.000 X9_2 0.13 0.13 0.3032 X9_2 0.23 0.11 0.0350 

Cov – covariate, Int. – intercept, t – dummy variable for a time point. 

 
The purpose of a credit-risk assessment is not to find the size of the effect of 

a particular predictor on the risk of default, but to create a model which has the 
highest discriminatory ability and which allows prediction of the probability of 
default over the credit’s life. To compare the performance of the above models, 
the following discrimination measures were used: area under the ROC curve 
(AUC), Kolmogorov-Smirnov test (KS), and Hand measure (H) (Hand, 2009). 
Additionally, significance tests of the differences between AUCs of both models 
were calculated (DeLong et al. 1988). Table 2 presents each model’s 
performance at each of the event times. Both models have good and comparable 
discriminatory power through the whole credit-life. However, the best 
discrimination was achieved for the first months of credit-life; the slight advantage 
for the Fine-Gray model according to AUC is significant only for the last six 
months (see last column of Table 2). 
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Table 2. Measures of the performance of models for the CIF. 

Month 

H  

95% CI 

K-S  

95% CI 

AUC  

95% CI 

GEE F-G GEE F-G GEE F-G p-value 

3 0.215 

0.142-0.318 

0.221 

0.155-0.322 

0.422 

0.320-0.526 

0.406 

0.340-0.530 

0.751 

0.688-0.804 

0.754 

0.699-0.806 

0.457 

4 0.236 

0.183-0.315 

0.236 

0.184-0.320 

0.458 

0.381-0.532 

0.456 

0.390-0.540 

0.775 

0.729-0.812 

0.778 

0.739-0.815 

0.357 

5 0.219 

0.176-0.289 

0.216 

0.178-0.29 

0.419 

0.358-0.494 

0.424 

0.360-0.500 

0.764 

0.726-0.797 

0.765 

0.731-0.800 

0.750 

6 0.206 

0.169-0.272 

0.205 

0.172-0.271 

0.399 

0.345-0.470 

0.407 

0.350-0.470 

0.754 

0.718-0.788 

0.756 

0.728-0.792 

0.316 

7 0.205 

0.173-0.264 

0.207 

0.175-0.267 

0.400 

0.352-0.463 

0.407 

0.360-0.470 

0.756 

0.724-0.785 

0.759 

0.733-0.790 

0.128 

8 0.200 

0.167-0.254 

0.201 

0.173-0.258 

0.389 

0.345-0.446 

0.394 

0.360-0.460 

0.753 

0.722-0.779 

0.757 

0.733-0.784 

0.073 

9 0.189 

0.161-0.241 

0.191 

0.167-0.246 

0.375 

0.340-0.433 

0.384 

0.350-0.440 

0.747 

0.718-0.773 

0.75 

0.728-0.778 

0.069 

10 0.182 

0.157-0.234 

0.183 

0.162-0.238 

0.366 

0.329-0.423 

0.372 

0.340-0.440 

0.741 

0.714-0.767 

0.745 

0.723-0.773 

0.046 

11 0.176 

0.151-0.225 

0.177 

0.158-0.228 

0.355 

0.320-0.410 

0.359 

0.330-0.420 

0.735 

0.708-0.760 

0.739 

0.718-0.765 

0.019 

12 0.171 

0.147-0.22 

0.173 

0.154-0.224 

0.350 

0.315-0.404 

0.357 

0.33-0.41 

0.731 

0.705-0.756 

0.736 

0.715-0.762 

0.014 

13 0.174 

0.152-0.222 

0.176 

0.157-0.227 

0.355 

0.320-0.408 

0.362 

0.330-0.420 

0.733 

0.708-0.757 

0.737 

0.717-0.764 

0.023 

14 0.174 

0.150-0.220 

0.175 

0.155-0.226 

0.35 

0.319-0.403 

0.359 

0.330-0.410 

0.73 

0.706-0.754 

0.734 

0.715-0.761 

0.013 

15 0.174 

0.150-0.219 

0.174 

0.155-0.224 

0.351 

0.321-0.404 

0.36 

0.330-0.410 

0.73 

0.707-0.754 

0.733 

0.715-0.759 

0.037 

GEE- generalized estimating equations, F-G – Fine-Gray model, 95% CI – 95% confidence 
intervals as percentiles form 1000 bootstrapped samples 

 

The application of the competing-risks methodology to credit-risk assessment 
is quite a recent idea (c.f. Watkins et al., 2014); it is more common to use single-
event models (see Dirick et al., 2017). In the single-event approach, only time to 
default is considered, whereas credits that do not default until data-gathering are 
censored observations. However, in a credit-risk context, as a loan reaches 
maturity, default can no longer occur. Moreover, a very large proportion of the 
population will not go into default; hence, the basic principle in the survival 
analysis of one event type, that 𝑆(𝑡) → 0, does not hold. Therefore, in our study, 
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we should expect worse performance of single-event models than competing-
events models for default. To verify this hypothesis, pseudo-observations for the 
survival functions were calculated with formula 5. Variable selection for the single-
event model was performed using the AIC selection criterion for the Cox PH 
model. Estimates of the parameters of the Cox PH model and the GEE model for 
the survival function were calculated (see Table 3). 

Table 3. Estimates of the GEE model for the survival function and estimates of 
the Cox PH model, both for the risk of default. 

GEE model for the survival function Cox model 

Time point  SE() p-value Cov  SE() p-value Cov  SE() p-value 

Int -2.42 0.29 0.000 X1_2 -0.48 0.15 0.001 X1_2 -0.34 0.10 0.001 

t4 0.57 0.11 0.000 X2_2 -0.20 0.16 0.188 X2_2 -0.21 0.11 0.058 

t5 1.03 0.14 0.000 X2_3 -0.11 0.25 0.653 X2_3 -0.35 0.15 0.020 

t6 1.32 0.15 0.000 X3_2 -0.24 0.16 0.138 X3_2 -0.38 0.10 0.000 

t7 1.55 0.15 0.000 X4_4 -0.21 0.29 0.460 X4_4 -0.37 0.15 0.010 

t8 1.78 0.16 0.000 X5_2 0.28 0.16 0.074 X5_2 0.27 0.11 0.015 

t9 1.89 0.16 0.000 X6_2 -0.70 0.23 0.003 X6_2 -0.59 0.13 0.000 

t10 2.08 0.17 0.000 X6_3 -1.85 0.28 0.000 X6_3 -1.65 0.15 0.000 

t11 2.32 0.17 0.000 X7_1 -0.44 0.16 0.006 X7_1 -0.48 0.11 0.000 

t12 2.48 0.18 0.000 X7_2 1.68 0.79 0.033 X7_2 1.83 0.52 0.000 

t13 2.82 0.19 0.000 X8_1 -0.04 0.41 0.931 X8_1 -0.35 0.23 0.123 

t14 3.12 0.21 0.000 X8_2 -0.64 0.33 0.053 X8_2 -0.53 0.22 0.015 

t15 3.68 0.29 0.000 X9_1 0.16 0.21 0.454 X9_1 0.26 0.13 0.055 

. . . . X9_2 0.19 0.17 0.273 X9_2 0.33 0.11 0.004 

Cov – covariate, Int. – intercept, t – dummy variable for a time point. 

 

Dummy variables in a single-event approach were evaluated only for time 
points from 4 to 15. Time point 3 was omitted as the reference group, while time 
points 1 and 2 were not event times. The Akaike selection criterion applied to the 
Fine-Gray and Cox PH models gave almost the same set of covariates for both. 
The only difference was that variable X4_4 was applied to the single-event 
models instead of X4_2, which was used in the competing-events models. As 
a result, estimations of the parameters for all covariates in the models can be 
directly compared. As in the case of competing events, the GEE model for both 
the survival function and for the Cox PH model gave close estimations of 
parameters. The fit of the models also does not differ (see Table 4). 

For both approaches, an interesting regularity was observed. For most of the 
covariates, p-values are greater for the GEE models for pseudo-observations 
than for Cox PH and Fine-Gray models; for some covariates, this resulted 
in a lack of significance, i.e. X2_3, X9_1, and X9_2 (compare Tables 1 and 3). 
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Table 4. Measures of the performance of models for the survival function. 

Month 

H 

95% CI 

K-S 

95% CI 

AUC 

95% CI 

GEE F-G GEE F-G GEE F-G p-value 

3 0.199 

0.130-0.302 

0.203 

0.148-0.317 

0.433 

0.314-0.526 

0.418 

0.329-0.528 

0.751 

0.680-0.800 

0.749 

0.694-0.805 

0.832 

4 0.229 

0.163-0.296 

0.226 

0.175-0.309 

0.454 

0.365-0.525 

0.449 

0.384-0.534 

0.773 

0.720-0.803 

0.773 

0.734-0.811 

0.923 

5 0.207 

0.157-0.267 

0.207 

0.171-0.277 

0.42 

0.346-0.484 

0.414 

0.359-0.492 

0.762 

0.718-0.788 

0.761 

0.728-0.797 

0.892 

6 0.199 

0.148-0.252 

0.195 

0.163-0.264 

0.406 

0.332-0.459 

0.401 

0.351-0.468 

0.751 

0.708-0.777 

0.752 

0.722-0.787 

0.778 

7 0.195 

0.152-0.244 

0.197 

0.166-0.259 

0.403 

0.339-0.456 

0.403 

0.360-0.469 

0.753 

0.714-0.777 

0.755 

0.729-0.785 

0.531 

8 0.193 

0.152-0.241 

0.193 

0.166-0.251 

0.391 

0.333-0.445 

0.390 

0.352-0.458 

0.751 

0.714-0.773 

0.753 

0.729-0.781 

0.489 

9 0.184 

0.147-0.23 

0.184 

0.161-0.24 

0.380 

0.327-0.433 

0.379 

0.347-0.447 

0.746 

0.711-0.769 

0.748 

0.725-0.775 

0.452 

10 0.179 

0.142-0.222 

0.180 

0.159-0.235 

0.370 

0.318-0.421 

0.369 

0.337-0.434 

0.74 

0.706-0.763 

0.744 

0.722-0.771 

0.226 

11 0.173 

0.138-0.218 

0.175 

0.155-0.225 

0.356 

0.306-0.405 

0.357 

0.325-0.420 

0.733 

0.698-0.755 

0.738 

0.717-0.764 

0.101 

12 0.169 

0.133-0.211 

0.171 

0.151-0.223 

0.35 

0.301-0.400 

0.353 

0.320-0.412 

0.729 

0.695-0.751 

0.734 

0.714-0.761 

0.056 

13 0.172 

0.139-0.215 

0.174 

0.154-0.225 

0.354 

0.305-0.403 

0.358 

0.325-0.415 

0.731 

0.700-0.753 

0.736 

0.715-0.762 

0.070 

14 0.17 

0.140-0.214 

0.172 

0.152-0.221 

0.35 

0.303-0.400 

0.354 

0.323-0.411 

0.727 

0.697-0.751 

0.732 

0.714-0.759 

0.064 

15 0.171 

0.141-0.215 

0.169 

0.149-0.218 

0.353 

0.307-0.401 

0.354 

0.321-0.408 

0.728 

0.700-0.751 

0.731 

0.713-0.757 

0.210 

GEE- generalized estimating equations, F-G – Fine-Gray model, 95% CI – 95% confidence 
intervals as percentiles form 1000 bootstrapped samples. 

 

For the single-event approach, we also applied the method based on 
a reduction of the CIF to the case of one type of event. This led to the use of the 

�̂�𝐶𝐼𝐹(𝑡) = 1 − �̂�𝐶𝐼𝐹(𝑡)) estimator of the survival function, instead of the �̂�𝐾𝑀(𝑡) 
estimator, in the calculation of the pseudo-observations. We observed that, for the 

pseudo-observations, the relation �̂�𝐾𝑀(𝑡) = 1 − �̂�𝐶𝐼𝐹(𝑡) does not hold. The 
differences between estimates were very low, but irregular. Figure 8 shows box-

plots for the differences �̂�𝐾𝑀(𝑡) − (1 − �̂�𝐶𝐼𝐹(𝑡)) for all the units at all time points. 
However, one should note that all the differences are very close to zero. 
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Figure 9. Distribution of differences between the KM estimator and the 
complement to CIF estimator for the survival function, both estimated 
by pseudo-observations 

 
The GEE models for survival functions built for pseudo-observations based on 

both estimators gave exactly the same results. Thus, in spite of the above 
differences, the methods are fully interchangeable. 

5. Conclusions 

Pseudo-observations are a method that can be considered competitive with 
other survival analysis techniques. As shown in section 2, the values of pseudo-
observations depend both on the type and time of event. Regression models for 
pseudo-observations correctly evaluate the whole survival curve, and the use of 
the log(-log) link function causes the GEE models for both single and competing 
approaches to simply mimic the results of the Cox PH and Fine-Gray models, 
respectively.  

This observation is consistent with the results of earlier studies by other 
authors and argues against the use of a more cumbersome pseudo-values 
approach instead of more classic methods. However, because the independence 
matrix happened to be the best choice for the GEE model in all of the studies, it is 
suggested that pseudo-observations could be used as dependent variables in 
other methods for complete, independent data, such as classification trees.  

In application to credit-risk assessment, competing-risks models had more 
discriminatory power than single-event models, which supports the use of 
competing-risks models in preference to models for single events. Further studies 
should focus on the variable-selection method that could be applied to the GEE 
models. 
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