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FROM THE EDITOR   

This issue of the Statistics in Transition new series is slightly modified in strictly 
editorial terms. Namely, we resign from traditionally maintained distinction between 
papers grouped, respectively, under the headings 'sample and estimation issues' 
and 'research papers'. From now on, they will be combined into one section, as 
original research papers. The other sections remain unchanged. In this way we are 
getting a possibility to place the paper we consider of a special interest to the 
readers at the forefront. In order to ensure the appropriate paper is obtained we are 
arranging - with the help of the distinguished members of our Editorial Board and 
Associate Editors panel – for an invited paper to be submitted by renewed scholars 
and leading experts. The paper by Danny Pfeffermann et al., which inaugurates 
this issue, provides an example of this new approach.  

This issue contains a set of nine papers, characterized briefly below. 

Danny Pfeffermann's, Dano Ben-Hur's and Olivia Blum's paper Planning 
the next Census for Israel is devoted to currently hot topic of designing census 
while dealing with challenges beyond those considered 'standard' in methodology 
of such a type of research. They are posed by the fact that despite having fairly 
accurate population register at the national level (consisting of about 9 million 
persons), Israel has much less accurate the register for small geographical 
(statistical) areas, with an average area enumeration error of about 13%. In order 
to correct the errors at the area level the following three-step procedure is 
employed: (i) draw a sample from an enhanced register to obtain initial direct 
sample estimates for the number of persons residing in each area on “census day”; 
(ii) fit the Fay-Herriot model to the direct estimates in an attempt to improve their 
accuracy; (iii) compute a final census estimate for each statistical area as a linear 
combination of the estimate obtained in step (ii) and the register figure. The authors 
also consider a procedure to deal with not missing at random (NMAR) nonresponse 
(in step i) - the proposed procedures are illustrated using data from the 2008 
Census in Israel. 

The paper Imputation of missing values by using raw moments by  
Muhammed Umair Sohail, Javid Shabbir and Fariha Sohil presents a method of 
imputation that has been found to be a cheaper procedure from a cost point of view 
in a situation when the sample data have missing values. The authors' study shows 
the improvement of the performance of imputation procedures by utilizing the raw 
moments of the auxiliary information rather than their ranks, especially, when the 
ranking of the auxiliary variable is expensive or difficult to achieve. Equations for 
bias and mean squared error are obtained by large sample-based approximation. 
Through the numerical and simulation studies it can be easily understood that the 
proposed method of imputation can outperform their counterparts. 

Kumari Priyanka's and Pidugu Trisandhya's paper Modelling sensitive 
issues on successive waves addresses the problem of estimation of population 
mean of a sensitive character using non-sensitive auxiliary variable at current wave 
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in two wave successive sampling. A general class of estimator is proposed and 
studied under randomized and scrambled response model. Many existing 
estimators have been modified to work for sensitive population mean estimation. 
The modified estimators became the members of the proposed general class of 
estimators. The detail properties of all the estimators have been discussed. Their 
behaviour under randomized and scrambled response techniques have been 
elaborated. Numerical illustrations including simulation have been accompanied to 
judge the performance of different estimators. Finally, suitable recommendations 
are forwarded. 

In the next article, Nonrandomized response model for complex survey 
designs by Raghunath Arnab, Dahud Kehinde Shangodoyin and Antonio 
Arcos discuss Warner’s randomized response (RR) model, which is used to collect 
sensitive information for a broad range of surveys but possesses several limitations 
– such as lack of reproducibility and higher costs; and it is not feasible for mail 
questionnaires. To overcome such difficulties, nonrandomized response (NRR) 
surveys have been proposed. The proposed NRR surveys are limited to simple 
random sampling with replacement (SRSWR) design. In this paper, NRR 
procedures are extended to complex survey designs in a unified set-up, which is 
applicable to any sampling design and wider classes of estimators. Existing results 
for NRR can be derived from the proposed method as special cases. 

Y. S. Ramakrishnaiah, Manish Trivedi and Konda Satish in the paper On 
the smoothed parametric estimation of mixing proportion under fixed design 
regression model re-examine the estimator proposed by Boes (1966) – James 
(1978), herein called BJ estimator, which was constructed for estimating mixing 
proportion in a mixed model based on independent and identically distributed (i.i.d.) 
random samples. They also propose a completely new (smoothed) estimator for 
mixing proportion based on independent and not identically distributed (non-i.i.d.) 
random samples. The proposed estimator is nonparametric in true sense based on 
known “kernel function” as described in the introduction. The following results of 
the smoothed estimator have been checked under the non-i.i.d. set-up: (i) its small 
sample behaviour as compared with the unsmoothed version (BJ estimator) based 
on their mean square errors by using Monte-Carlo simulation, and established 
percentage gain in precision of smoothed estimator over its unsmoothed version 
measured in terms of their mean square error, (ii) its large sample properties such 
as almost surely (a.s.) convergence and asymptotic normality of these estimators. 
These results are completely new in the literature not only under the case of i.i.d., 
but can be generalised to non-i.i.d. design as well. 

The next article, The odd generalized exponential log-logistic distribution 
group acceptance sampling plan by Devireddy Charana Udaya Sivakumar, 
Rosaiah Kanaparthi, Gadde Srinivasa Rao, and Kruthiventi Kalyani presents a 
group acceptance sampling plan (GASP) being developed when the lifetime of the 
items follows odd generalized exponential log-logistic distribution (OGELLD), and 
the multiple number of items as a group can be tested simultaneously in a tester. 
The design parameters such as the minimum group size and the acceptance 
number are derived under specified the consumer’s risk and the test termination 
time. The operating characteristic (OC) function values are calculated (intended) 
according to various quality levels, and the minimum ratios of the true average life 
to the specified average life at the specified producer’s risk are derived. The 
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methodology is illustrated using real data on health and survival times of guinea 
pigs in days, and results show that the proposed methodology performs well as 
compared with existing sampling plans. 

Soma Dhar, Lipi. B. Mahanta and Kishore. K. Das in the paper Formulation 
of the simple Markovian model using fractional calculus approach and its 
application to analysis of queue behaviour of severe patients introduce a 
fractional order of a simple Markovian model where the arrival rate of the patient is 
Poisson, i.e. independent of the patient size. Fraction is obtained by replacing the 
first order time derivative in the difference differential equations, which govern the 
probability law of the process with the Mittag-Leffler function. The probability 
distribution of the number N(t) of patients suffering from severe disease at an 
arbitrary time t is derived. Also, the authors obtain the mean size (number) of the 
patients suffering from severe disease waiting for service at any given time t, in the 
form of En 0:5;0:5(t), for different fractional values of server activity status, n = 
1;0:95;0:90 and for arrival rates a = b = 0:5. A numerical example is also evaluated 
and analysed by using the simple Markovian model with the help of simulation 
techniques. 

In the article An application of functional data analysis to local damage 
detection by Jacek Leśkow and Maria Skupień vibration signals sampled with a 
high frequency are used as a basic source of information about machine behaviour. 
Few minutes of signal observations easily translate into several millions of data 
points to be processed with the purpose of the damage detection. Big 
dimensionality of data sets creates serious difficulties with detection of frequencies 
specific for a particular local damage. In view of that, traditional spectral analysis 
tools like spectrograms should be improved to efficiently identify the frequency 
bands where the impulsivity is most marked (the so-called informative frequency 
bands or IFB). The authors propose the functional approach known in modern time 
series analysis to overcome these difficulties. The data sets are treated as 
collections of random functions to apply techniques of the functional data analysis 
(FDA). In effect, massive data sets can be represented by few real-valued functions 
and corresponding parameters, which are the eigen-functions and eigen-values of 
the covariance operator describing the signal. Also, a new technique based on the 
bootstrap resampling is proposed to choose the optimal dimension in representing 
big data sets under processing. Using real data generated by a gearbox and a 
wheel bearings, it is demonstrated how these techniques work in practice. 

Sukanya Intarapak's and Thidaporn Supapakorn's paper, An alternative 
matrix transformation to the F test statistic for clustered data, discusses the 
problem of regression analysis of clustered data when the error of cluster data 
violates the independence assumption. Consequently, the OLS based test statistic 
leads to incorrect inferences. To overcome this shortcoming, the transformation is 
required to apply to the observations. The authors propose an alternative matrix 
transformation that adjusts the intra-cluster correlation with Householder matrix and 
apply it to the F test statistic based on GLS (generalized least squares) procedures 
for the regression coefficients hypothesis. By Monte Carlo simulations of the 
balanced and unbalanced data, it is found that the F test statistic based on the GLS 
procedures, with Adjusted Householder transformation, performs well in terms of 
the type I error rate and power of the test.  
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In the last article (in the other articles section), Survival regression models 
for single event and competing risks based on pseudo-observations by Ewa 
Wycinka and Tomasz Jurkiewicz, a survival data problem associated with the 
presence of censored observations is discussed. If no censoring occurs in the data, 
standard statistical models could be employed to analyse them. Pseudo-
observations can replace censored observations and thereby allow standard 
statistical models to be used. Authors apply a pseudo-observation approach to 
single-event and competing-risks analysis. In the empirical part of the study, the 
use of regression models based on pseudo-observations in credit-risk assessment 
was investigated. Default, defined as a delay in payment, was considered to be the 
event of interest, while prepayment of credit was treated as a possible competing 
risk. Credits that neither default nor are prepaid during the follow-up were censored 
observations. Typical application characteristics of the credit and creditor were the 
covariates in the regression model. In a sample of retail credits provided by a Polish 
financial institution, regression models based on pseudo-observations were built 
for the single-event and competing-risks approaches. Estimates and discriminatory 
power of these models were compared to the Cox PH and Fine-Gray models.  

 

 
Włodzimierz Okrasa 

Editor  
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SUBMISSION INFORMATION FOR AUTHORS 

Statistics in Transition new series (SiT) is an international journal published 
jointly by the Polish Statistical Association (PTS) and Statistics Poland, on 
a quarterly basis (during 1993–2006 it was issued twice and since 2006 three 
times a year). Also, it has extended its scope of interest beyond its originally 
primary focus on statistical issues pertinent to transition from centrally planned to 
a market-oriented economy through embracing questions related to systemic 
transformations of and within the national statistical systems, world-wide.  

The SiT-ns seeks contributors that address the full range of problems involved 
in data production, data dissemination and utilization, providing international 
community of statisticians and users – including researchers, teachers, policy 
makers and the general public – with a platform for exchange of ideas and for 
sharing best practices in all areas of the development of statistics. 

Accordingly, articles dealing with any topics of statistics and its advancement 
– as either a scientific domain (new research and data analysis methods) or as 
a domain of informational infrastructure of the economy, society and the state – 
are appropriate for Statistics in Transition new series. 

Demonstration of the role played by statistical research and data in economic 
growth and social progress (both locally and globally), including better-informed 
decisions and greater participation of citizens, are of particular interest. 

Each paper submitted by prospective authors are peer reviewed by 
internationally recognized experts, who are guided in their decisions about the 
publication by criteria of originality and overall quality, including its content and 
form, and of potential interest to readers (esp. professionals). 

Manuscript should be submitted electronically to the Editor: 
P.Barszcz@stat.gov.pl,  
GUS/Statistics Poland, 
Al. Niepodległości 208, R. 296, 00-925 Warsaw, Poland 

It is assumed, that the submitted manuscript has not been published 
previously and that it is not under review elsewhere. It should include an abstract 
(of not more than 1600 characters, including spaces). Inquiries concerning the 
submitted manuscript, its current status etc., should be directed to the Editor by 
email, address above, or w.okrasa@stat.gov.pl. 

For other aspects of editorial policies and procedures see the SiT Guidelines 
on its Web site: http://stat.gov.pl/en/sit-en/guidelines-for-authors/ 
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EDITORIAL  POLICY 

The broad objective of Statistics in Transition new series is to advance the 
statistical and associated methods used primarily by statistical agencies and other 
research institutions. To meet that objective, the journal encompasses a wide 
range of topics in statistical design and analysis, including survey methodology 
and survey sampling, census methodology, statistical uses of administrative data 
sources, estimation methods, economic and demographic studies, and novel 
methods of analysis of socio-economic and population data. With its focus on 
innovative methods that address practical problems, the journal favours papers 
that report new methods accompanied by real-life applications. Authoritative 
review papers on important problems faced by statisticians in agencies and 
academia also fall within the journal’s scope. 

*** 

ABSTRACTING AND INDEXING DATABASES 
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PLANNING THE NEXT CENSUS  
FOR ISRAEL 

Danny Pfeffermann1, Dano Ben-Hur2 ,Olivia Blum3 

ABSTRACT 

Like in many countries, Israel has a fairly accurate population register at the 
national level, consisting of about 9 million persons (not including Israelis living 
abroad). However, the register is much less accurate for small geographical 
(statistical) areas, with an average area enumeration error of about 13%. The 
main reason for the inaccuracy at the area level is that people moving in or out of 
an area are often late in reporting their change of address, and in some cases, not 
reporting at all. In order to correct the errors at the area level in our next census, 
we investigate the use of the following three-step procedure: 

A- Draw a sample from an enhanced register to obtain initial direct sample 
estimates for the number of persons residing in each area on “census day”, 

B- Fit the Fay-Herriot model to the direct estimates in an attempt to improve their 
accuracy, 

C- Compute a final census estimate for each statistical area as a linear 
combination of the estimate obtained in Step B and the register figure. 

We also consider a procedure to deal with not missing at random (NMAR) 
nonresponse in Step A. The proposed procedures are illustrated using data from 
the 2008 Census in Israel. 

Key words: direct estimator, Fay-Herriot model, Missing Information Principle, 

NMAR nonresponse, Root MSE estimation. 

1.  Introduction 

In this article, we propose a new method of running a census, which combines 
a survey with administrative data.  We consider alternative ways of integrating the 
survey information with the administrative data for forming a single census 
estimate in small geographical areas, accounting for errors in both data sources 
and for not missing at random (NMAR) nonresponse. We illustrate our proposed 
method using data from the 2008 Census in Israel. 

                                                           
1 National Statistician & Head of Central Bureau of Statistic, Israel, Professor, Hebrew University of 

Jerusalem, Israel, and University of Southampton, UK. 
2 Senior Methodologist, Central Bureau of Statistic, 66 Kanfey Nesharim street, Jerusalem, Israel, 

9546456. 
3  Senior Director, Demography and Census Department, Central Bureau of Statistic, 66 Kanfey 

Nesharim street, Jerusalem, Israel, 9546456. 
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1.1.  Description of last census in Israel (2008) 

Israel has a fairly accurate Central Population Register (CPR); almost perfect 
at the country level. However, the CPR is much less accurate for small statistical 
areas, with an average enumeration error of 13% and a 95 percentile of 40%. 
Israel is divided into about 3,000 statistical areas, and census information such as 
counts and socio-economic information is required for every area. The main 
reason for the inaccuracy in the register counts at the area level is that people 
moving in or out of areas, often report late their change of address, while others 
who have an address of interest (tax benefits, school area, parking, etc.) do not 
report their change of address as long as the interest persists. In 2008, the Israel 
Central Bureau of Census (ICBS) conducted an integrated census, which 
consisted of the population register, corrected by estimates obtained from two 
coverage samples for each area. A field (area) sample of people living in the area 
on census day for estimating the register undercount (the “U sample”), and 
a sample of people registered in the same area for estimating the register over-
count (the “O sample”). The U sample was also used for collecting the socio-
economic information.  

The final, census estimate has been computed as follows: Denote by 
iN  the 

true number of persons residing in area i  on census day and by iK  the number of 

persons registered as living in the area. Let , |i L Rp  represent the proportion of 

persons living in area i  among those registered as living in the area, and ,R|Lip  

represent the proportion of persons registered in area i  among those living in the 

area. Then, 

                  
, |

, |

ˆ
ˆ

ˆ

i L R

i i,R|L i i,L|R i

i R L

p
N p K p K

p
 i× = × Ν .                    (1)   

By the use of Taylor expansion, the conditional (design-based) variance of 

ˆ
iN  can be approximated as, 

   

2

, ,2

, |2 4

, | , |

ˆ ˆ( ) [ ( )]
ˆ ˆVar( | ) ( )

ˆ ˆ[ ( )] [ ( )]

i L|K i L|K

i i i i K L

i K L i K L

Var p E p
N K K Var p

E p E p

 
   

  

.         (2)       

Over the last decade, Israel, as many other countries, experienced an 
accelerated process of using administrative data for the production of official 
statistics in general, and in particular, it improved its abilities to use administrative 
data for census purposes. As a result, the 2020 census methodology in Israel will 
use new data sources and for the first time, a geo-demographic administrative file 
(GDAF) will serve as the sampling frame for a sample that will be used to correct 
the administrative data in small statistical areas.  

Two key facts enable the shift in the planed methodology: a) entries and 
departures to and from the country are well recorded; b) all people in the country 
have administrative records; the citizens are registered in the CPR and the 
foreigners are reported in functional records like work permits and visas. 
A conceptual and practical leap towards fully administrative censuses in the future 
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can be thought of, but unfortunately, not yet in our next census in 2021, with 
reference census day defined as 31/12/2020. 

1.2.   New method planned for the next census in Israel 

For our 2021 census we plan a different method, which will hopefully get us 
closer to the use of fully administrative censuses in the future. The census will 
combine information from a single sample taken from the GDAF, with information 
available from the register and other administrative files, mainly to correct the 
counts obtained from the GDAF. The sample will collect geo-demographic 
information on all members of the household on census day, as well as socio-
economic information. It is planned to obtain the information by the Internet, then 
by phone from people not responding via the internet, and in cases of 
nonresponse by either of the two modes, by personal interviews.  
The direct estimates obtained from the sample will be improved by the use of the 
Fay-Herriot (F-H) estimator, employing relevant covariate information known at 
the area level, such as the number of buildings and the total volume of all the 
buildings in the area, with the volume defined as the building roof area times its 
height. Other covariates will be used for estimating the area socio-economic 
means of interest.  

For estimating the area counts, we shall combine the F-H estimator with the 
corresponding GDAF count, to obtain our final, composite, census estimator  
(see below). 

2.  Proposed three-stage census estimator 

2.1.  Direct count estimate (Stage 1) 

Denote by N  the number of residents in the country on census day and by 

iN  the number of residents in area i , such that 
ii

N N . Let /i ip N N

denote the true proportion of residents in the GDAF living in area i , and ˆ
ip  

denote the corresponding direct sample estimator, e.g. the sample proportion in 
the case of simple random sampling. (More efficient sampling designs and direct 

estimators are presently studied.) Finally, denote by K N  the size of the GDAF 

on census day. The direct estimator for the count of area i  is then ˆ ˆ
i iN K P  . 

The conditional design-based variance of ˆ
iN  is, 

2 2ˆ ˆ( | ) ( )D i D i DiVar N K K Var P   . 

2.2.  "Improved” Fay-Herriot estimate (Stage 2) 

The (standard) Fay-Herriot (F-H, 1979) model is: 

  ˆ xi i i iN u e     ,                                       (3) 
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where ˆ
iN  is the direct sample estimator, xi

represents the area covariates 

(number of residential buildings in the area and total volume of all the residential 
buildings in our empirical illustrations; we are presently searching for more 

powerful covariates), 
iu  is a random effect and 

ie  is the sampling error of the 

direct estimator. 
Under the model (3), the improved, empirical best linear unbiased predictor 

(EBLUP) of the true count is, 

2 2 2 1

, i
ˆˆ ˆˆ ˆ ˆ ˆ ˆ ˆ(1 )x ;   ( )

ii IMP i i i i u u DN N            , 

 (4)     

where 
2 2ˆ ˆ ˆ, ,

iu D    are appropriate sample estimates.   

2.3.  Final census count estimates 

The final count estimate in area i , will be obtained as a weighted average of 

the improved F-H estimate in (4), and the GDAF count. For this, we assume

~ ( ) ( )i i i iK Possion N Var K N  . The final composite census estimator 

is thus,  

2

,

, , i 2

,

ˆ
ˆ ˆˆ ˆ ˆ(1 ) ;  

ˆ ˆ ( )

i FH

i COM i i i i IMP

i FH i

N K N
Var K


  


   


. 

 (5)    

3. Alternative estimation of census counts  

3.1.  Including the register count among the covariates as fixed numbers 

Rather than computing the composite estimator (5), include the GDAF count 
as an additional covariate in the F-H model (3). Fitting this model “as is”, implies 
conditioning on the known register count, ignoring its possible error. The final 
census count estimate is in this case the F-H estimate. 

3.2.  Accounting for the errors of the register errors 

Following Ybarra and Lohr (2008), we add the GDAF count to the set of 
covariates but account for its possible measurement error by assuming, 

~ ( , ( ))i i iK N N Var K . Denote, x (x , )i i iK . Assuming that all the other 

covariates are measured without error,     
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     (x )i iC Var   

0...0, ..., 0

0...0,  ..., 0

. . . .   ,    .

. . . .   ,    .

. . . .   ,    .

0...0, ..., ( )iV K

 
 
 
 
 
 
 
 
  

, and 

2

, i 2 2

ˆ ˆˆˆ ˆ ˆ ˆˆ ˆ (1 )x ;    
ˆ ˆˆ ˆ

u i
i YL i i i i

u i Di

C
N N

C

  
   

   


   

 
.     (6)       

4.  Empirical illustrations 

To illustrate the method and its various options, we use the Over-count (O) 
sample drawn from the central population register for the 2008 census. The total 
sample size is approximately 600,000 persons. We consider the 205 areas of size 
1,000-10,000 as estimated in the 2008 census, because these area sizes 
correspond to the sizes of the statistical areas of interest in our next census. The 
sample has been drawn by stratified simple random sampling. The covariates 
used for the models are the number of residential buildings in the area and the 
total volume of all the residential buildings. The F-H model parameters have been 
estimated by MLE, using the PROC mixed procedure in SAS, which assumes 
normality of the random effects and the sampling errors. The 2008 census 
estimates (based on the O and U the samples) are taken as the true counts 
(referred to in the figures below as the “Census values”). 

 

 

Figure 4-1.  Direct estimator, Census value and Register count for the 205 small 
areas, ordered by their size in the register  

As can be seen, the direct estimator is unbiased, but with large variance. 
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Figure 4-2.   Direct estimator, Census  value,  Register count  and  Improved   
(F-H) estimator  

The improved F-H estimator reduces only mildly the variance of the direct 
estimator. We are in the process of searching for more powerful covariates. In 
particular, we expect to get from the electricity company a list of all dwelling 
apartments and houses in Israel, which should improve the F-H estimator very 
significantly compared to the use of only the number of buildings.  

 

Figure 4-3.  Direct estimator, Census value, Register count, Improved estimator 
and Composite estimator  

The Composite estimator is seen to estimate the true counts much more 
precisely than the other estimators. Table 4.1 exhibits some summary statistics of 
the performance of the various estimators considered so far. 

Table 4-1. Absolute relative distance of estimates from Census values I 

Estimate Mean 
10th 

Pctl. 

25th 

Pctl. 

50th 

Pctl. 

75th 

Pctl. 

90th 

Pctl. 

Direct 0.1047 0.0101 0.0243 0.0556 0.1084 0.2202 

Register count 0.0616 0.0010 0.0151 0.0507 0.0912 0.1344 

Improved 0.0946 0.0112 0.0275 0.0573 0.0956 0.1959 

Composite 0.0598 0.0056 0.0189 0.0469 0.0834 0.1257 
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Finally, Figure 4-4 and Table 4-2 exhibit the results obtained when adding the 
register count as an additional covariate in the F-H model, with (FH_WME) and 
without (FH_NME) accounting for its measurement error. In the latter case, we 

estimated 
2

u  and   by the method of modified least squares, (Ybarra and Lohr, 

2008). 
 

Figure 4-4. Estimates when adding the register count to the covariates of the 
Fay-Herriot model, with and without accounting for its measurement 
error 

Table 4-2. Absolute relative distance of estimates from census values II 

Estimate Mean 
10th 

Pctl. 

25th 
Pctl. 

50th 

Pctl. 

75th 
Pctl. 

90th 
Pctl. 

Direct 0.1047 0.0101 0.0243 0.0556 0.1084 0.2202 

Register count 0.0616 0.0010 0.0151 0.0507 0.0912 0.1344 

Improved 0.0946 0.0112 0.0275 0.0573 0.0956 0.1959 

FH_NME 0.0893 0.0100 0.0261 0.0540 0.0931 0.1877 

Composite 0.0598 0.0056 0.0189 0.0469 0.0834 0.1257 

FH_WME 0.0603 0.0094 0.0227 0.0498 0.0793 0.1230 

 
As clearly noticed, not accounting for the measurement error of the register 

count yields a census estimator with only minor improvement over the direct 
sample estimator. Accounting for the error of the register count improves the 
performance of the F-H estimator very significantly, but quite surprisingly, the 
composite estimator performs somewhat better, despite of the EBLUP property of 
the Ybarra and Lohr (2008) estimator. Although only based on a single empirical 
study, a possible explanation for this result is that in the latter estimator, the same 
weight is assigned to the register count and the other (fixed) covariates, whereas 
the composite estimator is more flexible, allowing for different weights for the 
register count and the other covariates. Further theoretical research and empirical 
illustrations are required to validate this result.  
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5.  Accounting for Not Missing At Random (NMAR) nonresponse  

Sverchkov and Pfeffermann (2018) propose a method that uses the Missing 
Information Principle of Orchard and Woodbury (1972) for estimating the 
response probabilities in small areas. The basic idea is as follows: first construct 
the likelihood that would be obtained if the missing outcome values were known 
also for the nonrespondents. However, since the missing outcomes are practically 
unknown, replace the likelihood by its expectation with respect to the distribution 
of the missing outcomes, given all the observed data. The latter distribution is 
obtained from the distribution of the observed outcomes, as fitted to the observed 
values. See Sverchkov and Pfeffermann (2018) for the relationship between the 
distributions of the observed and the missing outcomes, for given covariates and 
response probabilities.  

Ideally, we would want to show how the method performs in estimating the 
true number of persons residing in each area on census day, but this information 
is practically unknown for our test data (the O-sample used so far). Consequently, 
in what follows we illustrate instead the performance of the method when 
predicting the true number of divorced persons registered in each area. The  
O-sample is drawn from the central population register and the true number of 
divorced persons registered in each area is therefore known.  

Define the outcome variable, ijy , to be 1 if person j  registered in area i  is 

divorced, and 0 otherwise. Let the response indicator, ijR , take the vlaue 1 if unit 

j  in area i   responds, and 0 otherwise. We restrict the analysis to persons aged 

20+. The model fitted for the observed outcomes of the responding units and the 
model assumed for the response probabilities are defined in Equations (7) and 
(8). The covariates used for this illustration are listed in Table 5.1.  

0 2

0

exp( x )
Pr( 1| x , , 1) ;    ~ (0, )

1 exp( x )

ij i

ij ij i ij i u

ij i

u
y u R u N

u

 


 

 
  

  
, 

 (7) 

  
0

0

exp( x )
Pr( 1| ,x ,u ; )

1 exp( x )

ij y ij

ij ij ij i

iijj y ij

y
R y

y

  


  

 
 

  
.               (8)  

Clearly, for 0y  , Equation (8) defines an informative response 

mechanism.  

We first impose 0y  , thus presuming that being divorced does not affect 

the probability of response, which corresponds to assuming missing at random 

(MAR) nonresponse. This is implemented by omitting the marriage status, ijy , 

from the response model (8). The results are shown in Tables 5-1 and 5-2. 
Table 5-1 displays the Odds ratios of the estimated Logistic model of the 
response probabilities for this case. As expected, the odds ratio for responding 
increases as the number of telephones belonging to the administrative family 
increases, and similarly for the administrative family size. The age group with the 
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smallest response probability is 30-39 (odds ratio=0.87), and people born in Israel 
have a much higher odds ratio to respond than people born abroad.  

Table 5-1. Odds ratios of estimated Logistic model of response probabilities 
assuming MAR nonresponse 

Variable 
Odds ratio in case of MAR  

non-response 

# of telephones per family 1.70 

Administrative family size 1.15 

Age 20-29 0.98 

Age 30-39 0.87 

40+ 1.00 

Jew 1.04 

Other 1.00 

Born in Israel 1.27 

Other 1.00 

Table 5-2 shows the distribution of the estimated response probabilities under 
the model of Table 5.1. 

Table 5-2. Distribution of estimated response probabilities under the model 
exhibited in Table 5-1 

It is quite clear from Table 5-2 that the supposition 0y   is incorrect. The 

probability of responding among divorced persons is significantly lower than for 
other persons. Hence, we estimated the response probabilities by including the 
binary variable "divorced" as an additional explanatory variable. 

Table 5-3. Odds ratios of estimated Logistic model of response probabilities 
allowing for NMAR nonresponse  

Variable 
Odds ratio in case of MAR 

non-response 
 Odds ratio in case of  
NMAR non-response 

# of telephones per family 1.70 1.83 

Administrative family size 1.15 1.11 

Age 20-29 0.98 0.95 

Age 30-39 0.87 0.86 

Other age 1.00 1.00 

Jew 1.04 1.05 

Other 1.00 1.00 

Born in Israel 1.27 1.25 

Other 1.00 1.00 

Divorced ---- 0.531 

Marriage 
status 

Mean 5th Pctl 25th Pctl 75th Pctl 

Other 0.815 0.489 0.822 0.885 

Divorced 0.742 0.359 0.683 0.843 

Total 0.812 0.487 0.819 0.885 
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We notice in Table 5-3 that the odds ratio for responding among divorced 
persons is about twice as small as for other persons, in correspondence with the 
results in Table 5-2. Interestingly, the odds ratios of the other covariates are very 
similar to the odds ratios obtained when assuming MAR nonresponse. 

The estimated models in Tables 5-1 and 5-3 allow us to estimate the 
response probability for each responding person in the sample. By viewing the 
response as an additional stage of sampling, the estimated response probabilities 
will be used for predicting the true area means of the target variable (proportion of 
divorced persons in the present illustration) using standard sampling theory, for 
example, by employing the approximately design-unbiased estimator, 

  | | | |

,( , ) ,( , )

ˆ ˆˆ( / ) / (1/ ); ( , ; )HB

i ij j i j i j i j i r ij ij

j i j R j i j R

Y y p y x    
 

   ,       (9) 

where |j i  denotes the sampling probability. Sverchkov and Pfeffermann (2018) 

derive also the empirical best predictor under the models (7) and (8), but we do 
not consider this predictor in the present paper. 

Figure 5-1 and Tables 5-4 and 5-5 compare the performance of the following 
three predictors of the true proportion of divorced persons in the various areas: 
the proportion of divorced persons in the observed sample, ignoring the non-
response (hereafter the direct estimator), the estimator obtained when assuming 
MAR nonresponse, and the estimator obtained when allowing for NMAR 
nonresponse (Equation 8). 

 

Figure 5-1. Percent of divorced persons in areas: true value, direct estimator and 
estimators obtained when assuming MAR and NMAR non-response 

Table 5-4. Difference between true values and estimates over all the areas 

 

Estimator Mean 
10th 

Pctl. 

25th 
Pctl. 

50th 
Pctl. 

75th 
Pctl. 

90th 
Pctl. 

Direct 0.0075 -0.0005 0.0006 0.0036 0.0099 0.0211 

MAR 0.0033 -0.0077 -0.0018 0.0004 0.0057 0.0168 

NMAR 0.0019 -0.0027 -0.0004 0.0001 0.0032 0.0094 
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Table 5-5. Absolute relative distance of estimates from true values 

As indicated by Figure 5.1 and Tables 5-4 and 5-5, the estimates obtained 
when accounting for NMAR nonresponse have by far the smallest bias and the 
smallest absolute relative distance from the true values. The direct estimates, 
which ignore the nonresponse, have large bias and large relative distance from 
the true values.   

6.  Root MSE estimation under NMAR nonresponse 

Like in any publication of official statistics, we are not only required to publish 
counts and other socio-demographic estimates, but also evaluate their precision. 
One set of evaluation measures (but definitely not the only one), is to estimate for 
each area the root MSE (RMSE) of the final estimate. This is relatively simple if 
we were to use the direct sample estimates as our final estimates and if all 
sample units will respond, but this obviously will not happen. Estimation of the 
RMSE is more complicated when using the Fay-Herriot estimates and accounting 
for NMAR nonresponse, and even more so, when using the composite estimator 
described in Section 2.   

Sverchkov and Pfeffermann (2018) propose a bootstrap method for estimation 
of the RMSE of small area estimates under NMAR nonresponse, which accounts 
for the random processes assumed to generate the population values, and the 
sampling and response processes. This implies that the target area parameters 
(the true proportion of persons residing in the area on census day, out of all the 
persons registered in the CPR in our application),   are considered as random, 
which is different from classical survey sampling applications under which the 
finite population values and hence the target parameters are viewed as fixed 
values. Users of sample survey (official statistics) estimates are familiar with 
measures of error, which only account for the variability originating from the 
randomness of the sample selection (known as the randomization distribution), 
and the nonresponse. In other words, users are accustomed to estimates of the 
design-based (randomization) MSE (denoted hereafter as DMSE), over all 
possible sample selections, with the population values of the survey variables 
(and hence the values of the target parameters), held fixed. Estimation and 
publication of the DMSE (or its square root) is a common routine in national 
statistical offices all over the world.  

In a recent article, Pfeffermann and Ben-Hur (2019) propose a new procedure 
for estimating the DMSE of model-based small area predictors, which is shown to 
perform well in an extensive simulation study and outperforming other procedures 
for DMSE estimation proposed in the literature. We are presently extending this 
procedure for estimating the DMSE of our proposed composite estimators, 

Estimator Mean 10th Pctl 25th Pctl 50th Pctl 75th Pctl 
90th 
Pctl 

Direct 0.270 0.042 0.121 0.233 0.406 0.551 

MAR 0.256 0.032 0.113 0.216 0.379 0.472 

NMAR 0.118 0.004 0.022 0.055 0.156 0.362 
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accounting, in particular, for the inevitable NMAR nonresponse and the use of the 
composite estimator, which combines the survey estimate with the administrative 
population register count.   

7.  Concluding Remarks 

In this article we consider a new method for running a census, combining 
sample estimates with administrative data. A major advantage of this method is 
that it does not require the use of personal interviews, except in the case of non-
respondents. Israel still does not have a sufficiently reliable dwelling register, and 
the use of a field sample requires prior listing of all the dwelling units in a sample 
of cells in each statistical area, which is rather complicated logistically and very 
expensive. It also requires verifying that each of the apartments is inhabited. 

Under the new method, a single sample of persons is drawn from the GDAF, 
which is known to be generally accurate at the national level, except for some 
small “outlying” sub-populations, such as illegal immigrants. We consider 
alternative ways of combining the survey information with the GDAF to form a 
single final census estimator, accounting for the sampling errors in the survey, 
and errors in the addresses in the GDAF. We also propose a simple descriptive 
procedure of testing the informativeness of the missing sample data, and a way of 
accounting for NMAR nonresponse. We illustrate all the above topics by the use 
of real empirical data.  

We are currently planning a census rehearsal for next year in two statistical 
regions of Israel, which will hopefully provide us with another opportunity to test 
the ideas discussed in the present article, with more up-to-date data. 

Leaning more on administrative sources of information opens the way for new 
opportunities to the census process and outcomes. Referring to an identified 
population in a known population frame implies a substantial change in the 
concept of a census. Area boundaries become, in a way, a virtual entity rather 
than the main physical entity in a census. The theoretical and socio-economic 
implications of this change, and the influence on policy making, should be further 
investigated. 
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IMPUTATION OF MISSING VALUES BY USING
RAW MOMENTS
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ABSTRACT

The estimation of population parameters might be quite laborious and inefficient,
when the sample data have missing values. In comparison follow-up visits, the
method of imputation has been found to be a cheaper procedure from a cost point
of view. In the present study, we can enhance the performance of imputation pro-
cedures by utilizing the raw moments of the auxiliary information rather than their
ranks, especially, when the ranking of the auxiliary variable is expensive or difficult
to do so. Equations for bias and mean squared error are obtained by large sample
approximation. Through the numerical and simulation studies it can be easily un-
derstood that the proposed method of imputation can outperform their counterparts.

Key words: non-response, imputation, raw moments, relative efficiency.
Mathematical classification: 62D05.

1. Introduction

In survey sampling, the common problem which is faced by most of social sciences,
economic and scientific studies is the item or unit non-response or missing values.
The main reason of the non-response is the sensitive or embarrassing nature of
the questions which are relevant to the variable of interest. Usually respondents
hesitate to respond to questions related to the sensitive issues, such as age, in-
come, tax returns etc., or due to summer vocations remain a problematic issues in
survey sampling. The best available sources need to be utilized for reducing the
non-response rate as much as possible. In most of social studies, item or unit non-
response mislead the researchers about the effective inference about the problem
of interest. Usually the missing values can create a problem, when the follow-up vis-
its are expensive, population is highly dispersed over the frame or difficult to reach.
Alternatively, imputation is the most cheapest and easiest procedure to impute the
non-responses by appropriate use of the auxiliary information, which is correlated
with the variable of interest.
In the last few decades, several methods of imputation have been proposed to han-
dle out such problems in an effective manner. Among them Rubin (1976) was the
first who considered a comprehensive examination of non-response and explain

1Department of Statistics, Quaid-i-Azam University, Islamabad, Pakistan. E-mail: umairso-
hailch@gmail.com. ORCID ID: https://orcid.org/0000-0002-5440-126X.
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the different models under which it would occur, such as missing at random (MAR),
observed at random (OAR) and if the prior distributions are specified (PDS). Heitjan
and Basu (1996) and Ahmed et al. (2006) provided different imputation procedures
by correct use of the auxiliary information after Rubin (1976). The problem of non-
response under ranked set sampling, when the ranking of observation units is inex-
pensive was discussed by Herrera and Al-Omari (2011). They consider the problem
of missing values under the hot deck (HD) imputation strategy by the significant use
of supplementary information. Grover and Kaur (2014) provide an alternative esti-
mation procedure by combination the features of the proposed estimators by Rao
(1991) and Bahl and Tuteja (1991) to provide better results than existing ones. An
extensive discussion on item and unit non-response was considered by Little and
Rubin (2014) in their text. They explained a different method of imputation in sig-
nificant manners with suitable real life examples. Recently, Mohamed et al. (2016)
provided an efficient model for handling the problem of non-response by using multi
auxiliary information. Haq et al. (2017) suggested an estimation procedure for the
estimation of population mean by using the ranks of the supplementary information.
Sohail et al. (2017) considered the problem of scrambled non-response for the es-
timation of population mean and suggested a class of estimators by modifying the
existing ones.
Motivated by Mohamed et al. (2016) and Sohail et al. (2017), in the present study,
we appraise the problem of missing completely at random (MCAR), i.e. the prob-
ability of obtaining the response from ith unit does not depend on xi, yi or survey
design and the respondents units are representative of the selected sample for the
estimation of population mean. The objective of the study is to provide an alterna-
tive procedure for those situations where the ranking of the auxiliary information is
expensive or difficult to create. The proposed model not only provides more better
results in terms of efficiency than Grover and Kaur (2014) and Haq et al. (2017)
estimators but is also easier to understand than others.

The rest of article is structured as follows: In Section 3, we discuss some ex-
isting estimators in the literature for the imputation of missing values. In Section
4, we propose an estimator by utilizing the second raw moment of the auxiliary
variable for imputing the missing values. The numerical and empirical studies are
considered in Section 6. We conclude our study in Section 7.

2. Notations

Let r∗ be the total number of the respondents (individuals or items) who belong to
group G in sample (s) and (n− r∗) are those who do not provide the respond, are
belong to group Gc. So, s = G∪Gc, and it is also assumed that ˆ̄Y ∗r = 1

r∗ ∑
r∗
j=1 Ŷj is the

sample mean of the study variable obtained from respondent units in group G.
Let X̄ = ∑

N
j=1 X j/N, R̄ = ∑

N
j=1 R j/N and Ū = ∑

N
j=1 U j/N be the population mean of

the auxiliary variable, rank variable and second raw moment, respectively, and also
let x̄r∗ = ∑

r∗
j=1 x j/r∗, r̄r∗ = ∑

r∗
j=1 r j/r∗ and ūr∗ = ∑

r∗
j=1 u j/r∗ be the sample mean of the
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auxiliary variable, ranked variable and second raw moment, respectively, from the
respondent group.
For evaluating the mathematical expressions for bias and mean square error of the
existing and proposed estimators, we defined some useful notations as follows:
Let

e0 =
ˆ̄Yr∗

Ȳ
−1, e1 =

x̄r∗

X̄
−1, e3 =

r̄r∗

R̄
−1, e5 =

ūr∗

Ū
−1, such that

E(ei) = 0 for i = 0,1,3,5.

and

E
(
e2

0
)

= θr∗,NC2
y , E

(
e2

1
)
= θr∗,NC2

x , , E
(
e2

3
)
= θr∗,NC2

r , E
(
e2

5
)
= θr∗,NC2

u ,

E (e0e1) = θr∗,NρxyCxCy, E (e0e3) = θr∗,NρryCyCr, E (e0e5) = θr∗,NρuyCuCy,

E (e1e3) = θr∗,NρxrCxCr, E (e1e5) = θr∗,NρxuCuCx, E (e3e5) = θr∗,NρruCuCr,

where

τ =
1
N

N

∑
j=1

τ j, C2
τ =

σ2
τ

τ̄2 , ρτψ =
Sτψ

Sτ Sψ

, θr∗,N =

(
1
r∗
− 1

N

)
,

Sτψ =
1

N−1 ∑
N
j=1(τ j− τ̄)(ψ j− ψ̄), where τ, ψ = R,U,X ,Y.

3. Some Existing Methods of Imputation

In this section, we discuss some existing methods of imputation, which are available
in the literature and commonly used for estimation of the population mean. These
are defined below.
• Under mean imputation approach

Ŷj =

{
Ŷj if jε G
ˆ̄Yr∗ if jε Gc,

(1)

The point estimator for population mean (Ȳ ) is given by

ˆ̄YM =
1
n

[ r∗

∑
j=1

Ŷj +
n−r∗

∑
j=1

Ŷj

]
= ˆ̄Yr∗ (2)

The variance of the mean estimator is given by:

Var( ˆ̄YM) = θr∗,NȲ 2C2
y . (3)
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• Cochran (1940) suggested the ratio estimator for the estimation of the population
mean. We can rewrite it for imputing missing values as:

Ŷj =

Ŷj if jε G

1
1− f1

[
ˆ̄Yr∗
x̄r∗

X̄− f1
ˆ̄Yr∗

]
if jε Gc,

(4)

where f1 = r∗
n and X̄ are the population mean of the auxiliary variable. The point

estimator is given as:
ˆ̄YR = ˆ̄Yr∗

X̄
x̄r∗

. (5)

The ratio estimator is conditionally more efficient as compared to the mean estima-
tor when the correlation between y and x is positive. The bias and the mean square
error are given by

Bias( ˆ̄YR)∼= θr∗,NȲ
(

C2
x −ρyxCyCx

)
(6)

and

MSE( ˆ̄YR)∼= θr∗NȲ 2
(

C2
y +C2

x −2ρyxCyCx

)
. (7)

• Bahl and Tuteja (1991) proposed the ratio-exponential type estimator for imputing
non-response, is expressed as:

Ŷj =

Ŷj if jε G

1
1− f1

[
ˆ̄Yr∗ exp

(
X̄−x̄r∗
X̄+x̄r∗

)
− f1

ˆ̄Yr∗

]
if jε Gc,

(8)

The point estimator is given by:

ˆ̄YB.T−R = ˆ̄Yr∗ exp
(

X̄− x̄r∗

X̄ + x̄r∗

)
, (9)

with bias and mean squared error

Bias( ˆ̄YB.T−R)
∼= θr∗,NȲ

(
3
8

C2
x −

1
2

ρyxCyCx

)
(10)

and

MSE( ˆ̄YB.T−R)∼=
1
4

θr∗NȲ 2
(

4C2
y +C2

x −4ρyxCyCx

)
. (11)
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The product-exponential type estimator for imputing the missing values is given by

Ŷj =

Ŷj if jε G

1
1− f1

[
ˆ̄Yr∗ exp

(
x̄r∗−X̄
x̄r∗+X̄

)
− f1

ˆ̄Yr∗

]
if jε Gc,

(12)

The point estimator for the population mean is given as:

ˆ̄YB.T−P = ˆ̄Yr∗ exp
(

x̄r∗ − X̄
x̄r∗ + X̄

)
. (13)

The bias and mean squared error of ˆ̄YB.T−P are

Bias( ˆ̄YB.T−P)∼= θr∗,NȲ
(

1
2

ρyxCyCx−
3
8

C2
x

)
. (14)

and

MSE( ˆ̄YB.T−P)
∼=

1
4

θr∗,NȲ 2
(

4C2
y +C2

x +4ρyxCyCx

)
. (15)

• The conventional difference estimator is defined as:

Ŷj =

Ŷj if jε G

1
1− f1

[
ˆ̄Yr∗ + k(X̄− x̄r∗)− f1

ˆ̄Yr∗

]
if jε Gc,

(16)

where k is an un-known constant. The point estimator for the population mean is
defined as:

ˆ̄YD = ˆ̄Yr∗ + k(X̄− x̄r∗). (17)

The optimum value of k i.e. kopt. = ρyx(Sy/Sx). The minimum MSE( ˆ̄YD) is given by

MSE( ˆ̄YD)min. ∼= θr∗,NȲ 2C2
y

(
1−ρ

2
yx

)
. (18)

• Rao (1991) difference type estimator can be reformulated for imputing the missing
values, as:

Ŷj =

Ŷj if jε G

1
1− f1

[
ν1

ˆ̄Yr∗ +ν2(X̄− x̄r∗)− f1
ˆ̄Yr∗

]
if jε Gc,

(19)

where ν1 and ν2 are unknown, which are to be determined. The point estimator Ŷj

is given by:

ˆ̄YR.D = ν1ȳr∗ +ν2(X̄− x̄r∗). (20)
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The optimum values of ν1 and ν2 are

ν1(opt.) =
1

1+θr∗,NC2
y

(
1−ρ2

yx

) and ν2(opt.) =
ȲC2

y ρyx

X̄Cx

(
1+θr∗,NC2

y (1−ρ2
yx)

) .

The bias and MSE( ˆ̄YR.D)min. are given by

Bias( ˆ̄YR.D)
∼= θr∗NȲ

(
k1−1

)
(21)

and

MSE( ˆ̄YR.D)min. ∼=
θr∗NȲ 2C2

y

(
1−ρ2

yx

)
1+θr∗NC2

y

(
1−ρ2

yx

) . (22)

• In line with Grover and Kaur (2014), we can reformulate the given procedure for
the imputation of missing values, as:

Ŷj =


Ŷj if jε G

1
(n− f1)

[(
α1

ˆ̄Yr∗ +α2(X̄− x̄r∗)

)
×

exp
(

a(X̄−x̄r∗ )
a(X̄+x̄r∗ )+2b

)
− f1

ˆ̄Yr∗

]
if jε Gc,

(23)

where α1 and α2 are the suitably chosen constants, where a and b are known
parameters of the auxiliary variable, see Table 1, which is described below. The
point estimator for the population mean is given as:

ˆ̄Y ∗
GK

=

[
α1

ˆ̄Yr∗ +α2(X̄− x̄r∗)

]
exp
[

a(X̄− x̄r∗)

a(X̄ + x̄r∗)+2b

]
. (24)

The optimum values of α1 and α2 are defined as:

α1(opt.) =
8−θr∗,Nθ 2C2

x

8[1+θr∗,NC2
y (1−ρ2

yx)]

and

α2(opt.) =
Ȳ [θr∗,Nθ 3C3

x +8Cyρyx−θr∗,Nθ 2C2
xCyρyx−4θCx{1−θr∗,NC2

y (1−ρyx)}]
8X̄Cx[1+θr∗,NC2

y (1−ρ2
yx)]

.
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where θ = aX̄
aX̄−b . The bias of ˆ̄Y ∗

G.K
is given as:

Bias( ˆ̄Y
∗

GK
)∼= θr∗,NȲ

[
(α1−1)+θr∗,Nθα1Cx

(
3
2

Cx−ρyxCy

)]
+θr∗,Nθα2X̄C2

x . (25)

Substituting the optimum values of α1 and α2, we get the minimum mean squared
error of ˆ̄Y

∗

GK
as follows:

MSE( ˆ̄Y
∗

GK
)min. ∼=

θr∗,NȲ 2
[

64C2
y (1−ρ2

yx)−θr∗,Nθ 4C4
x

−16θr∗,Nθ 2C2
xC2

y (1−ρ2
yx)

]
64[1+θr∗,NC2

y (1−ρ2
yx)]

. (26)

• Following Haq et al. (2017), the imputation procedure for imputing the missing
values is defined as:

Ŷj =


Ŷj if jε G

1
(n− f1)

[(
β1

ˆ̄Yr∗ +β2(X̄− x̄r∗)+β3(R̄− r̄r∗)

)
exp
(

a(X̄−x̄r∗ )
a(X̄+x̄r∗ )+2b

)
− f1

ˆ̄Yr∗

]
if jε Gc,

(27)

where β1,β2 and β3 are the unknown constants, these constant values are deter-
mined by minimizing the resultant mean squared error. The point estimator for
procedure given in (27) is given as:

ˆ̄Y
∗
Haq. =

{
β1ȳr∗ +β2(X̄− x̄r∗)+β3(R̄− r̄r∗)

}
exp
{

a(X̄− x̄r∗)

a(X̄ + x̄r∗)+2b

}
. (28)

The optimum values of β1,β2 and β3 are given by:

β1(opt.) =
8−θr∗,Nθ 2C2

x

8[1+θr∗,NC2
y (1−ρ2

yx)]
,

β2(opt.) =

Ȳ
[

θr∗,Nθ 3C3
x (−1+ρ2

xrx)+(−8Cy +θr∗,Nθ 2C2
xCy)(ρyx

−ρxrx ρyrx)+4θCx(−1+ρ2
xrx)[−1+θr∗,NC2

y (1−ρ2
y.xrx)]

]
8X̄Cx(−1+ρ2

xrx)[1+θr∗,NC2
y (1−ρ2

y.xrx)]

and

β3(opt.) =
Ȳ (8−θr∗,Nθ 2C2

x )Cy(ρxrx ρyx−ρyrx)

8R̄Cr(−1+ρ2
xrx)[1+θr∗,NC2

y (1−ρ2
yx)]

.

where ρ2
y.xrx =

ρ2
yx+ρ2

yrx−2ρyxρyrx ρxrx
1−ρ2

xrx
is coefficient of multiple determination of Y on X

and R.
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The bias and minimum MSE( ˆ̄YHaq.) are given as:

Bias( ˆ̄Y ∗
Haq.

) ∼=
1
8

[
−8Ȳ +4θr∗,NθCx(X̄Cxβ1 +ŪCrβ3ρrx)

+Ȳ β1

{
8+θr∗,NθCx

(
3θCx−4Cyρxy

)}]
. (29)

and

MSE( ˆ̄Y
∗

Haq.
)min. ∼=

θr∗,NȲ 2
[

64C2
y (1−ρ2

y.xrx)−θr∗,Nθ 4C4
x

−16θr∗,Nθ 2C2
xC2

y (1−ρ2
y.xrx)

]
64[1+θr∗,NC2

y (1−ρ2
y.xrx)]

. (30)

In Section 4, we propose new procedure for imputing the missing values by utilizing
some extra auxiliary information like raw moments.

4. Proposed Method of Imputation

Correct use of auxiliary information about the study variable can enhance the per-
formance of the estimation procedure. If the study and auxiliary variables are cor-
related with each other, then the second raw moment of the auxiliary variable is
also correlated with the study variable. The utilization of the second raw moment is
more effective than ranking, especially in those situations, when the ranking of the
auxiliary information is done at high cost or is difficult. On the basis of this logic, we
propose a new class of the estimators for imputing the missing values by utilizing
the second raw moment of the auxiliary variable for the estimation of finite popula-
tion mean. The suggested class of estimators can incorporate the supplementary
information in the form of the second raw moment. Let ρxu = Sxu/(SxSu) be the cor-
relation coefficient between X and U .
The imputation procedure for the use of the second raw moment of the auxiliary
information is described as follows:

Ŷj =


Ŷj if jε G

1
(n− f1)

[{
k1

ˆ̄Yr∗ + k2(X̄− x̄r∗)+ k3(Ū− ūr∗)
}

exp
{

a(X̄−x̄r∗ )
a(X̄+x̄r∗ )+2b

}
− f1

ˆ̄Yr∗

]
if jε Gc,

(31)

The point estimator for the population mean for using the above mentioned imputa-
tion procedure in (31), is defined as:

ˆ̄Y ∗
Pr
=
{

k1ȳr∗ + k2(X̄− x̄r∗)+ k3(Ū− ūr∗)
}

exp
{

a(X̄− x̄r∗)

a(X̄ + x̄r∗)+2b

}
. (32)

where k1,k2 and k3 are suitably chosen constants, which can be determined by min-
imizing the mean square error. We can rewrite the proposed estimator for imputing
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the missing values in terms of error as:

ˆ̄Y ∗
Pr1

=

(
k1Ȳ (1+ e0)− k2X̄e1− k3Ūe5

)(
1− θ

2
e1 +

3
8

θ
2e2

1

)
.

The bias of the proposed estimator is:

Bias( ˆ̄Y ∗
Pr
) ∼=

1
8

[
−8Ȳ +4θr∗,NθCx

(
X̄Cxk1 +ŪCuk3ρux

)
+Ȳ k1

{
8+θr∗,NθCx

(
3θCx−4Cyρxy

)}]
. (33)

The mean squared error of the proposed imputation procedure is given as:

MSE( ˆ̄Y ∗
Pr
) ∼= Ȳ 2 +θr∗,N X̄Cxk2

(
− Ȳ θ + X̄k1

)
+θr∗,NŪC2

uk2
3 +θr∗,NŪCxCu(

− Ȳ θ +2X̄k1

)
+ Ȳ 2k2

1

[
1+θr∗,N

{
C2

y +θCx

(
θCx−2Cyρxy

)}]
+

1
4

Ȳ k1

[
−8Ȳ +θr∗,NCx

{
θCx

(
−3Ȳ θ +8X̄k2

)
+8ŪθCuk3ρxu

+4Cy

(
Ȳ −2X̄k2

)
ρxy

}
−8ŪCuCyθr∗,Nk3ρuy

]
. (34)

The optimum values of the unknown constants [ki for i = 1,2,3.] are determined by
minimizing (34), which can be expressed as:

k1(opt.) =
8−θr∗,Nθ 2C2

x

8[1+θr∗,NC2
y (1−ρ2

yx)]
,

k2(opt.) =

Ȳ
[

θr∗,Nθ 3C3
x (−1+ρ2

xux)+(−8Cy +θr∗,Nθ 2C2
xCy)(ρyx−ρxux ρyux)

+4θCx(−1+ρ2
xux){−1+θr∗,NC2

y (1−ρ2
y.xux)}

]
8X̄Cx(−1+ρ2

xux)[1+θr∗,NC2
y (1−ρ2

y.xux)]

and

k3(opt.) =
Ȳ (8−θr∗,Nθ 2C2

x )Cy(ρxux ρyx−ρyux)

8ŪCu(−1+ρ2
xux)[1+θr∗,NC2

y (1−ρ2
yx)]

.

where ρ2
y.xux =

ρ2
yx+ρ2

yux−2ρyxρyux ρxux
1−ρ2

xux
is coefficient of multiple determination of Y on X

and U in simple random sampling.

MSE( ˆ̄Y ∗
Pr
)min. ∼=

θr∗,NȲ 2
[

64C2
y (1−ρ2

y.xux)−θr∗,Nθ 4C4
x

−16θrNθ 2C2
xC2

y (1−ρ2
y.xux)

]
64[1+θr∗,NC2

y (1−ρ2
y.xux)]

. (35)
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Table 1: Some special cases of existing and proposed imputation methods

a b ˆ̄Y ∗
GK

ˆ̄Y ∗
Haq.

ˆ̄Y ∗
Pr

1 Cx
ˆ̄Y 1

GK
ˆ̄Y 1

Haq.
ˆ̄Y 1

Pr

1 NX̃ ˆ̄Y 2
GK

ˆ̄Y 2
Haq.

ˆ̄Y 2
Pr

NX̃ Cx
ˆ̄Y 3

GK
ˆ̄Y 3

Haq.
ˆ̄Y 3

Pr

Cx NX̃ ˆ̄Y 4
GK

ˆ̄Y 4
Haq.

ˆ̄Y 4
Pr

1 ρxy
ˆ̄Y 5

GK
ˆ̄Y 5

Haq.
ˆ̄Y 5

Pr

Cx ρxy
ˆ̄Y 6

GK
ˆ̄Y 6

Haq.
ˆ̄Y 6

Pr

ρxy Cx
ˆ̄Y 7

GK
ˆ̄Y 7

Haq.
ˆ̄Y 7

Pr

NX̃ ρxy
ˆ̄Y 8

GK
ˆ̄Y 8

Haq.
ˆ̄Y 8

Pr

ρxy NX̃ ˆ̄Y 9
GK

ˆ̄Y 9
Haq.

ˆ̄Y 9
Pr

1 NX̄ ˆ̄Y 10
GK

ˆ̄Y 10
Haq.

ˆ̄Y 10
Pr

5. Efficiency Comparison

Here, we define the regulatory conditions under which the proposed estimators can
perform better than their existing estimators, which are given by
(i) By (26) and (35), MSE( ˆ̄YGK )−MSE( ˆ̄Y ∗pr)> 0, if

ρuy > ρxuρxy−
√

ρxy (1−ρ2
xu)(1−ρxy). (36)

(ii) By (30) and (35), MSE( ˆ̄YHaq.)−MSE( ˆ̄Y ∗pr)> 0, if

ρuy >

√
(1−ρ2

xu)(ρwy−ρxwρxy)√
1−ρ2

xw
+ρxyρxu. (37)

Conditions (i) and (ii) are satisfied, then the proposed estimators for imputing the
missing responses perform better than their counterparts.

6. Application

For the relative comparison of the proposed class of estimators with existing ones
in terms of efficiency, we consider real life as well as simulated data, sets which are
discussed in the following subsections.
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6.1. Numerical Study

We consider the following four real life data sets for the practical application of the
proposed class of estimator and obtained the percentage relative efficiencies of the
existing and proposed estimators. The data description is given below as:
Population 1: [Source: Singh (2003)]
y= Estimated number of fish caught by marine recreational fishermen in year 1995
and x = estimated number of fish caught by marine recreational fishermen in year
1994.

N = 69, n = 40, Ȳ = 14.0225, X̄ = 147.0425, R̄ = 100.5, Ū = 28955.59,

S2
y = 27.22185, S2

x = 7370.95, S2
w = 3350S2

u = 653591180, Sxy = 350.3902,

Suy = 98116.68Sxu = 2123923, Sry = 234.8867, Swx = 4959.526, Swu = 1438183,

ρxy = 0.7822, ρuy = 0.7355817,ρwy = 0.7778165, ρxu = 0.967662,ρuw = 0.97193,

ρwx = 0.998058

Population 2: [Source: James et al. (2013)]
y= total sales and x = expenditure on TV advertisement

N = 200, n = 40, Ȳ = 14.0225, X̄ = 177.5965, R̄ = 100.5, Ū = 73653530,

S2
y = 27.22185, S2

x = 8057.097, S2
u = 4.4e+16, Sxy = 376.3316, Suy = 98116.68,

Sxu = 1.4e+12, Sry = 94080.28, Swx = 106830.7, Swu = 1.4e+12, ρxy = 0.9601,

ρuy = 0.8554,ρwy = 0.7689, ρxu = 0.9283,ρuw = 0.5208, ρwx = 0.75434

Population 3: [Source: James et al. (2013)]
y= Income and x = education

N = 30, n = 15, Ȳ = 16, X̄ = 50.1455, R̄ = 15.5, Ū = 2946.634,

S2
y = 13.2712, S2

x = 446.9652, S2
w = 77.5S2

u = 4340687, Sxy = 74.31184,

Suy = 7344.01, Sxu = 43477.52, Sry = 30.7390, Swx = 106830.7, Swu = 18115.9,

ρxy = 0.9648, ρuy = 0.9676,ρwy = 0.9584, ρxu = 0.9283,ρuw = 0.9870,

ρwx = 0.9925

Population 4: [Source: James et al. (2013)]
y= Income and x = education + seniority

N = 30, n = 15, Ȳ = 15.5, X̄ = 110.2483, R̄ = 15.5, Ū = 15249.32,

S2
y = 729.7176, S2

x = 3201.347, S2
w = 77.5, S2

u = 179829664, Sxy = 872.8027,

Suy = 186487.9, Sxu = 741453.5, Sry = 130.5645, Swx = 491.1011, Swu = 1438183,

ρxy = 0.5710, ρuy = 0.5148,ρwy = 0.5490, ρxu = 0.97720,ρuw = 0.9494,

ρwx = 0.98594
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For the relative efficiencies of the proposed and existing imputation procedures, we
consider the following expression:

PRE(.) =
Var( ˆ̄YM)

MSE( ˆ̄Yk)
for k = G.K, Haq., Pr. (38)

To check the relative performance of the given procedures, we consider the re-
sponse rate between 25% to 80% in all of the four populations. By the use of varying
response rate, we are able to illustrate the relative performance of the imputation
procedure in an significant way. Based on the results given in Table 2 and 3, we
conclude that the estimator ˆ̄YGK , ˆ̄YHaq. and ˆ̄Ypr remain better as compared to ˆ̄YM.
At varying response rate, the inter-class efficiency of the available estimators is
varying slightly over their entire range. After observing Table 2 and 3 in detail, we
can say that there exists an inverse relationship between the response rate and
PRE’s. At low response rate, all the given estimators can perform better as com-
pared to the mean estimator than a high response rate. For intra-class efficiency,
we can observe that the proposed estimators can outperform the existing estima-
tors. At the response rate (25%), PRE of the ˆ̄YGK , and ˆ̄YHaq. is 1411.1340,1502.4550
and 261.4669,262.9224 for the first and second population, but at the same point
PRE of ˆ̄Ypr is 1608.0930 and 266.3743 respectively. In population 3 and 4, PRE
of the existing one is 1507.4520,1508.4190 and 154.8800,156.4693 respectively. The
PRE value of the suggested estimator is 1741.5110 and 164.7871 respectively.
Overall, we can say that, the utilization of the second raw moment of the auxiliary
variable has significant effect on the estimation of population parameters rather
than utilizing the ranks of the supplementary information, even when the ranking of
the auxiliary information is inexpensive.

6.2. Empirical Study

An empirical study of any strategy or procedure is helpful to draw the actual picture
of the performance for the respective phenomena by assuming some known value
of the population parameters. For empirical illustration of the existing and proposed
methods of imputing non-response, we consider the following steps to generate the
artificial data sets, which are defined as follows:
• We can generate first two artificial data sets by using the bivariate normal popu-

lation with mean A =

[
µx

µy

]
and varianceV =

[
σ2

x σxy

σxy σ2
y

]
, and last two data sets

are generated by using the gamma distribution with Q=
[

a
b

]
under following para-

metric values:
• Artificial Data Set 1:

A =

[
4
6

]
, V =

[
6 3
3 8

]
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Table 2: PRE(.) of the existing and proposed estimators by real life data sets
Population 1 Population 2

r∗ Estimators ˆ̄Y ∗
GK

ˆ̄Y ∗
Haq.

ˆ̄Y ∗pr
ˆ̄Y ∗
GK

ˆ̄Y ∗
Haq.

ˆ̄Y ∗pr

10 ˆ̄Y 1
GK

ˆ̄Y 1
Haq.

ˆ̄Y 1
pr 1411.1340 1502.5440 1608.0930 261.4669 262.9224 266.3743

ˆ̄Y 2
GK

ˆ̄Y 2
Haq.

ˆ̄Y 2
pr 1295.5650 1375.8530 1468.0350 258.8331 260.2699 263.6769

ˆ̄Y 3
GK

ˆ̄Y 3
Haq.

ˆ̄Y 3
pr 1411.2400 1502.6620 1608.2260 261.4941 262.9498 266.4023

ˆ̄Y 4
GK

ˆ̄Y 4
Haq.

ˆ̄Y 4
pr 1295.6230 1375.9150 1468.1010 258.8329 260.2696 263.6767

ˆ̄Y 5
GK

ˆ̄Y 5
Haq.

ˆ̄Y 5
pr 1411.1680 1502.5820 1608.1360 261.4577 262.9132 266.3649

ˆ̄Y 6
GK

ˆ̄Y 6
Haq.

ˆ̄Y 6
pr 1411.1900 1502.6060 1608.1630 261.4323 262.8875 266.3388

ˆ̄Y 7
GK

ˆ̄Y 7
Haq.

ˆ̄Y 7
pr 1411.1290 1502.5390 1608.0870 261.4594 262.9149 266.3666

ˆ̄Y 8
GK

ˆ̄Y 8
Haq.

ˆ̄Y 8
pr 1411.2400 1502.6620 1608.2260 261.4941 262.9498 266.4023

ˆ̄Y 9
GK

ˆ̄Y 9
Haq.

ˆ̄Y 9
pr 1295.5600 1375.8480 1468.0300 258.8330 260.2697 263.6768

ˆ̄Y 10
GK

ˆ̄Y 10
Haq.

ˆ̄Y 10
pr 1295.5170 1375.8020 1467.9810 258.8331 260.2699 263.6769

20 ˆ̄Y 1
GK

ˆ̄Y 1
Haq.

ˆ̄Y 1
pr 1331.6930 1416.2790 1513.6120 259.2250 260.6695 264.0950

ˆ̄Y 2
GK

ˆ̄Y 2
Haq.

ˆ̄Y 2
pr 1286.4050 1366.6910 1458.8710 258.1407 259.5774 262.9845

ˆ̄Y 3
GK

ˆ̄Y 3
Haq.

ˆ̄Y 3
pr 1331.7320 1416.3220 1513.6610 259.2361 260.6807 264.1064

ˆ̄Y 4
GK

ˆ̄Y 4
Haq.

ˆ̄Y 4
pr 1286.4290 1366.7170 1458.8990 258.1406 259.5773 262.9844

ˆ̄Y 5
GK

ˆ̄Y 5
Haq.

ˆ̄Y 5
pr 1331.7060 1416.2930 1513.6280 259.2213 260.6657 264.0912

ˆ̄Y 6
GK

ˆ̄Y 6
Haq.

ˆ̄Y 6
pr 1331.7140 1416.3020 1513.6380 259.2108 260.6552 264.0805

ˆ̄Y 7
GK

ˆ̄Y 7
Haq.

ˆ̄Y 7
pr 1331.6910 1416.2770 1513.6100 259.2219 260.6664 264.0919

ˆ̄Y 8
GK

ˆ̄Y 8
Haq.

ˆ̄Y 8
pr 1331.7320 1416.3220 1513.6610 259.2361 260.6807 264.1064

ˆ̄Y 9
GK

ˆ̄Y 9
Haq.

ˆ̄Y 9
pr 1286.4030 1366.6890 1458.8690 258.1406 259.5774 262.9844

ˆ̄Y 10
GK

ˆ̄Y 10
Haq.

ˆ̄Y 10
pr 1286.3850 1366.6700 1458.8490 258.1407 259.5774 262.9845

30 ˆ̄Y 1
GK

ˆ̄Y 1
Haq.

ˆ̄Y 1
pr 1306.9350 1389.4510 1484.3000 258.4836 259.9244 263.3413

ˆ̄Y 2
GK

ˆ̄Y 2
Haq.

ˆ̄Y 2
pr 1283.3520 1363.6380 1455.8170 257.9099 259.3466 262.7537

ˆ̄Y 3
GK

ˆ̄Y 3
Haq.

ˆ̄Y 3
pr 1306.9560 1389.4730 1484.3250 258.4895 259.9303 263.3473

ˆ̄Y 4
GK

ˆ̄Y 4
Haq.

ˆ̄Y 4
pr 1283.3650 1363.6510 1455.8310 257.9098 259.3466 262.7536

ˆ̄Y 5
GK

ˆ̄Y 5
Haq.

ˆ̄Y 5
pr 1306.9420 1389.4580 1484.3080 258.4816 259.9224 263.3392

ˆ̄Y 6
GK

ˆ̄Y 6
Haq.

ˆ̄Y 6
pr 1306.9460 1389.4620 1484.3130 258.4761 259.9169 263.3336

ˆ̄Y 7
GK

ˆ̄Y 7
Haq.

ˆ̄Y 7
pr 1306.9340 1389.4500 1484.2990 258.4820 259.9228 263.3396

ˆ̄Y 8
GK

ˆ̄Y 8
Haq.

ˆ̄Y 8
pr 1306.9560 1389.4730 1484.3250 258.4895 259.9303 263.3473

ˆ̄Y 9
GK

ˆ̄Y 9
Haq.

ˆ̄Y 9
pr 1283.3510 1363.6370 1455.8160 257.9099 259.3466 262.7536

ˆ̄Y 10
GK

ˆ̄Y 10
Haq.

ˆ̄Y 10
pr 1283.3420 1363.6270 1455.8050 257.9099 259.3466 262.7537



34 M. U. Sohail, J. Shabbir, F. Sohil: Imputation of missing...

Table 3: PRE(.) of the existing and proposed estimators by real life data sets
Population 3 Population 4

r∗ Estimators ˆ̄Y ∗
GK

ˆ̄Y ∗
Haq.

ˆ̄Y ∗pr
ˆ̄Y ∗
GK

ˆ̄Y ∗
Haq.

ˆ̄Y ∗pr

4 ˆ̄Y 1
GK

ˆ̄Y 1
Haq.

ˆ̄Y 1
pr 1507.4520 1508.4190 1741.5110 154.8800 156.4693 164.7871

ˆ̄Y 2
GK

ˆ̄Y 2
Haq.

ˆ̄Y 2
pr 1449.6250 1450.5270 1667.1470 152.4071 153.9680 162.1362

ˆ̄Y 3
GK

ˆ̄Y 3
Haq.

ˆ̄Y 3
pr 1509.2460 1510.2150 1743.8630 152.4055 153.9664 162.1345

ˆ̄Y 4
GK

ˆ̄Y 4
Haq.

ˆ̄Y 4
pr 1449.6130 1450.5150 1667.1330 154.9062 156.4958 164.8154

ˆ̄Y 5
GK

ˆ̄Y 5
Haq.

ˆ̄Y 5
pr 1505.2450 1506.2100 1738.6210 154.8770 156.4663 164.7840

ˆ̄Y 6
GK

ˆ̄Y 6
Haq.

ˆ̄Y 6
pr 1500.3310 1501.2900 1732.1930 154.8499 156.4388 164.7547

ˆ̄Y 7
GK

ˆ̄Y 7
Haq.

ˆ̄Y 7
pr 1507.3880 1508.3550 1741.4270 154.8606 156.4496 164.7662

ˆ̄Y 8
GK

ˆ̄Y 8
Haq.

ˆ̄Y 8
pr 1509.2450 1510.2140 1743.8610 154.9062 156.4958 164.8154

ˆ̄Y 9
GK

ˆ̄Y 9
Haq.

ˆ̄Y 9
pr 1449.6240 1450.5260 1667.1460 152.4057 153.9666 162.1346

ˆ̄Y 10
GK

ˆ̄Y 10
Haq.

ˆ̄Y 10
pr 1449.6240 1450.5270 1667.1470 152.4071 153.9680 162.1362

8 ˆ̄Y 1
GK

ˆ̄Y 1
Haq.

ˆ̄Y 1
pr 1472.8720 1473.8010 1697.1490 151.1097 152.6824 160.9131

ˆ̄Y 2
GK

ˆ̄Y 2
Haq.

ˆ̄Y 2
pr 1448.9680 1449.8710 1666.4890 150.0889 151.6498 159.8179

ˆ̄Y 3
GK

ˆ̄Y 3
Haq.

ˆ̄Y 3
pr 1473.5970 1474.5270 1698.0940 150.0883 151.6492 159.8172

ˆ̄Y 4
GK

ˆ̄Y 4
Haq.

ˆ̄Y 4
pr 1448.9630 1449.8660 1666.4830 151.1204 152.6933 160.9246

ˆ̄Y 5
GK

ˆ̄Y 5
Haq.

ˆ̄Y 5
pr 1471.9800 1472.9080 1695.9870 151.1085 152.6812 160.9118

ˆ̄Y 6
GK

ˆ̄Y 6
Haq.

ˆ̄Y 6
pr 1469.9870 1470.9130 1693.3920 151.0974 152.6700 160.8998

ˆ̄Y 7
GK

ˆ̄Y 7
Haq.

ˆ̄Y 7
pr 1472.8460 1473.7750 1697.1160 151.1017 152.6744 160.9045

ˆ̄Y 8
GK

ˆ̄Y 8
Haq.

ˆ̄Y 8
pr 1473.5960 1474.5260 1698.0930 151.1204 152.6933 160.9246

ˆ̄Y 9
GK

ˆ̄Y 9
Haq.

ˆ̄Y 9
pr 1448.9680 1449.8700 1666.4890 150.0883 151.6492 159.8173

ˆ̄Y 10
GK

ˆ̄Y 10
Haq.

ˆ̄Y 10
pr 1448.9680 1449.8710 1666.4890 150.0889 151.6498 159.8179

12 ˆ̄Y 1
GK

ˆ̄Y 1
Haq.

ˆ̄Y 1
pr 1461.6890 1462.6060 1682.8530 149.8684 151.4358 159.6378

ˆ̄Y 2
GK

ˆ̄Y 2
Haq.

ˆ̄Y 2
pr 1448.7490 1449.6520 1666.2700 149.3162 150.8771 159.0451

ˆ̄Y 3
GK

ˆ̄Y 3
Haq.

ˆ̄Y 3
pr 1462.0780 1462.9950 1683.3590 149.3159 150.8768 159.0448

ˆ̄Y 3
GK

4 ˆ̄Y 4
Haq.

ˆ̄Y 4
pr 1448.7460 1449.6490 1666.2670 149.8742 151.4416 159.6440

ˆ̄Y 5
GK

ˆ̄Y 5
Haq.

ˆ̄Y 5
pr 1461.2090 1462.1260 1682.2290 149.8678 151.4351 159.6371

ˆ̄Y 6
GK

ˆ̄Y 6
Haq.

ˆ̄Y 6
pr 1460.1370 1461.0520 1680.8350 149.8618 151.4290 159.6306

ˆ̄Y 7
GK

ˆ̄Y 7
Haq.

ˆ̄Y 7
pr 1461.6750 1462.5920 1682.8350 149.8641 151.4314 159.6332

ˆ̄Y 8
GK

ˆ̄Y 8
Haq.

ˆ̄Y 8
pr 1462.0780 1462.9950 1683.3590 149.8742 151.4416 159.6440

ˆ̄Y 9
GK

ˆ̄Y 9
Haq.

ˆ̄Y 9
pr 1448.7490 1449.6520 1666.2700 149.3159 150.8768 159.0448

ˆ̄Y 10
GK

ˆ̄Y 10
Haq.

ˆ̄Y 10
pr 1448.7490 1449.6520 1666.2700 149.3162 150.8771 159.0451
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• Artificial Data Set 2:

A =

[
6
8

]
, V =

[
8 4
4 10

]
• Artificial Data Set 3:

Q =

[
2
4

]
• Artificial Data Set 4:

Q =

[
4
6

]
The main purpose of generating the two different data sets from the same distribu-
tion is to find the pattern of PRE with respect to their parametric values. In Data
sets 3 and 4, the study variable is generated as y = (rxy× x)+ e, where e ∼ N(0,1)
and ryx is the sample correlation coefficient between y and x.
• Here, we can select the sample of size n form N units, randomly, and select ran-
domly r units out of n sample units and impute the dropped units by using the above
mentioned imputation procedures, then compute the relevant statistics.
• Repeat the process 30000 (say H) times and obtain the value of ˆ̄Y ∗k . The mean
squared error of the given estimator is obtained by using the following expression,
as:

MSE( ˆ̄Y ∗k ) =
1
H

H

∑
i=1

(
( ˆ̄Y ∗k )i− Ȳ

)2

(39)

At the specified values of parameters and n = 50, the behaviour of normal distri-
bution, gamma distribution and self-generated study variable is shown in Appendix
(Figure: 1). By utilizing the artificial data sets, mean squared errors of the given pro-
cedures are reported below. On the behalf of numerical findings, which are reported
in Tables 4 and 5, we see that the relative performance of the existing and proposed
imputation method is similar to the reported results in Table 2 and 3. By the use
of simulated data sets (which are generated by bivariate normal and gamma dis-
tribution under certain regulatory conditions) the performances of the existing and
proposed estimators are better than the mean estimator. As given by the reported
results in Table 2 and 3, PRE of respective imputation procedure decreases as the
response rate increases, but as a whole these are better than traditional estima-
tors. After comprehensive examination of Tables 4 and 5, we can easily understand
that our proposed class of estimators performs significantly better than existing and
mean imputation procedures even in high response rate. As the parametric values
of the population constants increase in normal population, the performance of all
the estimator increase. But in the case of positively dispersed population, there is
an inverse relationship between PRE’s and parametric values.
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Table 4: PRE(.) of existing and proposed estimators by using artificial data set (.).
Artificial Data Sets 1 Artificial Data Sets 2

r∗ Estimator ˆ̄Y ∗G.K
ˆ̄Y ∗Haq.

ˆ̄Y ∗pr
ˆ̄Y ∗G.K

ˆ̄Y ∗Haq.
ˆ̄Y ∗pr

10 ˆ̄Y 1
G.K

ˆ̄Y 1
Haq.

ˆ̄Y 1
pr 118.6620 105.9573 119.6891 124.0394 127.1311 132.0750

ˆ̄Y 2
G.K

ˆ̄Y 2
Haq.

ˆ̄Y 2
pr 120.2631 106.3291 122.0707 135.0018 134.6481 138.5286

ˆ̄Y 3
G.K

ˆ̄Y 3
Haq.

ˆ̄Y 3
pr 101.4103 117.0941 123.6927 115.5257 119.5066 126.8564

ˆ̄Y 4
G.K

ˆ̄Y 4
Haq.

ˆ̄Y 4
pr 120.2941 106.3447 122.1189 136.0608 135.7178 141.6042

ˆ̄Y 5
G.K

ˆ̄Y 5
Haq.

ˆ̄Y 5
pr 109.6636 116.9660 121.5692 125.0806 128.1636 132.6883

ˆ̄Y 6
G.K

ˆ̄Y 6
Haq.

ˆ̄Y 6
pr 113.8250 114.6901 115.1804 126.1819 127.2321 131.1512

ˆ̄Y 7
G.K

ˆ̄Y 7
Haq.

ˆ̄Y 7
pr 119.6756 100.1994 120.9550 127.8607 130.1780 132.4522

ˆ̄Y 8
G.K

ˆ̄Y 8
Haq.

ˆ̄Y 8
pr 102.8872 117.2912 120.0964 115.6963 119.6452 126.6902

ˆ̄Y 9
G.K

ˆ̄Y 9
Haq.

ˆ̄Y 9
pr 115.7024 105.5199 120.5186 136.5683 136.1019 139.8346

ˆ̄Y 10
G.K

ˆ̄Y 10
Haq.

ˆ̄Y 10
pr 120.7377 106.3721 121.5206 137.3745 136.8175 138.5315

20 ˆ̄Y 1
G.K

ˆ̄Y 1
Haq.

ˆ̄Y 1
pr 117.8110 105.2151 119.8508 120.7829 123.9798 129.3023

ˆ̄Y 2
G.K

ˆ̄Y 2
Haq.

ˆ̄Y 2
pr 121.2069 105.0492 120.9690 134.9703 134.5377 137.2016

ˆ̄Y 3
G.K

ˆ̄Y 3
Haq.

ˆ̄Y 3
pr 105.2075 119.1198 127.4633 118.2557 121.9277 128.7035

ˆ̄Y 4
G.K

ˆ̄Y 4
Haq.

ˆ̄Y 4
pr 120.3429 105.1115 122.1641 134.4532 134.1529 139.9697

ˆ̄Y 5
G.K

ˆ̄Y 5
Haq.

ˆ̄Y 5
pr 110.8191 116.4726 118.5771 125.1330 128.1416 132.7055

ˆ̄Y 6
G.K

ˆ̄Y 6
Haq.

ˆ̄Y 6
pr 114.3393 114.3480 115.7193 128.5056 130.6469 132.4355

ˆ̄Y 7
G.K

ˆ̄Y 7
Haq.

ˆ̄Y 7
pr 120.1568 100.1455 124.3512 128.6391 130.8064 132.7405

ˆ̄Y 8
G.K

ˆ̄Y 8
Haq.

ˆ̄Y 8
pr 103.7974 105.2274 106.1870 116.6377 120.5083 127.8116

ˆ̄Y 9
G.K

ˆ̄Y 9
Haq.

ˆ̄Y 9
pr 119.6394 105.0234 120.5388 134.5111 134.2217 135.1581

ˆ̄Y 10
G.K

ˆ̄Y 10
Haq.

ˆ̄Y 10
pr 116.2761 105.1145 119.2251 134.6683 134.4694 137.5448

30 ˆ̄Y 1
G.K

ˆ̄Y 1
Haq.

ˆ̄Y 1
pr 119.7622 105.1340 120.6659 122.5217 125.6854 130.4396

ˆ̄Y 2
G.K

ˆ̄Y 2
Haq.

ˆ̄Y 2
pr 119.0610 104.6887 119.7440 134.7711 134.4483 135.1757

ˆ̄Y 3
G.K

ˆ̄Y 3
Haq.

ˆ̄Y 3
pr 105.2325 118.6783 127.5033 117.8911 121.6284 128.4568

ˆ̄Y 4
G.K

ˆ̄Y 4
Haq.

ˆ̄Y 4
pr 119.8297 104.5238 123.7315 133.8278 133.4614 136.3154

ˆ̄Y 5
G.K

ˆ̄Y 5
Haq.

ˆ̄Y 5
pr 112.3861 116.9674 118.0800 124.5436 127.5873 132.0415

ˆ̄Y 6
G.K

ˆ̄Y 6
Haq.

ˆ̄Y 6
pr 114.4807 114.5614 115.8958 131.6862 133.5503 135.1994

ˆ̄Y 7
G.K

ˆ̄Y 7
Haq.

ˆ̄Y 7
pr 118.2454 100.0115 119.6349 129.0047 131.1589 133.2060

ˆ̄Y 8
G.K

ˆ̄Y 8
Haq.

ˆ̄Y 8
pr 105.5192 106.8852 107.7843 117.4968 121.3278 128.5287

ˆ̄Y 9
G.K

ˆ̄Y 9
Haq.

ˆ̄Y 9
pr 120.2420 104.7962 120.4320 133.3648 134.0260 135.7968

ˆ̄Y 10
G.K

ˆ̄Y 10
Haq.

ˆ̄Y 10
pr 115.5720 104.6800 119.5149 132.7433 132.2578 136.8836
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Table 5: PRE(.) of existing and proposed estimators by using artificial data set (.).
Artificial Data Sets 3 Artificial Data Sets 4

r∗ Estimator ˆ̄Y ∗G.K
ˆ̄Y ∗Haq.

ˆ̄Y ∗pr
ˆ̄Y ∗G.K

ˆ̄Y ∗Haq.
ˆ̄Y ∗pr

10 ˆ̄Y 1
G.K

ˆ̄Y 1
Haq.

ˆ̄Y 1
pr 192.8977 192.5636 193.1662 136.4316 136.2749 136.7016

ˆ̄Y 2
G.K

ˆ̄Y 2
Haq.

ˆ̄Y 2
pr 194.0581 194.0559 194.9967 140.5252 140.5304 140.6584

ˆ̄Y 3
G.K

ˆ̄Y 3
Haq.

ˆ̄Y 3
pr 188.0287 187.8559 188.1561 136.3089 136.3474 136.8219

ˆ̄Y 4
G.K

ˆ̄Y 4
Haq.

ˆ̄Y 4
pr 191.5353 191.5554 191.7439 140.5487 140.5449 141.2544

ˆ̄Y 5
G.K

ˆ̄Y 5
Haq.

ˆ̄Y 5
pr 189.2338 189.3205 189.9834 138.3192 138.3297 139.3096

ˆ̄Y 6
G.K

ˆ̄Y 6
Haq.

ˆ̄Y 6
pr 191.3141 191.5745 191.9685 139.2955 139.2150 139.4283

ˆ̄Y 7
G.K

ˆ̄Y 7
Haq.

ˆ̄Y 7
pr 192.1016 192.8594 192.8723 139.1179 139.1532 139.4509

ˆ̄Y 8
G.K

ˆ̄Y 8
Haq.

ˆ̄Y 8
pr 187.5624 187.3498 187.7200 138.2495 138.2914 140.1726

ˆ̄Y 9
G.K

ˆ̄Y 9
Haq.

ˆ̄Y 9
pr 194.5011 194.4885 194.4346 140.8154 140.8160 141.8146

ˆ̄Y 10
G.K

ˆ̄Y 10
Haq.

ˆ̄Y 10
pr 194.1044 194.0683 194.5535 138.5544 138.5559 138.7474

20 ˆ̄Y 1
G.K

ˆ̄Y 1
Haq.

ˆ̄Y 1
pr 153.2724 152.6555 153.8245 118.6956 118.5047 119.0081

ˆ̄Y 2
G.K

ˆ̄Y 2
Haq.

ˆ̄Y 2
pr 154.8089 154.7715 155.7848 140.5252 140.5304 140.7584

ˆ̄Y 3
G.K

ˆ̄Y 3
Haq.

ˆ̄Y 3
pr 151.1041 150.8019 151.3284 122.4189 122.4683 122.7324

ˆ̄Y 4
G.K

ˆ̄Y 4
Haq.

ˆ̄Y 4
pr 153.5339 153.4891 153.7509 125.0272 125.0842 125.8300

ˆ̄Y 5
G.K

ˆ̄Y 5
Haq.

ˆ̄Y 5
pr 153.1577 153.3651 153.8868 123.5171 123.5145 123.5189

ˆ̄Y 6
G.K

ˆ̄Y 6
Haq.

ˆ̄Y 6
pr 148.0252 149.0603 149.9335 123.0634 122.0864 123.1859

ˆ̄Y 7
G.K

ˆ̄Y 7
Haq.

ˆ̄Y 7
pr 157.3814 157.4595 157.6159 124.3142 124.3697 124.6227

ˆ̄Y 8
G.K

ˆ̄Y 8
Haq.

ˆ̄Y 8
pr 152.6729 152.4070 152.8817 122.5352 122.5805 123.9481

ˆ̄Y 9
G.K

ˆ̄Y 9
Haq.

ˆ̄Y 9
pr 155.2700 155.2155 156.2721 124.9516 124.9523 125.0465

ˆ̄Y 10
G.K

ˆ̄Y 10
Haq.

ˆ̄Y 10
pr 154.7365 154.6740 154.7385 124.1267 124.1129 124.1383

30 ˆ̄Y 1
G.K

ˆ̄Y 1
Haq.

ˆ̄Y 1
pr 137.6494 136.8790 138.3680 112.2768 112.0773 112.6044

ˆ̄Y 2
G.K

ˆ̄Y 2
Haq.

ˆ̄Y 2
pr 141.3239 141.2753 142.2912 118.8472 118.8500 118.9965

ˆ̄Y 3
G.K

ˆ̄Y 3
Haq.

ˆ̄Y 3
pr 139.0538 138.7795 139.2670 116.4861 116.5465 116.7900

ˆ̄Y 4
G.K

ˆ̄Y 4
Haq.

ˆ̄Y 4
pr 141.5240 141.4602 141.5615 119.0015 119.0045 119.0104

ˆ̄Y 5
G.K

ˆ̄Y 5
Haq.

ˆ̄Y 5
pr 139.7605 139.9683 140.4578 118.0333 118.0357 118.1293

ˆ̄Y 6
G.K

ˆ̄Y 6
Haq.

ˆ̄Y 6
pr 130.9078 132.1338 132.6111 116.6496 116.5642 116.8055

ˆ̄Y 7
G.K

ˆ̄Y 7
Haq.

ˆ̄Y 7
pr 139.3605 139.5683 139.8578 118.9265 118.9745 119.8550

ˆ̄Y 8
G.K

ˆ̄Y 8
Haq.

ˆ̄Y 8
pr 138.2340 137.9276 138.4662 116.2475 116.3058 116.4495

ˆ̄Y 9
G.K

ˆ̄Y 9
Haq.

ˆ̄Y 9
pr 140.9842 140.9393 141.9538 118.7914 118.7869 118.7950

ˆ̄Y 10
G.K

ˆ̄Y 10
Haq.

ˆ̄Y 10
pr 142.1794 142.1593 142.2399 118.2523 118.2476 118.6504
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7. Conclusions

In this study, we assume that the non-response which occurred in the study is
MCAR. Our main objective is to introduce the idea of utilizing the second raw mo-
ment of the auxiliary variable for the imputation of missing values, especially for
those situations when the ranking of the auxiliary information is difficult or expen-
sive. The proposed imputation method provides better results in terms of efficiency
than the existing procedures. From Tables 2, 3, 4 and 5, it can be easily under-
stand that the proposed imputation procedure performs better than Grover and
Kaur (2014) and Haq et al. (2017) estimators. Thus, we recommend the proposed
estimator for the imputation of missing values and for a precise estimation of the
population mean.
The current work can easily be extended to other domains of survey sampling such
as the estimation population quartiles (Q1 and Q3) and population variance under
the stratified and other sampling schemes. Another possible extension of the cur-
rent work is to estimate the population parameter of the sensitive variable with the
non-sensitive auxiliary variable, when the non-response occurs after the utilization
of the randomized response model, as in Mohamed et al. (2016) and Sohail et al.
(2017). This work is deferred to the later article, which is currently in progress for
handling the non-response.
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APPENDIX

In Figure 1, we can show the shape of different distributions according to their
respective parametric values. In Figure (a), the behaviour of normal distribution is
shown according to their respective population parameters. The shape of gamma
distribution is expressed in Figure (b) and standard normal distribution is shown
in Figure (c). The trend of study variable is shown under the normal and gamma
distribution in Figure (d) and (e) respectively. In both Figures, the study variable
has an increasing trend.
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MODELLING SENSITIVE ISSUES ON SUCCESSIVE WAVES

Kumari Priyanka1, Pidugu Trisandhya2

ABSTRACT

This paper addresses the problem of estimation of population mean of sensitive char-
acter using non-sensitive auxiliary variable at current wave in two wave successive
sampling. A general class of estimator is proposed and studied under randomized
and scrambled response model. Many existing estimators have been modified to
work for sensitive population mean estimation. The modified estimators became the
members of proposed general class of estimators. The detail properties of all the
estimators have been discussed. Their behaviour under randomized and scrambled
response techniques have been elaborated. Numerical illustrations including simula-
tion have been accompanied to judge the performance of different estimators. Finally
suitable recommendations are forwarded.

Key words: Sensitive variable, Successive waves, Scrambled Response model,
Class of estimators, Population mean, Bias, Mean squared error, Optimum matching
fraction.

1. Introduction

The occurrence of unpleasant phenomenon are plenty and abundance in the hu-
man society. We as a part of it, are sometimes obliged to take serious notice of and
spread their occurrences among the conscientious public. This phenomenon ne-
cessitates assemblage of truthful and reliably adequate and accurate date. But the
usual survey practices were not enough to elicit human responses through queries
about sensitive and stigmatized issues.

Some of the features like gambling habits, alcoholism, illegal drug use, tax evasion,
rash driving of motorized vehicles, conjugal malpractices and domestic violence
etc., people like to hide from the human communities.

Hence, to deal with sensitive issues, an alternative technique has been introduces
by Warner (1965), which is to obtain responses through a randomized response
(RR) survey where every sampled unit is asked to give a response through an RR
device as per instruction from the investigator. One can refer to Greenberg et al.
(1971), Barlev et al. (2004), Diana and Perri (2011) and Arcos et al. (2015), etc.

1Department of Mathematics , Shivaji College, University of Delhi, New Delhi-110 027, India. E-mail:
priyanka.ism@gmail.com.

2Department of Mathematics , Shivaji College, University of Delhi, New Delhi-110 027, India. E-mail:
trisandhya.09@gmail.com.
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for a comprehensive review of such RR procedure. However, there is another ap-
proach to deal with sensitive issue called scrambled response technique introduced
by Pollock and Bek (1976). Many researchers such as Eichhorn and Hayre (1983),
Saha (2007) and Diana and Perri (2010), etc. considered the scrambled response
models to deal with sensitive issues.

There are many situations were one need to study the variable over time as they
may opt of change by time. Jessen (1942) inaugurated the journey of research
program related to variables which changes by time. Later Patterson (1950), Sen
(1973), Feng and Zou (1997), Singh and Priyanka (2008), Priyanka and Mittal
(2014, 2015a, 2015b), and Priyanka et al. (2015), etc. added sub-sensitive lit-
erature in this area.

However, if the variable which opt to change by time is also sensitive in nature,
then their arises a need to apply randomized/scrambled response techniques on
successive waves. Arnab and Singh (2013), Yu et al. (2015), Naeem and Shabbir
(2016) and Singh et al. (2017) have put their efforts to deal with sensitive issues
on successive waves.

In the present work a general class of estimators have been proposed for esti-
mating sensitive population mean at current wave in two wave successive sampling
using a non-sensitive auxiliary variable. The proposed estimators have been stud-
ied under both the randomized and scrambled response technique. Many existing
estimators in successive sampling literature such as estimators by Jessen (1942),
Singh and Priyanka (2008), Singh and Karna (2009) and Singh and Prasad (2010)
when modified to work for sensitive population mean estimation, becomes the mem-
bers of proposed general class of estimators. The modified estimators have also
been checked for their applicability under considered randomized and scrambled
response models. The proposed general class of estimators have been compared
with the members of its class in terms of percent relative efficiency. Simulation study
has also been carried out to show the practicability of proposed methods. Finally,
suitable concluding remarks have been forwarded.

2. Survey Strategies and Analysis

2.1. Background

Let P be finite population of N units which has been considered for two successive
waves. The sensitive study variable be named as x at the first wave and y at second
wave. Whereas z is assumed to be non-sensitive auxiliary variable which is available
at the both the successive waves. A simple random sample without replacement of
size n is drawn at the first wave and at the second wave two independent samples
are drawn by considering the partial overlapping case, one is matched sample of
size m = nλ drawn as sub sample from the sample of size n from first wave and
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another is unmatched simple random sample of size u = (n−m) = nµ drawn afresh
at the second (current) wave so that the sample size at both the wave is n. On
first(second) wave the sensitive variables x(y) are switched to x′(y′) with the aid
of scrambling variables W1, W2 and W3. The scrambling variable are considered
such that they may follow any distribution. The following notations to be considered
further are presented below:

X̄ , Ȳ , Z̄, X̄
′
i , Ȳ

′
i , W̄1, W̄2, W̄3 : Population means of the variables x, y,

z, x
′
i, y

′
i, W1, W2 and W3 respectively

where i = 1 and 2 corresponds to randomized
and scrambled response models respectively.

x̄
′
ui, ȳ

′
mi, x̄

′
mi, ȳ

′
ni : Sample mean of the variate based on

sample sizes shown in suffices under ith

model.

z̄u, z̄m, z̄n : Sample mean of the non-sensitive auxiliary
variate based on sample sizes shown in suffice.

ρyx, ρxz, ρyz, (ρx′ y′ )i, (ρy′ z)i, (ρx′ z)i: Correlation coefficient between the variables
shown in suffices and ′i′ denote the
scrambled and randomized response model.

Cx, Cy, Cz : Coefficient of variation of variables shown in
suffices.

S2
x , S2

y , S2
z , S2

W1
, S2

W2
, S2

W3
: Population mean squared error of variables x, y,

z, W1, W2 and W3 respectively.

2.2. Randomized Response Techniques on successive waves

A unified approach for randomized response technique has been proposed by Ar-
cos et al.(2015). Their technique say MAR is modified to be applied on successive
wave for estimation of population mean of sensitive variable. Each respondent on
first(second) wave is asked to rotate a spinner bearing the following statements
- Report the real value of variable xi[yi]

- Report the scrambled response (xiW1 +W2) [(yiW1 +W2 )]

- Report a value of variable W3

with corresponding probabilities p1 , p2 and (1− p1 − p2) respectively on first [sec-
ond] waves. Using above randomization devise, response given by jth respondent
on first and second wave respectively are described as

X
′
1 j =


x j with probability p1

x jW1+W2 with probability p2

W3 otherwise
, Y
′
1 j =


y j with probability p1

y jW1+W2 with probability p2

W3 otherwise
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Therefore applying MAR on two successive waves, the sensitive variable x(y) are
perturbed to x

′
(y
′
) and are given by

X
′
1 = X p1 +(XW1 +W2)p2 +W3(1− p1 − p2)

and
Y
′
1 = Y p1 +(YW1 +W2)p2 +W3(1− p1 − p2)

such that

(Ȳ )1 =
Ȳ
′
1− p2W̄2− (1− p1 − p2)W̄3

p1 + p2W̄1
(1)

(
ρy′ x′

)
1
=

p2
1

ρyxSySx+2p1 p2 ρyxSySxW̄1+p2
2
(ρyxSySxS2

W1
+ρyxSySxW̄ 2

1 +X̄Ȳ S2
W1

)+(1−p1−p2 )
2S2

W3√
I1
√

I2
,(

ρy′ z
)

1
=

(p1+p2W̄1)ρyzSy√
I2

,
(

ρx′ z

)
1
=

(p1+p2W̄1)ρxzSx√
I1

where,
I1 = p2

1
S2

x + p2
2
(S2

xS2
W1

+S2
xW̄ 2

1 +S2
W1

X̄2 +S2
W2
)+(1− p1 − p2)

2S2
W3

+2p1 p2W̄1S2
x

and
I2 = p2

1
S2

y + p2
2
(S2

yS2
W1

+S2
yW̄ 2

1 +S2
W1

Ȳ 2 +S2
W2
)+(1− p1 − p2)

2S2
W3

+2p1 p1W̄1S2
y

Many other randomised response models such as Greenberg et al. (1971) (MG),
Barlev et al. (2004) (MB), Diana and Perri (2010) (MDP1) and scrambled response
models by Pollock and Bek (1976) (MPB), Eichhorn and Hayre (1983) (MEH), Saha
(2007) (MSH) and Diana and Perri (2010) (MDP2) can be viewed as particular cases
of above described techniques and are presented in Table 1 .

Table 1.Particular cases
Name of the p1 p2 W1 W2 W3
Model

MG p 1− p 0 W2 0
MPB 0 1 1 W2 0
MEH 0 1 W1 0 0
MB p 1− p W1 0 0
MSH 0 1 W1 W1W2 0
MDP1 p 1− p W1 W1W2 0
MDP2 0 1 (1−χ∗)W1 χ∗W1W2 0

Note:χ∗ ε [0,1] and 0 ≤ p≤ 1

2.3. Scrambled Response Techniques on successive waves

Considering a convex combination of the multiplicative and additive scrambled re-
sponse model, Diana and Perri (2010) proposed scrambled response model. Their
underlying idea was to combine the two models giving them a different weight ac-
cording to the problem at hand. Therefore, their model say MDP is modified to be
applied on two successive waves, the sensitive variable x(y) is perturbed to x

′
(y
′
)

in the light of this model as:

X
′
2 = ϕ

∗
x (X +W2)+(1−ϕ

∗
x )W1X ; where ϕ

∗
x ε [0,1]
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and
Y
′
2 = ϕ

∗
y (Y +W2)+(1−ϕ

∗
y )W1Y ; where ϕ

∗
y ε [0,1]

such that

(Ȳ )2 =
Ȳ
′
1−ϕ∗y W̄1

ϕ∗y +(1−ϕ∗y )W̄2
, (2)

(
ρy′ x′

)
2
=

ϕ∗x ϕ∗y [I3]+[I4](ϕ∗x +ϕ∗y )+I5√
I6
√

I7
,
(
ρy′z
)

2 =
ρyzSy[ϕ∗y (1−W̄1)+W̄1]√

I6
,

(ρx′z)2 = ρxzSx[ϕ
∗
x (1−W̄1)+W̄1]√

I7
,
(

C2
x′

)
2
= I7

X̄ ′ 2
and

(
C2

y′

)
2
= I6

Ȳ ′ 2

where,
I3 = ρyxSySx +S2

W2
−2ρyxW̄1SySx +S2

W1
[ρyxSySx + X̄Ȳ ]+ρyxW̄ 2

1 SySx,

I4 = W̄1ρyxSySx−S2
W1

[ρyxSySx + X̄Ȳ ]−W̄ 2
1 ρyxSySx,

I5 = S2
W1

[ρyxSySx + X̄Ȳ ]+W̄ 2
1 ρyxSySx,

I6 =
(
ϕ∗y
)2
[
S2

y +S2
W2

]
+
(
1−ϕ∗y

)[
S2

W1
(1+ Ȳ 2)+S2

y(1+W̄ 2
1 )
]
+ 2ϕ∗y

(
1−ϕ∗y

)
W̄1S2

y ,

I7 = (ϕ∗x )
2
[
S2

x +S2
W2

]
+(1−ϕ∗x )

[
S2

W1
(1+ X̄2)+S2

x(1+W̄ 2
1 )
]
+ 2ϕ∗x (1−ϕ∗x )W̄1S2

x .

Remark 1. If ϕ∗x (ϕ
∗
y ) = 0, then the model MDP reduces to multiplicative model and

if ϕ∗x (ϕ
∗
y ) = 1, it reduces to additive scramble response model.

Remark 2. The scrambling variables W1, W2 and W3 are such that E(W1) = W̄1,

E(W2) = W̄2, E(W3) = W̄3, V (W1) = S2
W1

, V (W2) = S2
W2

, V (W3) = S2
W3

, S2
y′i
=

(
C2

y
′
i

Ȳ ′i
2

)
, S2

x′i
=(

C2
x
′
i

X̄ ′i
2

)
.

Remark 3. (Ȳ )i, i = 1 and 2 denote population mean of sensitive variable y at
current wave under ith model in two wave successive sampling.

Remark 4. Suitable estimator of population mean of coded response variable Ȳ
′
i

need to be investigated and replaced in equation 1 and 2 respectively in order to
obtain appropriate estimator of sensitive population mean at current wave under
five different models in two wave successive sampling.

2.4. General Class of estimators on Successive waves

For estimating the population mean of coded response variable at current wave in
two wave successive sampling under randomized as well as scrambled response
models described in section 2.2 and 2.3 respectively, two classes of estimators have
been proposed based on sample of size u and m respectively. The final estimators
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is the general class of estimator formulated by considering convex linear combina-
tion of two classes of estimators based on sample size u and m respectively under
two consider models.

2.4.1 Class of Estimators based on unmatched sample on the second wave

The literature on successive sampling reveals that in general difference, regres-
sion, ratio, product, exponential ratio or product type estimator can be modified for
the estimation of population mean of coded response variable. Some of them can
be seen as:
Lu1i = ȳ

′
ui, if no additional non-sensitive auxiliary information is used at any wave.

Lu2i = ȳ
′
ui + k(z̄u− Z̄),

L3i = ȳ
′
ui +βqiz(z̄u− Z̄),

Lu4i = ȳ
′
ui

Z̄
z̄u

,
Lu5i = ȳ

′
ui

z̄u
Z̄ ,

Lu6i = ȳ
′
ui (

z̄u
Z̄ )

θ1 ,

Lu7i = ȳ
′
ui[2− ( z̄u

Z̄ )
θ2 ],

Lu8i = ȳ
′
ui exp ( Z̄ − z̄u

Z̄ + z̄u
),

Lu9i = ȳ
′
ui exp ( z̄u − Z̄

z̄u + Z̄ ),

Lu10i = ȳ
′
ui +βy′iz(Z̄− z̄u),

Lu11i = ȳ
′
ui +by′iz(u)(Z̄− z̄u),

etc.,
where, k, θ1 and θ2 are constants chosen suitably, so that the mean squared errors
of Lu2i, Lu6i and Lu7i may be optimized respectively.
Therefore, following Srivastava (1980) and Tracy et al.(1996) a class of estima-
tor have been proposed which may contain the above discussed estimators as
its members, under the considered randomized and scrambled response models
based on unmatched sample as:

Lui =Ui (ȳ
′
ui, z̄u) (3)

where i = 1 and 2 denote the randomized and scrambled response model respec-
tively given in section 2.2 and 2.3 and Ui (ȳ

′
ui, z̄u) is a function of ȳ

′
ui and z̄u such

that
(i) The point (ȳ

′
ui, z̄u) assumes the value in a closed convex subset R2 of two dimen-

sional real space containing the point (Ȳ
′
i , Z̄).

(ii) The function Ui (ȳ
′
ui, z̄u) is continuous and bounded in R2.

(iii) Ui(Ȳ
′
i , Z̄) = Ȳ

′
i and U1i(Ȳ

′
i , Z̄) = ∂Ui(ȳ

′
ui,z̄u)

∂ ȳ′ui
= 1, i.e., First order partial derivative of

Ui with respect to ȳ
′
ui at Ui (Ȳ

′
i , Z̄) = Ȳ

′
i ⇒U1i (Ki) =

∂Ui(.)

∂ ȳ′ui
|Ki = 1, where Ki = (Ȳ

′
i , Z̄).

(iv) The first and second order partial derivatives of Ui (ȳ
′
ui, z̄u) exist and are contin-

uous and bounded in R2.
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2.4.2 Estimators Based on the matched sample at current wave

For the matched sample of size m retained from previous wave, it is clear that there
are two kind of auxiliary information available, one is non-sensitive additional auxil-
iary information (z) and other is information from previous wave based on sample
of size n. Hence, motivated by Senapati and Sahoo(2006) let f1i = gi (x̄

′
mi, z̄m, z̄n)

and f2i = hi (x̄
′
ni, z̄n) are two different classes of estimators of X̄

′
i through samples of

sizes m and n respectively such that gi (X̄
′
i , Z̄, Z̄) = hi(X̄

′
i , Z̄) = X̄

′
i . Let (ȳ

′
mi, f1i, f2i)

assumes values in a closed convex subspace R3 of 3-dimensional real space con-
taining the point (Ȳ

′
i , X̄

′
i , X̄

′
i ). Also suppose Ti (ȳ

′
mi, f1i, f2i) is a known function

of ȳ
′
mi, f1i, f2i such that Ti (Ȳ

′
i , X̄

′
i , X̄

′
i ) = Ȳ

′
i and the three functions gi, hi, and

Ti satisfies the regularity conditions stated by Srivastava (1980). Hence, a general
class of estimators based on sample size m at current wave for estimating sensitive
population mean under two models may be defined as

Lmi = Ti (ȳ
′
mi, f1i, f2i) (4)

where i = 1 and 2 denote the randomized and scrambled response models respec-
tively quoted in section 2.2 and 2.3. Many well known estimators when modified for
estimation of sensitive population mean can become a member of proposed class
of estimators. Some of them are listed in Table 2.

Table 2.Estimators based on sample size m
Member Estimator Functional Form

Lm1i [ȳ
′
1mi + k(x̄

′
ni − x̄

′
mi)] when no additional

non-sensitive auxiliary
information is used then

f1i = x̄
′
mi& f2i = x̄

′
ni

Lm2i [ȳ
′∗
1mi +β

y
′
i x
′
i
(x̄
′∗
1ni − x̄

′∗
1mi)],

where, ȳ
′∗
1mi +β

y
′
i x
′
i
( f2i − f1i)]

ȳ
′∗
1mi = [ȳ

′
mi +β

y
′
i z
(Z̄− z̄m)], x̄

′∗
1ni = [x̄

′
ni +β

x
′
i z
(Z̄− z̄n)] &

x̄
′∗
1mi = [x̄

′
mi +β

x
′
i z
(Z̄− z̄m)

Lm3i

 ȳ
′∗
2mi

x̄
′∗
2mi

 x̄
′∗
2ni ,

where,
ȳ
′∗
2mi
f1i

f2i

ȳ
′∗
2mi = ȳ

′
mi +b

y
′
i z
(m)(Z̄− z̄m), x̄

′∗
2ni = x̄

′
ni +b

x
′
i z
(n)(Z̄− z̄n) &

x̄
′∗
2mi = x̄

′
mi +b

x
′
i z
(m)(Z̄− z̄m)

Lm4i ȳ
′∗
2mi +b

y
′
i x
′
i
(m)(x̄

′∗
3ni − x̄

′∗
3mi),

where, ȳ
′∗
2mi +b

y
′
i x
′
i
(m)( f2i − f1i)

x̄
′∗
3ni =

x̄
′
ni

z̄n Z̄, x̄
′∗
3mi =

x̄
′
mi

z̄m Z̄

Lm5i ȳ
′∗
4mi +b

y
′
i x
′
i
(m)(x̄

′∗
3ni − x̄

′∗
3mi),

where, ȳ
′∗
4mi +b

y
′
i x
′
i
(m)( f2i − f1i)

ȳ
′∗
4mi =

ȳ
′
mi

z̄m Z̄

Lm6i
ȳ
′∗
2mi

x̄
′∗
2mi

x̄
′∗
3ni

ȳ
′∗
2mi
f1i

f2i
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2.4.3 Combined General Class of Estimators

Considering the convex linear combinations of the two classes of estimators Lui and
Lmi based on sample of size u and m respectively, the final estimator for population
mean of coded response variable is given as

Li = Ψ
∗
i Lui +(1−Ψ

∗
i )Lmi ; i = 1 and 2 (5)

where the class of estimators Lui and Lmi are defined in equations 3 and 4 respec-
tively and Ψ∗i ε [0,1] is a scalar quantity to be chosen suitably.
Many existing estimators for population mean at current wave by eminent researches
in successive sampling can be the members of the proposed class when modified
to work for estimation of sensitive population mean of coded response variable at
current wave. Some of them are modified and given as:

L1i = Ψ∗1iLu1i +(1−Ψ∗1i)Lm1i, (Modified Jessen (1942) estimator)
L2i = Ψ∗1iLu10i +(1−Ψ∗1i)Lm2i, (Modified Singh and Priyanka (2008))
L3i = Ψ∗2iLu11i +(1−Ψ∗2i)Lm3i, (Modified Singh and Karna (2009) estimator)
L4i = Ψ

∗
4iLu4i +(1−Ψ

∗
4i)Lm4i,

L5i = Ψ
∗
5iLu4i +(1−Ψ

∗
5i)Lm5i,

L6i = Ψ
∗
6iLu4i +(1−Ψ

∗
6i)Lm6i.

(Modified Singh and Prasad (2010) estimator)

etc.,

3. Features of proposed General Class of Estimators

3.1. Bias and Mean Squared Error

The bias and mean squared error of class of estimators Lui and Lmi are derived up to
first order approximations under large sample assumptions and using the following
transformations.
ȳ
′
ui = Ȳ

′
i (1+ e1i), ȳ

′
mi = Ȳ

′
i (1+ e2i), x̄

′
mi = X̄

′
i (1+ e3i), x̄

′
ni = X̄

′
i (1+ e4i), z̄m =

Z̄ (1+ e5), z̄u = Z̄ (1+ e6), z̄n = Z̄ (1+ e7), x̄
′
ui = X̄

′
i (1+ e8i), s2

x′i
(m) = S2

x′i
(1+

e9i), sy′i z
(u) = Sy′i z

(1+e10i), sy′i z
(m) = Sy′i z

(1+e∗10i), s2
z (u) = S2

z (1+e11), s2
z (m) =

S2
z (1+ e∗11), s2

z (n) = S2
z (1+ e∗∗11), sx′i z

(n) = Sx′i z
(1+ e12i), sx′i z

(m) = Sx′i z
(1+ e∗12i),

such that, E(esi) = 0; |esi| < 1; E(ek) = 0; |ek| < 1 where, i = 1 and 2; s =
1, 2, 3, 4, 8, 9, 10 and 12 and k = 5, 6, 7 and 11.

3.1.1 The Bias and Mean Squared Error of Lui

The expressions of bias and mean squared error of the class of estimators Lui are
derived as

Lui = Ui(ȳ
′
ui, z̄u)
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Expanding Ui (ȳ
′
ui, z̄u) about the point Ki = (Ȳ

′
i , Z̄) in a first order Taylor series, we

have

Lui = [ Ui(Ki)+ (ȳ′ui− Ȳ ′i) di1 +(z̄u− Z̄) di2+

1
2
{
(ȳ′ui− Ȳ ′i)2 di11 +(z̄u− Z̄)2 di22 +2 (ȳ′ui− Ȳ ′i)(z̄u− Z̄) di12

}
+ . . .] (6)

where,
di1 =

∂Ui
∂ ȳ′ui
|Ki , di2 =

∂Ui
∂ z̄u
|Ki , di11 =

∂ 2Ui
∂ ȳ′2ui
|Ki , di22 =

∂ 2Ui
∂ z̄2

u
|Ki ,

di12 =
∂ 2Ui

∂ ȳ′ui∂ z̄u
|Ki ; Ki = (Ȳ

′
i , Z̄) and i = 1 and 2

Applying large sample approximations in equation 6, and retaining terms up to first
order approximations we have,(

Lui − Ȳ
′
i

)
=

[
Ȳ
′
i e1i + Z̄e6di2 +

1
2

{
Ȳ
′
i

2e2
1idi11 + Z̄2e2

6di22 +2Ȳ
′
i Z̄e1ie6di12

}]
(7)

Taking expectations on both sides in the above equation 7 and assuming the pop-
ulation size is sufficiently large, we get bias of Lui up to first order approximation
as

B(Lui) =
1
u

[
1
2
(di11Ȳ

′2
i C2

y′i
+ Z̄2C2

z di22)+(ρy′i z
Cy′i

CzȲ
′
i Z̄di12)

]
(8)

Now, squaring both sides of above equation 7 and retaining terms up to first order
of approximations, we have(

Lui − Ȳ
′
i

)2
=
[
Ȳ
′
i

2e2
1i + Z̄2e2

6d2
i2 +2Ȳ

′
i Z̄e1ie6di2

]
Taking expectations on both sides in the above equation and assuming the popula-
tion is very large i.e.,N→ ∞, the mean squared error of Lui is obtained as

M(Lui) =
1
u

[
Ȳ
′2
i Cy′2i

+ Z̄2C2
z d2

i2 +2ρy′i z
Cy′i

CzȲ
′
i Z̄di2

]
which is optimized for di2 =−ρy′i z

, Further, substituting optimized value of di2 in the
above equation we obtain the required optimum mean squared error of Lui as

M(Lui)opt. =
1
u

[
Ȳ
′2
i Cy′2i

+ Z̄2C2
z ρ

2
y′i z
−2ρy′i z

Cy′i
CzȲ

′
i Z̄ρy′i z

]
Remark 5. Since x

′
and y

′
are the same variables over two waves and z is

the stable auxiliary variable so as pointed out by Murthy (1967), Cochran(1977),
Reddy(1978), Feng and Zou (1996) and Singh and Ruiz-Espejo (2003) the coeffi-
cient of variation is stable in nature, so we assume that the coefficients of variation
x
′
, y
′
and z are almost equal (i.e., Cy′

∼=Cx′
∼=Cz).

From the above remark 5 we state the following theorem.
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Theorem 3.1. To the first degree of approximations, the bias and mean squared
error of Lui under assumption given in remark 5 is

B(Lui) =
1
2u

[
di11 +di22 +2di12ρy′i z

]
S2

y′i
(9)

and

M(Lui)opt. =
1
u

(
1−ρ

2
y′i z

)
S2

y′i
(10)

which is similar to the variance of linear regression estimator for population mean.

3.1.2 The Bias and Mean Squared Error of Lmi

For deriving the bias and mean squared error of class of estimators Lmi, f1i =

gi (x̄
′
mi, z̄m, z̄n) and f2i = hi (x̄

′
ni, z̄n) have been expanded around the points (X̄

′
i , Z̄, Z̄)

and (X̄
′
i , Z̄) respectively by first order Taylor’s series and neglecting the remainder

terms we get,
f1i = X̄

′
i +G1(x̄

′
mi− X̄

′
i )+G2[(z̄m− Z̄)− (z̄n− Z̄)] and

f2i = X̄
′
i +H1(x̄

′
ni− X̄

′
i )+H2(z̄n− Z̄).

Following Senapati and Sahoo(2006), we assume H1 = 1 because hi(X̄
′
i , Z̄) = X̄

′
i

and G1 = 1, G2 = −G3 because gi (x̄
′
mi, z̄m, z̄n) and gi (x̄

′
mi, z̄n, z̄m) assume the

same value i.e., X̄
′
i at (X̄

′
i , Z̄, Z̄). Hence we have

f1i = X̄
′
i +(x̄

′
mi− X̄

′
i )+G2[(z̄m− Z̄)− (z̄n− Z̄)] (11)

and

f2i = X̄
′
i +(x̄

′
ni− X̄

′
i )+H2(z̄n− Z̄) (12)

Similarly, observing F1 = 1, F2 = −F3 and expanding Ti (ȳ
′
mi, f1i, f2i) around the

point (Ȳ
′
i , X̄

′
i , X̄

′
i ) by first order Taylor’s series, we have,

Lmi = Ȳ
′
i +F1(ȳ

′
mi− Ȳ

′
i )+F2[( f1i− X̄

′
i )− ( f2i− X̄

′
i )], i.e.,

Lmi = Ȳ
′
i +(ȳ

′
mi− Ȳ

′
i )+F2[( f1i− X̄

′
i )− ( f2i− X̄

′
i )]+

1
2
[(ȳ
′
mi− Ȳ

′
i )

2F11 +( f1i− X̄
′
i )

2F22 +( f2i− X̄
′
i )

2F33+

2(ȳ
′
mi− Ȳ

′
i )( f1i− X̄

′
i )F12 +2(ȳ

′
mi− Ȳ

′
i )( f2i− X̄

′
i )F13+

2( f1i− X̄
′
i )( f2i− X̄

′
i )F23]. (13)

where,
F1 =

∂ f̄i
∂ ȳ′mi
|S∗1i = 1, F2 =

∂ f̄i
∂ x̄′mi
|S∗1i, F3 =

∂ f̄i
∂ x̄′ni
|S∗1i, F11 = 0, F22 =

∂ 2 f̄i
∂ x̄′mi

2 |S
∗
1i,

F33 =
∂ 2 f̄i
∂ x̄′ni

2 |S
∗
1i, F12 =

∂ 2 f̄i
∂ ȳ′mi∂ x̄′mi

|S∗1i, F13 =
∂ 2 f̄i

∂ ȳ′mi∂ x̄′ni
|S∗1i, F23 =

∂ 2 f̄i
∂ x̄′mi∂ x̄′ni

|S∗1i,
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G1 =
∂ ḡi

∂ ȳ′mi
|S∗2i = 1, G2 =

∂ ḡi
∂ x̄′mi
|S∗2i, G3 =

∂ ḡi
∂ x̄′ni
|S∗2i, G11 = 0,

G22 =
∂ 2ḡi

∂ x̄′mi
2 |S
∗
2i, G33 =

∂ 2ḡi
∂ x̄′ni

2 |S
∗
2i, G12 =

∂ 2ḡi
∂ ȳ′mi∂ x̄′mi

|S∗2i, G13 =
∂ 2ḡi

∂ ȳ′mi∂ x̄′ni
|S∗2i,

G23 =
∂ 2ḡi

∂ x̄′mi∂ x̄′ni
|S∗2i, H1 =

∂ h̄i
∂ ȳ′mi
|S∗3i = 1, H2 =

∂ h̄i
∂ x̄′mi
|S∗3i, H3 =

∂ h̄i
∂ x̄′ni
|S∗3i,

H11 = 0, H22 =
∂ 2h̄i

∂ x̄′mi
2 |S
∗
3i, H33 =

∂ 2h̄i
∂ x̄′ni

2 |S
∗
3i, H12 =

∂ 2h̄i
∂ ȳ′mi∂ x̄′mi

|S∗3i,

H13 =
∂ 2h̄i

∂ ȳ′mi∂ x̄′ni
|S∗3i, H23 =

∂ 2h̄i
∂ x̄′mi∂ x̄′ni

|S∗3i

where S∗1i = (Ȳ
′
i , X̄

′
i , X̄

′
i ), S∗2i = (X̄

′
i , Z̄, Z̄) and S∗3i = (X̄

′
i , Z̄) ; i = 1 and 2 correspond

to randomized and scrambled response models considered.

After applying large sample approximations in equation 13 taking relevant ex-
pectations, simplifying and retaining terms up to first order of approximation we get
the bias and mean squared error of Lmi for large N as:

B(Lmi) =
1
2
[

1
m
((X̄

′2
i Cx′i

G11 + Z̄2Cz2G22 + X̄
′
i Z̄ρx′i z

Cx′i
CzG12)F2 +F11Ȳ

′2
i Cy′2i

+

(X̄
′2
i C2

x′i
+ Z̄2C2

z G2
2 +2X̄

′
i Z̄ρx′i z

Cx′i
CzG2)F22 +2(X̄

′
i Ȳ
′
i ρy′i x

′
i
Cx′i

Cy′i
+

Ȳ
′
i Z̄ρy′i z

Cy′i
CzG2)F12)+

1
n
([(Z̄2C2

z G33 + X̄
′
i Z̄ρx′i z

Cx′i
CzG13 + Z̄2C2

z G23)F2−

(X̄
′
i Cx′2i

H2
1 + Z̄2C2

z H2
2 + X̄

′
i Z̄ρx′i z

Cx′i
CzH12)]F2− (Z̄2G2

2C2
z +2X̄

′
i Z̄G2ρx′i z

Cx′i
Cz)F22+

(X̄
′
i Cx′2i

+ Z̄2C2
z H2

2 +2ρx′i z
Cx′i

CzX̄
′
i Z̄H2)F33−2ρy′i z

Cy′i
CzȲ

′
i Z̄G2F12+

2(ρy′i x
′
i
Cy′i

Cx′i
X̄
′
i Ȳ
′
i + Ȳ

′
i Z̄H2ρy′i z

Cy′i
Cz)F13 +2(X̄

′2
i C2

x′i
+ρx′i z

X̄
′
i Z̄Cx′i

CzH2)F23)]

(14)

M(Lmi) = Ȳ
′
i

1
m

Cy′2i
+ X̄

′
i F2

2 (
1
m

Cx′2i
− 1

n
Cx′2i

)+F2
2 G2

2Z̄2(
1
m

Cz2 −
1
n

Cz2)+

F2
2 H2

2 Z̄2 1
n

C2
z −2Ȳ

′
i X̄
′
i F2(

1
m

ρx′i y
′
i
Cy′i

Cx′i
− 1

n
ρx′i y

′
i
Cy′i

Cx′i
)+

2Ȳ
′
i Z̄F2G2(

1
m

ρy′i z
Cy′i

Cz−
1
n

ρy′i z
Cy′i

Cz)+2Ȳ
′
i F2H2Z̄

1
n

ρy′i z
Cy′i

Cz−

2X̄
′
i Z̄F2

2 G2(
1
m

ρx′i z
Cx′i

Cz−
1
n

ρx′i z
Cx′i

Cz) (15)

which is further optimized for

(F2)opt. =
ρ

y
′
i x
′
i
−ρ

x
′
i z

ρ
y
′
i z

ρ2
x
′
i z
−1

(say F∗2 ), (G2)opt. =
ρ

y
′
i x
′
i
ρ

x
′
i z
−ρ

y
′
i z

ρ
x
′
i z

ρ
y
′
i z
−ρ

y
′
i x
′
i

(say G∗2)

and (H2)opt. =
ρ

y
′
i z
(ρ2

x
′
i z
−1)

ρ
y
′
i x
′
i
−ρ

x
′
i z

ρ
y
′
i z
(say H∗2 ).

Further, substituting minimum value of F2, G2 and H2 in the above equation we
obtain the optimum mean squared error of Lmi as
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M(Lmi)opt. = Ȳ
′
i

1
m

C2
y′i
+ X̄

′
i F∗22 (

1
m

C2
x′i
− 1

n
C2

x′i
)+F2

2 G∗22 Z̄2(
1
m

C2
z −

1
n

C2
z )+

F2∗
2 H∗22 Z̄2 1

n
C2

z −2Ȳ
′
i X̄
′
i F∗2(

1
m

ρx′i y
′
i
Cy′i

Cx′i
− 1

n
ρx′i y

′
i
Cy′i

Cx′i
)+

2Ȳ
′
i Z̄F∗2 G∗2(

1
m

ρy′i z
Cy′i

Cz−
1
n

ρy′i z
Cy′i

Cz)+2Ȳ
′
i F∗2 H∗2 Z̄

1
n

ρy′i z
Cy′i

Cz−

2X̄
′
i Z̄F∗22 G∗2(

1
m

ρx′i z
Cx′i

Cz−
1
n

ρx′i z
Cx′i

Cz)

From the remark 5 we state the following theorem.

Theorem 3.2. To the first degree of approximations, the bias and mean squared
error of Lmi under assumption given in remark 5, is given by

B(Lmi) =

[
1
m
(a∗)+

1
n
(b∗)

] S2
y′i
2

(16)

Where,

a∗ =
(

G11 +G22 +G12ρx′i z

)
F2 +F11 +

(
1+G2

2 +2ρx′i z
G2

)
F22+

2
(

ρy′i x
′
i
+ρy′i z

G2

)
F12,

b∗ =
[(

G33 +ρx′i z
G13 +G23

)
−
(

H2
1 +H2

2 +ρx′i z
H12

)]
F2−

(
G2

2 +2ρx′i z
G2

)
F22

+
(

1+H2
2 +2ρx′i z

H2

)
F33 +2ρy′i z

F12 +2
(

ρy′i x
′
i
+ρy′i z

H2

)
F13+

2
(

1+H2ρx′i z

)
F23.

and

M(Lmi)opt. = [(
1
m
− 1

n
)(F∗22 +F∗22 G∗22 +2ρy′i x

′
i
F∗2 +2ρy′i z

G∗2F∗2 +2ρx′i z
G∗2F∗22 )+

1
n
(F∗22 +H∗22 −2ρy′i z

F∗2 H∗2 )+
1
m
]S2

y′i
(17)

Theorem 3.3. Bias of the general class of estimators Li to the first order of approx-
imations are obtained as

B(Li) = Ψ
∗
i B(Lui)+(1−Ψ

∗
i )B(Lmi) (18)

Substituting the values of B(Lui) and B(Lmi) from the equations 9 and 16 in
the above equation, we have the expression for the bias of the general class of
estimators Li in equation 18.
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Theorem 3.4. Mean squared error of the general class of estimators Li to first order
of approximations are obtained as

M(Li) = Ψ
∗
i

2M(Lui)opt.+(1−Ψ
∗
i )

2M(Lmi)opt. (19)

The optimized values of M(Lui) and M(Lmi) are computed in equation 10 and
equation 17 respectively and as the two classes of estimators Lui and Lmi are
based on two non-overlaping samples of sizes u and m respectively.
So, cov(Lui, Lmi) = 0. Hence, using these values in above equation 19 we get the
mean squared error of Li.

3.2. Optimum Mean Squared Error of the Proposed class of Estimator

The mean squared error of class of estimators Li is a function of unknown constant
Ψ∗i therefore, it is minimized with respect to Ψ∗i and hence the optimum value of Ψ∗i
is obtained as

Ψ
∗
iopt. =

M[Lmi]opt.

M[Lui]opt.+M[Lmi]opt.
(20)

Substituting the value of Ψ∗iopt. from equation 20 in equation 19, we get the optimum
mean squared error of the class of estimator Li as

M[Li]opt. =
M[Lui]opt.×M[Lmi]opt.

M[Lui]opt.+M[Lmi]opt.
(21)

Further, substituting the values M[Lui]opt. and M[Lmi]opt. from equations 10 and
equation 17 in equation 21, the simplified values of M[Li]opt. is derived as

M[Li]opt. =
B∗1iµi +B∗2i

µ2
i A∗3i−µiB∗3i +A∗1i

S2
y′i
n

 (22)

where,
A∗1i = 1−ρ2

y′i z
, A∗2i = d∗+1, A∗3i = d∗−H∗22 F∗22 +2ρy′i z

H∗2 F∗2 ,

d∗ = F∗22 +G∗22 F∗22 +2ρy′i x
′
i
F∗2 +2ρy′i z

F∗2 G∗2 +2ρx′i z
F∗22 G∗2,

B∗1i = A∗1iA
∗
3i, B∗2i = A∗1iA

∗
2i−A∗1iA

∗
3i, B∗3i = A∗1i−A∗2i +A∗3i.

3.3. Optimum Rotation Rate

Rotation rate is an important aspect in successive sampling as it is directly related
to total cost of survey. More the sample rotated/ matched from previous wave, lesser
number of units will be required to be drawn at current wave. Hence, mean squared
error of the estimator Li (i = 1 and 2) derived in equation 22 which is a function of
µi, have been optimized with respect to µi (i = 1 and 2). The optimum value of
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µi say µ̂∗f i have been obtained which satisfies the condition given as:

0 < min

{
−C∗2i +

√
C∗2i

2 +C∗1iC
∗
3i

C∗1i
,
−C∗2i−

√
C∗2i

2 +C∗1iC
∗
3i

C∗1i

}
< 1 (23)

where, C∗1i = B∗1iA
∗
3i, C∗2i = A∗3iB

∗
2i and C∗3i = A∗1iB

∗
1i +B∗3iB

∗
2i.

Substituting the applicable value of µ̂∗f i in equation 23, we have the optimum value
of the mean squared error of the general class of estimators Li as,

M (Li)opt.∗ =
B∗1iµ

∗
f i +B∗2i

µ2∗
f i A∗3i−µ∗f iB

∗
3i +A∗1i

S2
y′i
n

 ; i = 1 and 2. (24)

4. Performance of Proposed Composite class of estimator

The proposed general class of estimator have been compared with the member
of its class listed in section 2.4.3. Therefore their optimum fraction of sample to
be drawn afresh at current wave and the optimum mean squared error have been
computed and are presented below in Table 3 and Table 4 respectively.

Table 3.Optimum rotation rate for proposed estimators
Estimator Optimum Rotation Rate

L1i µ̂Ji satisfies

0 < min


1+
√

1−ρ2
y
′
i x
′
i

ρ2
y
′
i x
′
i

,

1−
√

1−ρ2
y
′
i x
′
i

ρ2
y
′
i x
′
i

< 1

L2i µ̂spi satisfies

0 < min

 −A∗1i+
√

A∗1i(A
∗
1i+D∗1i)

D∗1i
,
−A∗1i−

√
A∗1i(A

∗
1i+D∗1i)

D∗1i

 < 1

L3i µ̂ski satisfies

0 < min

 I2i+
√

I2
2i−I1i I3i
I1i

,
I2i−

√
I2
2i−I1i I3i
I1i

< 1

L4i µ̂sp1i satisfies

0 < min

 I12i+
√

I2
12i−I11i I13i
I11i

,
I12i−

√
I2
12i−I11i I13i
I11i

< 1

L5i µ̂sp2i satisfies

0 < min

 I22i+
√

I2
22i−I21i I23i
I21i

,
I22i−

√
I2
22i−I21i I23i
I21i

< 1

L6i µ̂sp3i satisfies

0 < min

 I32i+
√

I2
32i−I31i I33i
I31i

,
I32i−

√
I2
32i−I31i I33i
I31i

< 1
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Table 4.Mean Squared Error
Estimator Optimum Mean Squared Error

L1i


1−µ̂Jiρ2

y
′
i x
′
i

1−µ̂2
Jiρ2

y
′
i x
′
i


S2
y
′
i

n

L2i

 [A∗1i(A
∗
1i+µ̂spiD∗1i)]

A∗1i+µ̂2
spiD∗1i




S2
y
′
i

n


where D∗1i = 2ρ2

y
′
i z

ρ
y
′
i x
′
i
−ρ2

y
′
i x
′
i
(1+ρ2

y
′
i z
)

L3i

(
µ̂skig1i−g2i

µ̂2
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S2
y
′
i

n
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where k1i = 1−ρ2

y
′
i z
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y
′
i z
−2ρ
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′
i x
′
i
−ρ2
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′
i z

+2ρ
y
′
i z

ρ
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′
i z
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k3i = 2ρ
y
′
i x
′
i
+ρ2

x
′
i z
−2ρ

x
′
i z

ρ
y
′
i z
−1 , g1i = k1ik3i ,g2i = k1ik2i + k1ik3i ,

g3i = k2i − k1i + k3i , I1i = k3ig1i , I2i = k3ig2i and I3i = k1ig1i +g2ig3i

L4i

 µ̂sp1ig11i−g12i
µ̂2

sp1iK13i−µ̂sp1iB13i−K11i




S2
y
′
i

n
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where k11i = 2−2ρ

y
′
i z
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ρ
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′
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ρ
x
′
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−2ρ
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′
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ρ
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′
i x
′
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ρ
x
′
i z
, g11i = k11ik13i ,g12i = k11ik12i + k11ik13i ,

g13i = k12i − k11i + k13i , I11i = k13ig11i , I12i = k13ig12i and I13i = k11ig11i +g12ig13i

L5i

 µ̂sp2ig21i−g22i
µ̂2

sp2iK23i−µ̂sp2ig23i−K11i




S2
y
′
i

n
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where k22i = 2−2ρ2
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k23i = 2ρ2
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′
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ρ
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′
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+2ρ
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′
i
−2ρ

y
′
i x
′
i

ρ
x
′
i z
−2ρ

y
′
i x
′
i

ρ
y
′
i z
, g21i = k11ik23i ,

g22i = k11ik22i + k11ik23i , g23i = k22i − k11i + k23i , I21i = k23ig21i ,
I22i = k23ig22i and I23i = k11ig21i +g22ig23i

L6i

 µ̂sp3iB31i−g32i
µ̂2

sp3iK33i−µ̂sp3iB33i−K11i



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n
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where k32i = 2−ρ2
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k33i = 2ρ2
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′
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−2ρ

x
′
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+2ρ
y
′
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′
i
−ρ

y
′
i z

ρ
x
′
i z
, g31i = k11ik33i ,g32i = k11ik32i + k11ik33i ,

g33i = k32i − k11i + k33i , I31i = k33ig31i , I32i = k33ig32i and I33i = k1ig31i +g32ig33i

5. Estimators for sensitive population mean at current wave

Replacing the population mean of coded response Ȳ
′
i (i = 1, 2) in equation 1 and

equation 2 by its estimators Li and Li j (i= 1, 2 ; j = 1, 2, 3, 4, 5, 6) , the correspond-
ing estimators for sensitive population mean at current wave ˆ̄Yi and ˆ̄Yi j respectively
is obtained and are given in Table 5.
Since, the estimators ˆ̄Yi and ˆ̄Yi j are biased, the mean squared errors of sensitive
population mean estimators Ȳji ; j = 1, 2, 3, 4, 5, 6 has also been computed under
two considered models and are presented in Table 5.
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Table 5.Sensitive population mean estimators ˆ̄Yi, ˆ̄Yi j and Mean squared error of
the estimators ˆ̄Yi, ˆ̄Yi j under the models MAR and MDP

i Model Sensitive population Mean squared error of
mean estimator sensitive population mean

1 MAR
ˆ̄Y1 =

L1−p2 W̄2−(1−p1−p2 )W̄3
p1 +p2 W̄1

M[ ˆ̄Y1 ] =
M[L1 ]opt.∗
[p1 +p2 W̄1 ]

2

ˆ̄Y1 j =
L1 j−p2 W̄2−(1−p1−p2 )W̄3

p1 +p2 W̄1
M[ ˆ̄Y1 j ] =

M[L1 j ]opt.∗
[p1 +p2 W̄1 ]

2

2 MDP
ˆ̄Y2 =

L2−ϕ∗y W̄1
ϕ∗y +(1−ϕ∗y )W̄2

M[ ˆ̄Y2 ] =
M[L2 ]opt.∗

[ϕ∗y +(1−ϕ∗y )W̄2 ]
2

ˆ̄Y2 j =
L2 j−ϕ∗y W̄1

ϕ∗y +(1−ϕ∗y )W̄2
M[ ˆ̄Y2 j ] =

M[L2 j ]opt.∗
[ϕ∗y +(1−ϕ∗y )W̄2 ]

2

6. Comparison

The percent relative efficiency of proposed general class of estimator for sensitive
population mean ˆ̄Yi with respect to the estimator ˆ̄Yi j have been computed as

E ji =
M(Yi j)

M(Yi)
×100 ; ∀ i = 1 and 2 and j = 1, 2, 3, 4, 5 and 6. (25)

Remark 6. In the present paper we have considered additive, multiplicative and
upshot of additive and multiplicative type scrambled response models on two wave
successive sampling. The three scrambling variable W1, W2 and W3 used to per-
turb the true response through randomized or scrambled response models may
follow any distribution. Hence, following Pollock and Bek (1976), Eichhorn and
Hayre(1983) and Arcos et al.(2015), we consider scrambling variable W1 to follow
normal distribution with mean 1 and variance 1. However, the scrambling variable
W2 has been assumed to follow normal distribution with mean 0 and variance 1 and
W3 has been assumed to follow normal distribution with mean 1 and variance 2.

7. Numerical Presentation

Population Source:[Priyanka and Mittal (2016)]
The population comprise of N = 315 units. Let x and y denote the average monthly
expenditure on drug usage by undergraduate students in 2015 and 2016 respec-
tively. However z denote the average monthly pocket money of undergraduate stu-
dents from all sources. The parameters of considered population are computed as:
N = 315, S2

x = 1.2463×106, S2
y = 2.1926×106, S2

z = 1.4670×107,

X̄ = 370.5238, Ȳ = 504.8095, Z̄ = 4.0233×103, ρyx = 0.8937,
ρxz = 0.6491, ρyz = 0.7012.
The artificial data for W1, W2 and W3 have also been generated as per assumption in
remark 6. It is observed that W̄1 = 1.0871, S2

W1
= 0.5832, W̄2 =−0.0248, S2

W2
= 1.1695.

and W̄3 = 0.9731, S2
W3

= 4.4527
The optimum values of µ̂ ′i s for Li and L ji and percent relative efficiencies E ji have
been computed for the above data under two considered models and are presented
in Figure 1 to Figure 13 and Table 6.
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Figure 1: Optimum value of fraction of
sample drawn afresh for estimator ˆ̄Y1

Figure 2: Optimum value of fraction of
sample drawn afresh for estimator ˆ̄Y11

Figure 3: Optimum value of fraction of
sample drawn afresh for estimator ˆ̄Y12

Figure 4: Optimum value of fraction of
sample drawn afresh for estimator ˆ̄Y13

Table 6.Optimum fraction of sample drawn afresh and percent relative efficiencies
under scrambled response model. where α = ϕ∗y = ϕ∗x

i MDP µ̂ f 2 µ̂J2 µ̂sp2 µ̂sk2 µ̂sp12 µ̂sp22 µ̂sp32 E12 E22 E32 E42 E52 E62

α

2 0.1 0.6562 0.6935 0.6501 0.6430 0.3782 0.6798 0.6880 142.97 100.93 102.05 105.51 122.06 138.91

0.3 0.6489 0.6926 0.6414 0.6339 0.3996 0.6694 0.6793 151.88 101.18 102.37 104.13 119.76 137.04

0.5 0.6413 0.6916 0.6320 0.6242 0.4149 0.6584 0.6706 162.02 101.47 102.74 103.25 117.78 135.40

0.7 0.6345 0.6908 0.6234 0.6153 0.4240 0.6485 0.6630 171.89 101.78 103.11 102.83 116.30 134.17

0.9 0.6302 0.6904 0.6179 0.6096 0.4278 0.6423 0.6584 178.46 101.99 103.37 102.70 115.51 133.51

8. Simulation Study

The simulation study have been carried out by considering 10,000 different samples
using Monte Carlo simulation for the data mentioned in section 7. The simulated
percent relative efficiency Es ji of ˆ̄Yi with respect to ˆ̄Yi j ; j = 1, 2, . . . , 6 and i = 1
and 2 respectively have been computed for many combinations of constants and
the results are presented in Table 7.
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Figure 5: Optimum value of fraction of
sample drawn afresh for estimator ˆ̄Y14

Figure 6: Optimum value of fraction of
sample drawn afresh for estimator ˆ̄Y15

Figure 7: Optimum value of fraction of
sample drawn afresh for estimator ˆ̄Y16

Figure 8: Percent Relative Efficiency
E11

Figure 9: Percent Relative Efficiency
E21

Figure 10: Percent Relative Efficiency
E31
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Figure 11: Percent Relative Efficiency
E41

Figure 12: Percent Relative Efficiency
E51

Figure 13: Percent Relative Efficiency
E61
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Table 7.Simulation results for Es ji ; j = 1, 2, . . . , 6 ; i = 1 and 2, α = ϕ∗y = ϕ∗x
i Es1i Es2i Es3i Es4i Es5i Es6i

Model

1 MAR
(p2 ) (p1 )

0.1 169.69 100.65 224.69 120.45 131.53 137.86
0.1 0.5 186.63 100.91 196.39 119.78 128.99 135.80

0.9 188.52 100.93 199.80 120.15 129.17 136.02
0.1 155.46 100.47 274.59 121.17 134.37 140.23

0.3 0.5 176.95 100.76 210.07 120.13 130.34 136.88
0.9 183.39 100.85 205.21 120.23 129.75 136.46
0.1 151.21 100.42 298.82 121.37 135.35 141.05

0.5 0.5 169.71 100.65 227.63 120.60 131.67 137.99
0.9 177.92 100.78 206.66 119.97 130.08 136.66
0.1 149.21 100.39 313.36 121.47 135.84 141.47

0.7 0.5 164.75 100.59 230.77 120.36 132.12 138.31
0.9 173.36 100.71 214.69 120.16 130.79 137.24
0.1 148.02 100.38 303.94 121.13 135.77 141.37

0.9 0.5 161.38 100.54 258.97 121.24 133.46 139.50
0.9 169.70 100.65 225.38 120.48 131.56 137.89

2 MDP ϕ∗y
0.1 148.01 100.38 295.23 120.92 135.58 141.19
0.5 169.68 100.66 221.400 120.27 131.36 137.70
0.9 188.53 100.93 2010.6 120.25 129.27 136.11

9. Scrambling implementation Versus pseudonymous/incognito
Questionnaires

As it is familiar that randomized and scrambled response estimators are less effi-
cient than estimators obtained using direct questioning method. Here we discussed
that the data is collected by scrambled response which is to be compared with data
collected with pseudonymous/incognito questionnaire. For ascertaining the privacy
protection additional cost has to be incurred.
In order to evaluate the data scrambling benefits, the estimator under random-
ized and scrambled response model have been compared with direct questioning
method. If no scrambling mechanism have been used at any wave then the similar
estimator under direct method is proposed as

LD = χLuD + (1−χ)LmD ; χ ε [0, 1] (26)

where

LuD = V ∗ (ȳu, z̄u), (27)

LmD = T ∗ (ȳm, f ∗1 , f ∗2 ) (28)

where, V ∗ (ȳu, z̄u) is a function of (ȳu, z̄u) such that

V ∗ (Ȳ , Z̄) = Ȳ ⇒ V ∗1 (K
∗) = ∂V ∗(.)

∂ ȳu
|K∗ = 1 with K∗ = (Ȳ , Z̄) and V ∗(ȳu, z̄u) satisfies

the following conditions:
1. The function V ∗ (ȳu, z̄u) is continuous and bounded in R.
2. The first, second and third partial derivatives of V (ȳu, z̄u) exist and are continu-
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Figure 14: Percent Relative Efficiency
E1D

Figure 15: Percent Relative Efficiency
E2D

ous and bounded in R.
T ∗ (ȳm, f ∗1 , f ∗2 ) is a function of (ȳm, f ∗1 , f ∗2 ) such that f ∗1 = g∗ (x̄m, z̄m, z̄n), f ∗2 =

h∗ (x̄n, z̄n) and T ∗ (ȳm, f ∗1 , f ∗2 ) is a function of (ȳm, f ∗1 , f ∗2 ) such that T ∗ (Ȳ , X̄ , X̄) =

Ȳ , g∗ (X̄ , Z̄, Z̄) = h∗(X̄ , Z̄) = X̄ and three functions T ∗, g∗, h∗ satisfy the regularity
conditions as considered for Lui given in equation 10.
The minimum mean squared error of the class of estimator LD to the first order
approximations is given as

M[LD]opt.∗ =
B∗d1µ̂d +B∗d2

µ̂2
d A∗d3− µ̂dB∗d3 +A∗d1

(
S2

y

n

)
(29)

where,
A∗d1 = 1−ρ2

xz, A∗d2 = dd +1, A∗d3 = dd− (H∗d2)
2(F∗d2)

2 +2H∗d2F∗d2ρyz,

dd = (F∗d2)
2 +(G∗d2)

2(F∗d2)
2 +2F∗d2ρyx +2F∗d2G∗d2ρyz +2(F∗d2)

2G∗d2ρxz, B∗d1 = A∗d1A∗d3,

B∗d2 = A∗d1A∗d2−A∗d1A∗d3, B∗d3 = A∗d1−A∗d2 +A∗d3 and

µ̂d satisfies

0 < min

−C∗d2 +
√

C∗2d2 +C∗d1C∗d3

C∗d1
,
−C∗d2−

√
C∗2d2 +C∗d1C∗d3

C∗d1

< 1 (30)

where C∗d1 = B∗d1A∗d3, C∗d2 = A∗d3B∗d2 and C∗d3 = A∗d1B∗d1 +B∗d3B∗d2.

EiD =
M(LD)opt.∗

M( ˆ̄Yi)opt.∗
×100 (31)

The percent relative efficiencies have been computed for the data represented in
section 7 for different choices of

{
p1 , p2 , ϕ∗y

}
ε {0.1, 0.2, 0.3, 0.4, . . . , 0.9} and

are presented in graphical form in Figure 14 to Figure 15 for the two considered
models respectively.
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10. Demonstration of Results

1. From Figure.1 - Figure.13, following can be concluded.
(i) It can be seen that optimum value of fraction of sample to be drawn afresh exists
for all considered estimators under both the randomized and scrambled response
model.
(ii) The proposed general class of estimators performs appreciably good in terms of
percent relative efficiency under the considered models when compared with other
modified estimators Li j ; j = 1, 2, . . . , 6 which are also the members of proposed
class of estimators Li ; i = 1 and 2.
(iii) For MAR, it can be seen that for fixed value of p1 if p2 increases E1 j decreases.
However for fixed value of p2 if p1 increases E1 j also increases.
(iv) Both the models, MAR and MDP are performing almost similar in terms of per-
cent relative efficiency.
(v) The Scrambled response model MDP performs appreciably good in terms of op-
timum fraction of sample to be drawn afresh than the model MAR.
(vi) The Randomized response model MAR is more general as it provide wider scope
to the respondents and moderate optimum fraction of sample to be drawn afresh
as well as percent relative efficiency.
(vii) Out of scrambled and randomized response models, MDP is showing stable be-
haviour as per assumptions of successive sampling.

2. From the simulation result in Table 7 it can be focused that the proposed general
class of estimator is efficient than others considered under both randomized and
scrambled response model.

3. From Figure 14 and Figure 15 it is indicated that when the proposed estima-
tor is compared with direct method, for some combinations percent relative loss
has been observed which is in accordance with the theory as scrambling or ran-
domization procedures in general yields loss in efficiency.

11. Epilogue

The propounded general class of estimator for estimating sensitive population mean
at current wave under considered scrambled and randomized response models ac-
complishes good percent relative efficiency when proposed general class of esti-
mator Li is compared with modified estimators Li j ; j = 1, 2, . . . , 6 and i = 1
and 2. Out of the two considered techniques, the model under scrambled response
technique proves more stable in context of successive sampling with proposed es-
timator on two successive waves. However, depending on the sensitive nature of
the character under study the two available techniques can be explored with the
proposed general class of estimator. Therefore, depending on the given situation
the scrambled or randomized response models may be selected to be applied with
proposed general class of estimators on successive waves.
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NONRANDOMIZED RESPONSE MODEL  
FOR COMPLEX SURVEY DESIGNS 

Raghunath Arnab1, Dahud Kehinde Shangodoyin2, Antonio Arcos3 

ABSTRACT 

Warner’s randomized response (RR) model is used to collect sensitive information 
for a broad range of surveys, but it possesses several limitations such as lack of 
reproducibility, higher costs and it is not feasible for mail questionnaires. To 
overcome such difficulties, nonrandomized response (NRR) surveys have been 
proposed. The proposed NRR surveys are limited to simple random sampling with 
replacement (SRSWR) design. In this paper, NRR procedures are extended to 
complex survey designs in a unified setup, which is applicable to any sampling 
design and wider classes of estimators. Existing results for NRR can be derived 
from the proposed method as special cases. 

Key words: complex survey designs, parallel model, randomized response, 

probability proportional to size, varying probability sampling. 

Mathematics Subject Classification: 62D05 

1. Introduction 

In epidemiological, medical and sociological surveys among others, 
information is often collected on highly sensitive issues such as induced abortion, 
HIV/AIDS, drug addiction, domestic violence and cheating in examination, etc. In 
such situations, direct response (DR) surveys where sensitive questions are 
asked directly to the respondents, the respondents often provide wrong answers, 
or refuse to answer because of social stigma and/or fear. Under such 
circumstances the randomized response (RR) techniques may be used to collect 
more reliable data, protect respondents’ confidentiality and avoid unacceptable 
rate of nonresponse. The RR technique was introduced by Warner (1965). 
Warner’s technique was later modified by Horvitz et al. (1967), Greenberg et al. 
(1969), Raghavrao (1978), Franklin (1989), Arnab (1990, 1996), Kuk (1990) and 
Rueda et al. (2015) to increase co-operations from respondents and improve 
efficiencies of the proposed estimators. The applications of the RR technique to 
real life situations were reported by many researchers: Greenberg et al. (1969) 
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with regard to illegitimacy of offspring; Abernathy et al. (1970) concerning 
incidence of induced abortions; Goodstadt and Gruson (1975) concerning drug 
uses, Folsom et al. (1973) concerning drinking and driving; and Arnab and 
Mothupi (2015) concerning sexual habits of University students.  

In all randomised response models proposed in the literature, respondents 
have to perform randomized response experiments using devices such as 
spinners, the drawing of cards and the drawing of random numbers. So, in a 
survey involving RR methods, the investigators have to describe the methods and 
supply randomized devices to the respondents, which make the survey more 
expensive and time consuming rather than the direct response surveys. Tan et al. 
(2009) pointed out a few further limitations of RR which include (i) lack of 
reproducibility in the sense that the same respondent may provide different 
response depending on the outcome of the RR trial, (ii) uneven implementation of 
RR devices, which make it difficult to convince the respondents that their privacy 
is protected, (iii) some of the questions are alternative to sensitive questions (e.g. 
Warner (1965) model) and (iv) unfeasible for mail questionnaire. To overcome 
some of the aforementioned difficulties, nonrandomized response (NRR) model 
was proposed by Tian et al. (2007), Yu et al. (2008), Tan et al. (2009), Tian 
(2014) among others. In the proposed NRR models, independent non-sensitive 
questions were used to obtain indirect answers on sensitive issues. Obviously, 
NRR models reduce costs and are feasible for mail questionnaire. Tan et al. 
(2009) and Tian (2014) reported that the NRR model is more efficient than the RR 
model for estimating population characteristics. NRR techniques in real life 
surveys were used by Tang et al. (2014) to investigate homosexual experience 
among college students; Tian (2014) to investigate sexual behaviour and on 
plagiarism; and Wu and Tang (2016) to investigate pre-marital sex experience.  

All the NRR models available in the literature are limited to simple random 
sampling with replacement (SRSWR) sampling design only. However, in practice 
most surveys are complex and multi-character surveys. A sampling design other 
than simple random sampling is called a complex sampling design. Complex 
sampling often involves clustering, stratification and unequal probability sampling 
among others, while in multi-character surveys information of more than one 
character is collected at a time. Some of the characters are of a confidential 
nature and others are not. For example, Household Income and Expenditure 
Survey 2002/03 (HIES 2002/03) conducted by CSO (2004), Botswana, involved a 
selection of first stage units by inclusion probability proportional to size (IPPS) 
sampling design, and the second stage units by a systematic sampling procedure. 
The same survey design was used by Statistics South Africa (2005) for HIES 
2005/06 survey, Botswana Aids Impact Surveys (BAIS (2008)) conducted by CSO 
(2009) to collect data relating to sensitive issues such as sexual behaviour along 
with non-sensitive items such as socio-economic conditions. 

In this paper, we have extended Tian (2014) NRR model called “The parallel 
model” for estimating population characteristics when the data is collected using 
complex survey designs. The estimator of the population proportion, its variance 
and unbiased estimators of variances of the estimators are derived in a unified 
setup, which is applicable to any sampling design and estimators. The estimators 
of the population proportions, their variances and unbiased estimators of the 
variances for the existing NRR models can be obtained from the proposed 
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method as special cases. It was found that under the SRSWR sampling, both the 
estimator and variance of the estimator of the population proportion 𝜋𝑦 for the 

Greenberg et al. (1969) and Tian (2014) are the same. However, for the simple 
random sampling without replacement (SRSWOR) estimators of 𝜋𝑦 are the same 

while the variance of Greenberg et al. (1969) estimator is higher than the Tian 
(2014) estimator. Two pioneering RR techniques are described below. 

1.1. Warner’s model  

In Warner’s (1965) pioneering method, a sample of size n  was selected from 

a population by SRSWR method. Each of the respondents selected in the sample 
was asked to draw a card at random from a pack of well scaffolded cards 
consisting of two types of cards with known proportions and identical 

in appearance. Card type 1, with proportion 1( 1/ 2)P   contains the question “Do 

you belong to the sensitive group A ?” while card type 2 with proportion 11 P   

contains the question “Do you belong to group A ?” where A  is a sensitive group 

such as HIV positive and A  is the complement of group A (HIV negative). The 
respondent will supply a truthful answer “Yes” or “No” for the question mentioned 
in the selected card. The experiment is performed in the absence of the 
interviewer and hence the privacy of the respondent is maintained because the 
interviewer will not know which of the two questions the respondent has answered 
(See Arnab, 2017).  

1.2. Greenberg et al. model 

Greenberg et al. (1969) modified Warner’s method by incorporating 
a sensitive question (character y ) along with a non-sensitive question (character

x ). In this method, a sample of n  units is selected by SRSWR method and each 

of the respondents selected in the sample has to pick a card at random 
(unobserved by the interviewer) from a pack containing two types of identical 
cards with known proportions as in Warner’s model. The type 1 cards bear the 

sensitive question “Do you belong to the sensitive group A ?” with proportion 

2 ( 0)P  while card type 2 (with proportion 21 P  ) bears a question of unrelated or 

non-sensitive characteristic B  such as “Are you an African?”. Here also, the 
respondent will supply a truthful answer “Yes” or “No” for the question mentioned 
in the selected card (See Arnab, 2017). 

2. Tian’s NRR model 

Tian (2014) proposed the following NRR model called “The parallel model”, 
where the respondents need not require RR devices to provide responses. In this 
parallel model, respondents fill the questionnaire themselves unobserved by the 
interviewer. The questionnaire is a mixture of sensitive and non-sensitive 
questions. The parallel method is described below. 
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2.1. Parallel method 

Let A denote the group of people who possess a sensitive characteristic y

(such as HIV positive) and A denotes the people who do not possess the 
sensitive characteristic y (HIV negative). Further, let x  and w  be two non-

sensitive dichotomous variates, such that y , x  and w are mutually independent. 

For example, 1(0)x    if the respondent’s birthday 1 to 15 (16-31) days of a month 

while 1(0)w  if the respondent is born between July and December (January to 

June) of a year. Clearly x  and w  are independent of the HIV infection status y  

such that Pr ( 1) 0.5x ob x     and 1 Pr ( 1)p ob w   0.5 . Here a respondent 

has to answer truthfully “Yes” or “No” the unrelated non-sensitive question 1Q  if 

his/her birthday falls in the first half of the year, i.e. ( 0)w   or a sensitive question 

2Q  if his/her birthday falls within the second half of the year, i.e. ( 1)w  .The 

respondent should provide the answer “Yes” or “No” without disclosing which 
question he/she has answered. Hence, the confidentiality of the respondent is 
maintained. 

For example, the questions 1Q  and 2Q  are as follows: 

 1Q : Are you a vegetarian? 

2Q : Are you HIV positive? 

2.2. Sampling design and methods of estimation 

 Tian (2014) used SRSWR method of sampling for the selection of a sample. 
Let n  be the number of respondents selected and 'n be the number of 

respondents who answered “Yes”. Here, the probability of obtaining “Yes” answer 
from a respondent is  

                               Pr { 0 1} Pr { 1 1}t ob w x ob w y            

                           (1 ) x yp p                                                                  (2.1) 

Noting that 'n  follows binomial distribution, Tian (2014) obtained an unbiased 

estimator of y  as  

                              
ˆ (1 )

ˆ t x
ty

p

p

 


 
                                              (2.2) 

where ˆ '/t n n  = proportion of “Yes” answers.  

The variance ˆty  is given by 

                         2

(1 ) (1 ) ( | , )
ˆ

y y x y

ty

p g p
Var

n np

   


 
                           (2.3) 
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where 
2( | , ) ( 1) (1 2 )x y x y x yg p p p p          . 

For , .  

3. Parallel models for Complex survey designs 

In this section we propose a methodology of estimating population proportion 
of a sensitive characteristic of a complex multi-character survey design where the 
data of the sensitive characteristic is collected by using the parallel method.  

Consider a finite population {1,.., ,.., }U i N of N  units from which a sample s  of 

size n  units is selected with probability ( )p s using a sampling design P . Let 

( )i

s i

p s


  and 

,

( )ij

s i j

p s


  be the inclusion probabilities for the ith, and ith 

and jth ( )i j units of the population. From each of the units in the sample s , the 

information on the sensitive characteristic y  is obtained by using a parallel 

method. Let ( )B B
 
be the group of respondents whose birthday falls between first 

half of a month i.e. 01 and 15 days (after 15th day of a month) of a month; ( )W W

be the group of respondents born in the second half of the year, i.e. between July 

and December (January and June) and ( )A A be the group of respondents who do 

(do not) possess the sensitive characteristic y . Define 

 
1  if the ith unit 

0   if the ith unit 
i

B
x

B


 


,  

1  if the unit i

0   if the unit i
i

W
w

W


 

  

,  
1  if the ith unit 

0   if the ith unit 
i

A
y

A


 


 

and 
1  if the ith unit answers" "

0   if the ith unit answers " "
i

Yes
z

No


 


    

Under the parallel model, if a respondent belongs to the group W , he/she 

answers the question 1Q .  In this case if the respondent’s birthday falls between 

01 and 15th day of a month, the respondent provides “Yes” answers with 
probability one. Otherwise if the respondent is born after 15th day of a month, the 
respondent supplies “No” answers with probability 1. Hence, 

 i iz x        if i W                                              (3.1) 

Similarly, if a respondent belongs to the group W , then the respondent 

answers the question 2Q  . In this case the respondent answers “Yes” with 

probability one if he/she belongs to the sensitive group A  (HIV positive). On the 

other hand, if the respondent belongs to the complementary group A  
(HIV negative), then he/she supplies response answer “No” with probability one.  
Hence, in this cas 

i iz y      i W                                                  (3.2) 

1/ 2x 
( 1) 1

( | , )
4 2

x y

p
g p 


 
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Equations (3.1) and (3.2) yield 

                                                
(1 )i i i i iz w y w x                                            (3.3) 

and                                    

                                                      i

i U

Z z



  

                                                         i i

i W i W

x y

 

                                                               

                                                         

WAWB
N N   

where  WAWB
N N  is the number of individuals of the population belonging to the 

groups  W B   W A .  

Assuming that the membership of an individual to the group  A A , ( )W W , 

and ( )B B   is mutually independent, we make the following assumptions: 

;  (1 ) ;  ;  (1 )WB x x WA y yWB WAp p p N p                        (3.4) 

where  

  ,  , ,WB WB WA WA
WB WAWB WA

N NN N

N N N N
       , ,  B A

x y

N N

N N
    and 

 WN
p

N
 ; FN  and FGN  denote the number of individuals belonging to the 

group F  and F G  ; , , , , , ,F G A A B B W W . 

Under the assumption (3.4), we have 

                                   / (1 )y xZ Z N p p                                             (3.5)  

Here, we propose a linear homogeneous unbiased estimator of Z as 

                                         
1ˆ

si i

i s

Z b z
N



                                                     (3.6) 

Where ∑𝑖∈𝑠  denotes the sum over distinct units in s , sib ’s are known constants 

satisfying the unbiasedness condition  

                                        ( ) 1si

s i

b p s



 .                                                    (3.7) 

The variance of ˆ
Z  is 

                                                 2ˆ
/si i

i s

V Z V b z N



 
  

 
 
  



STATISTICS IN TRANSITION new series, March 2019 

 

73 

                                    =

2

2 2/si i

i s

E b z Z N



  
  

  
  

                 

                                    =
2 2 2

2

1
( )si i si sj i j

s i s i j s

E b z b b z z p s Z
N   

  
   

  
  

    

(where ( )p s  is the probability of the selection of the sample s )  

                             
2 2

2

1
i i ij i j

i U i j U

z z z Z
N

 
  

 
   
  
                             (3.8) 

where  

                                      
2 ( )i si

s i

b p s


  and ( )ij si sj

s i

b b p s


 .              

The expression (3.8) yields  

                                   * 2 *ˆ
i i ij i j

i U i j U

V Z z z z 
  

                                 (3.9) 

where  *

2

1
1i i

N
    and  *

2

1
1ij ij

N
    

From expression (3.9), we set an unbiased estimator of   ˆV Z as 

                                          2ˆˆ
si i sj i j

i s i j s

V Z c z c z z

  

                                   (3.10) 

where sic  and sijc  are suitably chosen constants satisfying unbiasedness 

conditions 

                                 
*( )si i

s i

c p s 


   and 
*( )sij ij

s i

c p s 


                              (3.11) 

We may choose  sic  and sijc  in various ways. One of the obvious choices is 

* /si i ic    and 
* /sij ij ijc   .  

Substituting i i i i iz w y w x  , 1i iw w   in equation (3.9) and noting that 

, ,i i iw w y  and  ix  are indicator variables, we have the following simplifications:  

                         * *ˆ
i i i i i ij i i i i j j j j

i U i j U

V Z w y w x w y w x w y w x 
  

                                         

 

                            

* * * *
i i ij i j i i ij i j

i W i j W i W i j W

y y y x x x   

     

      
      
      
     
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  
    .  

The above results lead to the following theorem. 

Theorem 3.1.  

Under assumptions (3.4), 

(i)
ˆ

(1 )
ˆ x

y

Z p

p




 
 is an unbiased estimator of y when the population proportion 

x  is assumed to  be known.  

 

(ii)  The variance of ˆ y  is                        

  * * * * * *

2
( ) ( )

                                                                ˆ   
1

y i ij i ij ij ij
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                      
            
                                                                   

      

(iii) An unbiased estimator of  ˆ yV   is 

  2

1ˆ ˆ y si i sij i j

i s i j s

V c z c z z
p



  

 
  
  
   .     

We now present expressions of ˆ y ,  ˆ yV   and  ˆ ˆ yV  for various sampling 

strategies as special cases of Theorem 3.1.  

3.1. Arbitrary sampling design with Horvitz-Thompson estimator  

For 1/si ib  , we have *

2

1 1
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 and the 

expression of the Horvitz- Thompson estimator for y  as  
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The expression of the variance of and its unbiased estimators are obtained 
from the Theorem 3.1 as follows: 

 
2 2

( ) ( )
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1 1 1 1
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 (3.13) 

and 

       
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3.2. Simple random sampling without replacement (SRSWOR)  

For SRSWOR, /i n N  , ( 1) /{ ( 1)}ij n n N N    , 
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 . In this case, the expressions ˆhte ,  ˆhteV   and 

 ˆ ˆhteV  come out as follows: 
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p




 
                                       (3.15) 

where /s i s

i s

z z n 


   = proportion of “Yes” answers in the sample s . 

2 2
( ) ( )

1
ˆ( )wor

i W A i j W A i W B i j W B i W A j i W B j W B i j W A

V
N p

     
                   

                      
            

         

      

       
2 2

1
1 1WA WA WA WA WBWB WB WB WB WA

N N N N N N N N N N
N p

            
 

         

   
2

1 1
1 (1 ) (1 ) (1 ) 1

( 1) ( 1)
y y y x x x

N n
p p Np p p N p

N NNnp
     

    
            

     

              

(1 )
2

( 1)
x y

N n p

n N p
 

 



 

              

 
    2

1
(1 ) (1 ) 1 (1 ) 2 (1 )

( 1)
y y x x x y

N f
p p p p p p

n N p
     


        
 

      

                                              

 where /f n N
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  2

2

(1 )(1 ) (1 )
( 1) 1 2

( 1)

y y

x y x y

N f p
p p p

N n np

 
   

  
      

  
             (3.16) 

From the expression (3.15), we set an unbiased estimator of  ˆworV   as 

                                   
 

 
2

2

11 1ˆ ˆ( )
1

wor i s

i s

f
V z z

n np





 


  

                  
 

2

11
(1 )

1
s s

f

np
 


 


                                        (3.17) 

3.3. Probability proportional to size with replacement (PPSWR)  

Let a sample of size n be selected from the population by PPSWR method 

using normed size measure  0, 1i ip p  attached to the ith unit. Let ( )z r be 

the response obtained from the respondent selected at the r th ( 1,.., )r n draw 

with probability ( )p r  so that ( ) jz r z  and ( ) jp r p  if rth draw produces the jth 

unit. The Hansen-Hurwitz estimator of the population proportion y  is given by 

                       
1

1 1 ( )
(1 )

( )
ˆ

n

x

r
hh

z r
p

N n p r

p






 
  

 
 




                                        (3.18) 

Noting that    
1 1

( )
(1 )

( )

N N

i i i i i y x

i i

z r
E z w y w x N p p

p r
 

 

 
      

 
  , we find 

that ˆhh  is an unbiased estimator of y .  

The variance of ˆhh  is  

             
2 2

1

1 1 ( )
ˆ

( )

n

hh

r

z r
V V

n p rN p




 
  

 
 
  

                       
2

2

2 2
1

1
N

i

ii

z
Z

pN p n 

 
  

 
 
  

           
 

 
22

2 2
1

1
(1 )

N
i i i i

y x
ii

w y w x
N p p

pN p n
 



 
    

  
                     (3.19) 

Further noting that 
( )

( )

z r

p r
 are independently distributed random variables, we 

find an unbiased estimator of ˆhh  as 

                          

2

2 2
1 1

1 ( ) 1 ( )ˆ ˆ
( ) ( )( 1)

n n

hh

r r

z r z r
V

p r n p rN p n n


 

  
  

   
                         (3.20) 
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3.4. Simple random sampling with replacement (SRSWR)  

The PPSWR sampling scheme reduces to SRSWR sampling scheme if 

1/ip N  for 1,...,i N . Substituting 1/ip N in the expressions (3.18), we find 

an unbiased estimator of y  for SRSWR sampling method as 

                                     
(1 )

ˆ s x
swr

p

p

 


 
                                            (3.21) 

The expression of the variance of ˆswr and its unbiased estimator come out as 

follows: 

                            
2

2
1

1 1
ˆ (1 )

N

swr i i i i y x

i

V w y w x p p
Np n

  


 
     

  
  

                                      
2

2

1
(1 ) (1 )y x y xp p p p

p n
         

  
 

                2

2

(1 ) (1 )
( 1) 1 2

y y

x y x y

p
p p p

n np

 
   

 
      
 

     (3.22) 

and 

           
 
2

1
ˆ ˆ

( 1)

s s
swrV

p n

 






                                                                   (3.23) 

Expressions (3.21), (3.22) and (3.23) are the same as those obtained by Tian 
(2014). 

3.5. Stratified multi-stage sampling design 

Consider a population comprising of H strata. The ( 1,.., )h H= th stratum 

consists of hM first-stage units (fsus) and the ith fsu of the hth stratum consists of 

( )1,..,hi hM i M=  second-stage units (ssus). The total number of ssus in the 

population is ∑ ∑ 𝑀ℎ𝑖 = 𝑀
𝑀ℎ
𝑖=1

𝐻
ℎ=1 . From the h th stratum, a sample hs of size 

hn  fsus is selected by using a suitable sampling scheme with 𝜋𝑖|ℎ  and 𝜋𝑖𝑗|ℎ as 

inclusion probabilities for the i th, and i th and 𝑗 (𝑗 ≠ 𝑖)th fsus. If the ith fsu is 

selected in the sample hs , a sub-sample his  of size hin  ssus is selected from it by 

using a suitable sampling scheme with inclusion probabilities 𝜋𝑘|ℎ𝑖  and 𝜋𝑘𝑙|ℎ𝑖  for 

the k th, and k and 𝑙(𝑙 ≠ 𝑘)th ssus. We denote the j th ssu of the i th fsu of the h

th stratum as hij th unit. We define the following notations similar to the Section 3. 

 

1  if  th unit 

0   if  th unit 

 
hij

hij B
x

hij B


 


 ,  

1   if th unit

0   if th unit
hij

hij W
w

hij W


 

  

,  
1  if th unit 

0   if th unit 
hij

hij A
y

hij A


 


, 

1  if th unit answers" "

0   if th unit answers " "
hij

hij Yes
z

hij No


 
  

. 
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Now, writing ( )1hij hij hij hij hijz w y w x= + -  and using the assumption similar to 

(3.4), we find that                               
 

           𝑍 = ∑ ∑ ∑ 𝑧𝑖𝑗𝑘
𝑁ℎ𝑖
𝐽=1 = 𝑀[𝑝𝜋𝑦 + (1 − 𝑝)𝜋𝑥]

𝑁ℎ
𝑖=1

𝐻
ℎ=1                   (3.24) 

 

Further, noting that �̂�ℎ𝑡𝑒 = ∑ ∑
�̂�𝑖|ℎ

𝜋𝑖|ℎ
𝑖𝜖𝑠ℎ

𝐻
ℎ=1   with �̂�𝑖|ℎ = ∑

𝑧ℎ𝑖𝑗

𝜋𝑗|ℎ𝑖
𝑗𝜖𝑠ℎ𝑖

 is an 

unbiased estimator of Z , we get the following theorem. 
 

Theorem 3.2. 

(i) �̂�𝑦 =
1

𝑝
[

�̂�ℎ𝑡𝑒

𝑀
− (1 − 𝑝)𝜋𝑥] is an unbiased estimator of 𝜋𝑦. 

 

(ii) The variance of  �̂�𝑦 is  

         𝑉(�̂�𝑦) =
1

𝑝2𝑀2
∑ [∑ ∑ (𝜋𝑖|ℎ𝜋𝑗|ℎ − 𝜋𝑖𝑗|ℎ) (

𝑍𝑖|ℎ

𝜋𝑖|ℎ
−

𝑍𝑗|ℎ

𝜋𝑗|ℎ
)

2

+ ∑
𝜎𝑖|ℎ

2

𝜋𝑖|ℎ

𝑀ℎ
𝑖=1

𝑀ℎ
𝑗=1

𝑀ℎ
𝑖≠ ]𝐻

ℎ=1  

 

where  

𝑍𝑖|ℎ = ∑ 𝑧ℎ𝑖𝑗
𝑀ℎ𝑖
𝑗=1  and 𝜎𝑖|ℎ

2 = 𝑉(𝑍𝑖|ℎ) = ∑ ∑ (𝜋𝑘|ℎ𝑖𝜋𝑙|ℎ𝑖 − 𝜋𝑘𝑙|ℎ𝑖) (
𝑍ℎ𝑖𝑘

𝜋𝑘|ℎ𝑖
−

𝑍ℎ𝑖𝑙

𝜋𝑙|ℎ𝑖
)

2
𝑀ℎ𝑖
𝑙=1

𝑀ℎ𝑖
𝑘≠  

 

 (iii) An unbiased estimator of 𝑉(�̂�𝑦) is 

 

�̂�(�̂�𝑦) =
1

𝑝2𝑀2
∑ [∑ ∑ (

𝜋𝑖|ℎ𝜋𝑗|ℎ − 𝜋𝑖𝑗|ℎ

𝜋𝑖𝑗|ℎ
) (

�̂�𝑖|ℎ

𝜋𝑖|ℎ
−

�̂�𝑗|ℎ

𝜋𝑗|ℎ
)

2

+ ∑
�̂�𝑖|ℎ

2

𝜋𝑖|ℎ

𝑀ℎ

𝑖∈𝑠ℎ𝑗∈𝑠ℎ𝑖≠

]

𝐻

ℎ=1

 

 

where  

�̂�𝑖|ℎ
2 = ∑ ∑

(𝜋𝑘|ℎ𝑖𝜋𝑙|ℎ𝑖 − 𝜋𝑘𝑙|ℎ𝑖)

𝜋𝑘𝑙|ℎ𝑖
(

𝑧ℎ𝑖𝑘

𝜋𝑘|ℎ𝑖
−

𝑧ℎ𝑖𝑙

𝜋𝑙|ℎ𝑖
)

2

𝑙∈𝑠ℎ𝑖𝑘≠

 

 

is an unbiased estimator of 𝜎𝑖|ℎ
2 .  

Proof:  

(i)  𝐸(�̂�𝑦) =
1

𝑝
[

𝐸(�̂�ℎ𝑡𝑒)

𝑀
− (1 − 𝑝)𝜋𝑥] 

               =
1

𝑝
[

𝑍

𝑀
− (1 − 𝑝)𝜋𝑥] 

              = 𝜋𝑦 
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(ii) 𝑉(�̂�𝑦) =
1

𝑀2𝑝2
∑ 𝑉(�̂�ℎ)𝐻

ℎ=1  

                 = 
1

𝑀2𝑝2
∑ [𝑉{𝐸(�̂�ℎ|𝑠ℎ)} + 𝐸{𝑉(�̂�ℎ|𝑠ℎ)}]𝐻

ℎ=1  

              =
1

𝑀2𝑝2
∑ [𝑉 {∑

𝑍𝑖|ℎ

𝜋𝑖|ℎ
𝑖∈𝑠ℎ

} + 𝐸 {∑
𝜎𝑖|ℎ

2

𝜋𝑖|ℎ
2𝑖∈𝑠ℎ

}]𝐻
ℎ=1  

              =
1

𝑀2𝑝2
∑ [∑ ∑ (𝜋𝑖|ℎ𝜋𝑗|ℎ − 𝜋𝑖𝑗|ℎ) (

𝑍𝑖|ℎ

𝜋𝑖|ℎ
−

𝑍𝑗|ℎ

𝜋𝑗|ℎ
)

2

+ ∑
𝜎𝑖|ℎ

2

𝜋𝑖|ℎ

𝑀ℎ
𝑖=1

𝑀ℎ
𝑗=1

𝑀ℎ
𝑖≠ ]𝐻

ℎ=1  

 

(iii) 𝐸[�̂�(�̂�𝑦)] 

=
1

𝑀2𝑝2
∑ 𝐸 [∑ ∑ (

𝜋𝑖|ℎ𝜋𝑗|ℎ − 𝜋𝑖𝑗|ℎ

𝜋𝑖𝑗|ℎ
) 𝐸 {(

�̂�𝑖|ℎ

𝜋𝑖|ℎ
−

�̂�𝑗|ℎ

𝜋𝑗|ℎ
)

2

|𝑠ℎ}

𝑗∈𝑠ℎ𝑖≠

𝐻

ℎ=1

+ 𝐸 (∑
�̂�𝑖|ℎ

2

𝜋𝑖|ℎ
𝑖∈𝑠ℎ

|𝑠ℎ)] 

 

=
1

𝑀2𝑝2
∑ 𝐸 [∑ ∑ (

𝜋𝑖|ℎ𝜋𝑗|ℎ − 𝜋𝑖𝑗|ℎ

𝜋𝑖𝑗|ℎ
) {(

𝑍𝑖|ℎ

𝜋𝑖|ℎ
−

𝑍𝑗|ℎ

𝜋𝑗|ℎ
)

2

+
𝜎𝑖|ℎ

2

𝜋𝑖|ℎ
2 +

𝜎𝑗|ℎ
2

𝜋𝑗|ℎ
2 }

𝑗∈𝑠ℎ𝑖≠

𝐻

ℎ=1

+ ∑
𝜎𝑖|ℎ

2

𝜋𝑖|ℎ
𝑖∈𝑠ℎ

] 

=
1

𝑀2𝑝2
∑ [∑ ∑(𝜋𝑖|ℎ𝜋𝑗|ℎ − 𝜋𝑖𝑗|ℎ) {(

𝑍𝑖|ℎ

𝜋𝑖|ℎ
−

𝑍𝑗|ℎ

𝜋𝑗|ℎ
)

2

+
𝜎𝑖|ℎ

2

𝜋𝑖|ℎ
2 +

𝜎𝑗|ℎ
2

𝜋𝑗|ℎ
2 }

𝑀ℎ

𝑗=1

𝑀ℎ

𝑖≠

+ ∑ 𝜎𝑖|ℎ
2

𝑀ℎ

𝑖=1

]

𝐻

ℎ=1

 

 

Now, noting that ∑ 𝜋𝑖|ℎ
𝑀ℎ
𝑖=1 = 𝑛ℎ and  ∑ 𝜋𝑖𝑗|ℎ

𝑀ℎ
𝑗(≠𝑖)=1 = (𝑛ℎ − 1)𝜋𝑖|ℎ, we find 

𝐸[�̂�(�̂�𝑦)] = 𝑉(�̂�𝑦). 

4. Comparison with Greenberg RR model 

Consider the Greenberg et al. (1969) model described in Section 1.2 with 

2P p= . Let 1(0)iy = if the ith unit does (does not) belong to the sensitive group A

, 1(0)ix = if the ith unit possesses (does not possess) the non-sensitive 

characteristic B and 1(0)iz =  if the ith respondent answers “Yes” (“No”). Denoting 
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( )R RE V  as expectation (variance) with respect to the RR model and noting ix  

and iy  are indicator variables, one finds that                                                

                    ( ) ( ) ( )21R i i i R iE z py p x E z= + - =                                       (4.1) 

                                ( ) ( ) ( ){ }
2

1 1R i i i i iV z py p x py p x= + - - + -  

                       ( )( )1 2i i i ip p x y x y= - + -                                         (4.2) 

 

Let a sample s  of size n  be selected from the population using SRSWR 

method, 
1

s ii s
z

n



   be the proportion of “Yes” answers in the population and 

i s denote the sum over the units in s  with repetition. In this case we have 

the following theorem: 
 

Theorem 4.1.  

Under SRSWR sampling 

(i)  �̂�𝐺 =
1

𝑝
[𝜆𝑠 − (1 − 𝑝)𝜋𝑥]   is an unbiased estimator of 𝜋𝑦 when 𝜋𝑥 is known. 

 

(ii) The variance of �̂�𝐺  is  

 

𝑉(�̂�𝐺) =
𝜋𝑦(1 − 𝜋𝑦)

𝑛
+

1 − 𝑝

𝑝2𝑛
[(𝑝 − 1)𝜋𝑥

2 + (1 − 2𝑝𝜋𝑦)𝜋𝑥 + 𝑝𝜋𝑦 ] 

 

(iii) An unbiased estimator of 𝑉(�̂�𝐺) is 

 

�̂�(�̂�𝐺) =
1

𝑝2𝑛
[

1

𝑛 − 1
∑(𝑧𝑖 − 𝜆𝑠)2

𝑖∈𝑠

] =
𝜆𝑠(1 − 𝜆𝑠)

(𝑛 − 1)𝑝2
 

 

Proof: 

(i) 𝐸(�̂�𝐺) =
1

𝑝
[𝐸(𝑧̅) − (1 − 𝑝)𝜋𝑥] 

                  =
1

𝑝
[𝐸𝑝 {

1

𝑛
∑ 𝐸𝑅(𝑧𝑖)𝑖∈𝑠 } − (1 − 𝑝)𝜋𝑥] 

 

                     =
1

𝑝
[

1

𝑁
∑{𝑝𝑦𝑖 + (1 − 𝑝)𝑥𝑖}

𝑖∈𝑈

− (1 − 𝑝)𝜋𝑥] 

                   
                  = 𝜋𝑦 
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 (ii) 𝑉(�̂�𝐺) = 𝑉𝑝[𝐸𝑅(�̂�𝐺)] + 𝐸𝑝[𝑉𝑅(�̂�𝐺)] 

                  = 𝑉𝑝 [
1

𝑛𝑝
∑ 𝐸𝑅(𝑧𝑖)𝑖∈𝑠 −

(1−𝑝)

𝑝
𝜋𝑥] + 𝐸𝑝 [

1

(𝑛𝑝)2
∑ 𝑉𝑅(𝑧𝑖)𝑖∈𝑠 ] 

                       = 𝑉𝑝 [
1

𝑛𝑝
∑{𝑝𝑦𝑖 + (1 − 𝑝)𝑥𝑖}

𝑖∈𝑠

] + 𝐸𝑝 [
1 − 𝑝

𝑛2𝑝
∑(𝑥𝑖 + 𝑦𝑖 − 2𝑥𝑖𝑦𝑖)

𝑖∈𝑠

] 

  =
1

𝑛𝑝2
[

1

𝑁
∑{𝑝𝑦𝑖 + (1 − 𝑝)𝑥𝑖}

2 − {𝑝𝜋𝑦 + (1 − 𝑝)𝜋𝑥}
2

𝑖∈𝑈

] +
1 − 𝑝

𝑛𝑝𝑁
∑(𝑥𝑖 + 𝑦𝑖 − 2𝑥𝑖𝑦𝑖)

𝑖∈𝑈

 

=
1

𝑛𝑝2
[𝑝2𝜋𝑦(1 − 𝜋𝑦) + (1 − 𝑝)2𝜋𝑥(1 − 𝜋𝑥) + 2𝑝(1 − 𝑝)(𝜋𝑥𝑦 − 𝜋𝑥𝜋𝑦)]

+
1 − 𝑝

𝑛𝑝
(𝜋𝑥 + 𝜋𝑦 − 2𝜋𝑥𝑦) 

 

Noting that 𝜋𝑥𝑦 = 𝜋𝑥𝜋𝑦, as x and y are independent, we obtain 

  

          𝑉(�̂�𝐺) =
𝜋𝑦(1−𝜋𝑦)

𝑛
+

1−𝑝

𝑝2𝑛
[(𝑝 − 1)𝜋𝑥

2 + (1 − 2𝑝𝜋𝑦)𝜋𝑥 + 𝑝𝜋𝑦 ] 

 

(iii) Further, 'iz s , 1, 2,..,i n=  are independent and identically distributed random 

variables, one finds that 𝐸[�̂�(�̂�𝐺)] = 𝐸[𝑉(�̂�𝐺)].  

Here, we note that for the SRSWR sampling, the expressions �̂�𝐺  and �̂�(�̂�𝐺) of 
the Greenberg et al. (1969) model are respectively the same as the expressions 
ˆswr (Eq. 3.21) and  ˆswrV  (Eq. 3.22) in the Parallel model proposed by Tian 

(2014).  
 
Consider the situation where a sample s  of size n is selected by the 

SRSWOR method and from each of the selected respondents randomized 
responses were obtained by using Greenberg et al. (1969) RR technique. Let 
𝜆𝑠 = 𝑧�̅� = ∑ 𝑧𝑖𝑖∈𝑠 /𝑛 denote the proportion of “Yes” answers in the sample. In this 
case we have the following results: 
 
Theorem 4.2.  

Under SRSWOR sampling, 
 

 (i)  �̂�𝐺
∗ =

1

𝑝
[𝜆𝑠 − (1 − 𝑝)𝜋𝑥]    is an unbiased estimator of 𝜋𝑦. 

 
(ii) The variance of �̂�𝐺

∗  is  
 

𝑉(�̂�𝐺
∗ ) =

𝑁 − 𝑛

(𝑁 − 1)𝑛
[𝜋𝑦(1 − 𝜋𝑦) +

1 − 𝑝

𝑝2
𝜋𝑥(1 − 𝑥)] +

1 − 𝑝

𝑛𝑝
(𝜋𝑥 + 𝜋𝑦 − 2𝜋𝑥𝜋𝑦) 

 
 (iii) An unbiased estimator of 𝑉(�̂�𝐺

∗ ) is 
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�̂�(�̂�𝐺
∗ ) =

𝑁 − 𝑛

𝑝2𝑁𝑛

1

𝑛 − 1
∑(𝑧𝑖 − 𝑧)̅2

𝑖∈𝑠

+
1 − 𝑝

𝑝
(�̂�𝐺 + 𝜋𝑥 − 2𝜋𝑥�̂�𝐺) 

 

               =
𝑁 − 𝑛

𝑝2𝑁

λ𝑠(1 − λ𝑠)

(𝑛 − 1)
+

1 − 𝑝

𝑝
(�̂�𝐺 + 𝜋𝑥 − 2𝜋𝑥�̂�𝐺) 

 
Proof: 

(i) 𝐸(�̂�𝐺
∗ ) =

1

𝑝
[𝐸(𝜆𝑠) − (1 − 𝑝) 𝜋𝑥  ] 

 

                =
1

𝑝
[𝐸𝑝 {

1

𝑛
∑ 𝐸𝑅(𝑧𝑖)𝑖∈𝑠 } − (1 − 𝑝)𝜋𝑥] 

 

                    =
1

𝑝
[

1

𝑁
∑{𝑝𝑦𝑖 + (1 − 𝑝)𝑥𝑖}

𝑖∈𝑈

− (1 − 𝑝)𝜋𝑥] 

                   
                  = 𝜋𝑦 
 

 (ii)  𝑉(�̂�𝐺
∗ ) = 𝑉𝑝[𝐸𝑅(�̂�𝐺

∗ )] + 𝐸𝑝[𝑉𝑅(�̂�𝐺
∗ )] 

 

                  = 𝑉𝑝 [
1

𝑛𝑝
∑ 𝐸𝑅(𝑧𝑖)𝑖∈𝑠 −

(1−𝑝)

𝑝
𝜋𝑥] + 𝐸𝑝 [

1

(𝑛𝑝)2
∑ 𝑉𝑅(𝑧𝑖)𝑖∈𝑠 ] 

 

                  =
𝑁−𝑛

𝑛𝑝2 [
1

𝑁
∑ {𝑝𝑦𝑖 + (1 − 𝑝)𝑥𝑖}2 − {𝑝𝜋𝑦 + (1 − 𝑝)𝜋𝑥}

2
𝑖∈𝑈 ]  

 

+
1 − 𝑝

𝑛𝑝𝑁
∑(𝑥𝑖 + 𝑦𝑖 − 2𝑥𝑖𝑦𝑖)

𝑖∈𝑈

 

 

=
𝑁 − 𝑛

𝑛𝑝2
[𝑝2𝜋𝑦(1 − 𝜋𝑦) + (1 − 𝑝)2𝜋𝑥(1 − 𝜋𝑥) + 2𝑝(1 − 𝑝)(𝜋𝑥𝑦 − 𝜋𝑥𝜋𝑦)]

+
1 − 𝑝

𝑛𝑝
(𝜋𝑥 + 𝜋𝑦 − 2𝜋𝑥𝑦) 

Now, noting that, 𝜋𝑥𝑦 = 𝜋𝑥𝜋𝑦 we find that 

 

𝑉(�̂�𝐺
∗ ) =

𝑁 − 𝑛

(𝑁 − 1)𝑛
[𝜋𝑦(1 − 𝜋𝑦) +

1 − 𝑝

𝑝2
𝜋𝑥(1 − 𝜋𝑥)] +

1 − 𝑝

𝑛𝑝
(𝜋𝑥 + 𝜋𝑦 − 2𝜋𝑥𝜋𝑦) 

 

    (iii)  𝐸[�̂�(�̂�𝐺
∗ )] =

𝑁−𝑛

𝑝2𝑁𝑛

1

𝑛−1
𝐸𝑝 [∑ 𝐸𝑅(𝑧𝑖

2) −
∑ 𝐸𝑅(𝑧𝑖

2)𝑖∈𝑠 +∑ ∑ 𝐸𝑅(𝑧𝑖 )𝑗∈𝑠 𝐸𝑅(𝑧𝑗 )𝑖≠

𝑛𝑖∈𝑠 ] 

                                                     + 
1 − 𝑝

𝑝
(𝜋𝑥 + 𝜋𝑦 − 2𝜋𝑥𝜋𝑦) 
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                     =
𝑁 − 𝑛

𝑝2𝑁𝑛
[∑{𝐸𝑅(𝑧𝑖)}2 + ∑ 𝑉𝑅(𝑧𝑖)

𝑖∈𝑈

−
1

𝑁
∑ ∑ 𝐸𝑅(𝑧𝑖)

𝑗∈𝑈

𝐸𝑅(𝑧𝑗)

𝑖≠𝑖∈𝑈

]  

+ 
1 − 𝑝

𝑝
(𝜋𝑥 + 𝜋𝑦 − 2𝜋𝑥𝜋𝑦) 

                          = 𝑉(�̂�𝐺
∗ ) 

                       

From the expressions of 𝑉(�̂�𝐺
∗ ) and (3.16), we find that 

 

      𝑉(�̂�𝐺
∗ ) − 𝑉(�̂�𝑤𝑜𝑟) =

𝑛−1

𝑁−1

1−𝑝

𝑛𝑝
[𝜋𝑥(1 − 𝜋𝑦) + 𝜋𝑦(1 − 𝜋𝑥)] 

                                   ≥ 0                                                                                  (4.3) 

 

From the Eq. (4.3), we conclude for the SRSWOR sampling, Tian’s (2014) 
estimator �̂�𝑤𝑜𝑟  based on NRR method is more efficient than the Greenberg et al.’s 
(1969) estimator �̂�𝐺

∗  based on RR technique for estimating the population 

proportion 𝜋𝑦. However, for large N , both are equally efficient. The percentage 

relative efficiency of �̂�𝑤𝑜𝑟  with respect to �̂�𝐺
∗  under SRSWOR sampling assuming 

𝑁−1

𝑁
≅ 1 is given by 

𝑉(�̂�𝐺
∗ ) 

𝑉(�̂�𝑤𝑜𝑟)
× 100 

=
(1 − 𝑓) [𝜋𝑦(1 − 𝜋𝑦) +

1−𝑝

𝑝2 𝜋𝑥(1 − 𝜋𝑥)] +
1−𝑝

𝑝
(𝜋𝑥 + 𝜋𝑦 − 2𝜋𝑥𝑦)

(1 − 𝑓) [𝜋𝑦(1 − 𝜋𝑦) +
1−𝑝

𝑝2 {(𝑝 − 1)𝜋𝑥
2 + (1 − 2𝑝𝜋𝑦)𝜋𝑥 + 𝑝𝜋𝑦}]

× 100 

           (4.4) 

The percentage relative efficiency ( E ) for different values of 𝜋𝑥, 𝜋𝑦, p  and 

f is given in the Table 4.1. For the given values of 𝜋𝑥,𝜋𝑦, the efficiency 

increases with p  until  0.50p = , then it decreases. Efficiency increases with the 

increase in the sampling fraction f . The maximum efficiency 148.6 is attained 

when  

f = 0.40, 𝜋𝑥= 0.10, 𝜋𝑦 = 0.75 and p = 0.40. 

Table 4.1. Efficiency of �̂�𝐺
∗  with respect to �̂�𝑤𝑜𝑟  

  
f = 0.1 

 
f = 0.2 

𝜋𝑦 

 

𝜋𝑥  

 

p  
 

p  

0.1 0.25 0.4 0.5 0.75 

 

0.1 0.25 0.4 0.5 0.75 

0.10 
 
 

0.10 102.0 104.2 105.3 105.6 104.2 
 

104.5 109.4 112 112.5 109.4 

0.25 101.7 103.7 105.2 105.8 105.3 
 

103.8 108.4 111.7 113.0 111.9 

0.40 101.8 104 105.6 106.2 106.1 
 

104.1 109.0 112.5 114.0 113.6 

0.50 102.0 104.3 105.9 106.6 106.5 
 

104.5 109.8 113.4 114.9 114.6 

0.75 103.2 106.0 107.5 108.0 107.5 
 

107.3 113.5 116.8 117.9 116.9 
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Table 4.1. Efficiency of �̂�𝐺
∗  with respect to �̂�𝑤𝑜𝑟   (cont.) 

  
f = 0.1 

 
f = 0.2 

𝜋𝑦 

 

𝜋𝑥  

 

p  
 

p  

0.1 0.25 0.4 0.5 0.75 

 

0.1 0.25 0.4 0.5 0.75 

0.25 
 
 

0.10 102.9 105.3 106.0 105.8 103.7 
 

106.6 111.9 113.4 113.0 108.4 

0.25 102.0 104.2 105.3 105.6 104.2 
 

104.5 109.4 112,0 112.5 109.4 

0.40 101.9 104.1 105.3 105.7 104.6 
 

104.3 109.1 112.0 112.8 110.3 

0.50 102.0 104.2 105.6 105.9 104.8 
 

104.5 109.5 112.5 113.3 110.9 

0.75 103.0 105.6 106.7 106.9 105.6 
 

106.7 112.5 115.2 115.6 112.5 

              
 
0.40 
 
 

0.10 103.7 106.1 106.5 106.2 104.0 
 

108.4 113.6 114.7 114.0 109.0 

0.25 102.3 104.6 105.6 105.7 104.1 
 

105.2 110.3 112.6 112.8 109.1 

0.40 102.0 104.2 105.3 105.6 104.2 
 

104.5 109.4 112.0 112.5 109.4 

0.50 102.0 104.2 105.4 105.6 104.3 
 

104.5 109.4 112.1 112.6 109.6 

0.75 102.7 105.1 106.2 106.3 104.6 
 

106.1 111.5 113.9 114.1 110.3 

             

  0.50 
 
 
 

0.10 104.2 106.5 106.9 106.6 104.3 
 

109.3 114.6 115.6 114.9 109.8 

0.25 102.5 104.8 105.9 105.9 104.2 
 

105.6 110.9 113.2 113.3 109.5 

0.40 102.1 104.3 105.4 105.6 104.2 
 

104.7 109.6 112.2 112.6 109.4 

0.50 102.0 104.2 105.3 105.6 104.2 
 

104.5 109.4 112.0 112.5 109.4 

0.75 102.5 104.8 105.9 105.9 104.2 
 

105.6 110.9 113.2 113.3 109.5 

             

0.75 
 
 

0.10 105.1 107.5 108.1 108.0 106.0 
 

111.4 116.9 118.2 117.9 113.5 

0.25 103.0 105.6 106.7 106.9 105.6 
 

106.7 112.5 115.2 115.6 112.5 

0.40 102.2 104.6 105.9 106.3 105.1 
 

105.0 110.3 113.3 114.1 111.5 

0.50 102.0 104.2 105.6 105.9 104.8 
 

104.5 109.5 112.5 113.3 110.9 

0.75 102.0 104.2 105.3 105.6 104.2 
 

104.5 109.4 112.0 112.5 109.4 

 

f  = 0.3 

 

f  = 0.4 

0.10 
 
 
 

0.10 107.7 116.1 120.6 121.4 116.1 
 

112.0 125.0 132.0 133.3 125.0 

0.25 106.4 114.4 120.1 122.3 120.3 
 

110.0 122.4 131.2 134.6 131.6 

0.40 106.9 115.4 121.4 124.0 123.4 
 

110.8 123.9 133.3 137.3 136.4 

0.50 107.8 116.7 122.9 125.5 125.1 
 

112.1 126.0 135.7 139.7 139.1 

0.75 112.5 123.2 128.8 130.7 129.1 
 

119.5 136.1 144.8 147.7 145.2 

             

 0.25 
 
 
 

0.10 111.4 120.3 123.0 122.3 114.4 
 

117.7 131.6 135.7 134.6 122.4 

0.25 107.7 116.1 120.6 121.4 116.1 
 

112.0 125.0 132.0 133.3 125.0 

0.40 107.3 115.6 120.6 122.0 117.7 
 

111.4 124.3 132.1 134.2 127.5 

0.50 107.7 116.3 121.4 122.9 118.7 
 

112.0 125.4 133.3 135.6 129.1 

0.75 111.5 121.4 126.0 126.8 121.4 
 

117.9 133.3 140.4 141.7 133.3 

0.40 
 
 
 

0.10 114.3 123.4 125.2 124.0 115.4 
 

122.3 136.4 139.2 137.3 123.9 

0.25 108.9 117.7 121.6 122.0 115.6 
 

113.9 127.5 133.7 134.2 124.3 

0.40 107.7 116.1 120.6 121.4 116.1 
 

112.0 125.0 132.0 133.3 125.0 

0.50 107.7 116.1 120.7 121.6 116.4 
 

112.0 125.1 132.2 133.7 125.6 

0.75 110.4 119.8 123.8 124.1 117.7 
 

116.2 130.7 137.0 137.5 127.5 

             

0.50 
 
 
 

0.10 116.0 125.1 126.7 125.5 116.7 
 

124.9 139.1 141.6 139.7 126.0 

0.25 109.7 118.7 122.6 122.9 116.3 
 

115.0 129.1 135.2 135.6 125.4 

0.40 108.0 116.4 120.9 121.6 116.1 
 

112.4 125.6 132.5 133.7 125.1 

0.50 107.7 116.1 120.6 121.4 116.1 
 

112.0 125.0 132.0 133.3 125.0 

0.75 109.7 118.7 122.6 122.9 116.3 
 

115.0 129.1 135.2 135.6 125.4 

             

0.75 
 
 
 

0.10 119.6 129.1 131.3 130.7 123.2 
 

130.5 145.2 148.6 147.7 136.1 

0.25 111.5 121.4 126.0 126.8 121.4 
 

117.9 133.3 140.4 141.7 133.3 

0.40 108.6 117.7 122.8 124.1 119.8 
 

113.4 127.5 135.4 137.5 130.7 

0.50 107.7 116.3 121.4 122.9 118.7 
 

112.0 125.4 133.3 135.6 129.1 

0.75 107.7 116.1 120.6 121.4 116.1 
 

112.0 125.0 132.0 133.3 125.0 
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5. Conclusion 

The Randomized Response technique was introduced by Warner (1965) to 
collect data on sensitive characteristics. In this technique, the respondents have 
to perform randomized response experiments using devices which make the 
survey more expensive and time-consuming than the direct response surveys. 
Apart from these limitations, the procedure may yield different response 
depending on the outcome of the RR trial and it is unfeasible for mail 
questionnaire. To overcome some of the aforementioned difficulties, nonrandomized 
response (NRR) model was proposed by Tian et al. (2007), Yu et al. (2008), Tan 
et al. (2009), Tian (2014), among others. All the proposed procedures are limited 
to SRSWR sampling design and are unusable in real life complex multi-character 
surveys. In this paper, NRR models have been extended to complex surveys in a 
unified setup, which is applicable to any sampling design and estimators. The 
estimators of the population proportions, their variances and unbiased estimators 
of the variances for the existing NRR models can be obtained from the proposed 
method as special cases. It has been found for the SRSWR sampling, 
expressions of the estimators of the population proportion 𝜋𝑦, its variance for the 

Greenberg et al. (1969) and Tian (2014) are the same. However, for the 
SRSWOR sampling, the variance of Tian (2014) estimator is smaller than that of 
the Greenberg et al. (1969) estimator. But for large population they are equal. 
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ON THE SMOOTHED PARAMETRIC ESTIMATION OF 
MIXING PROPORTION UNDER FIXED DESIGN 

REGRESSION MODEL 

Y. S. Ramakrishnaiah1, Manish Trivedi2, Konda Satish3 

ABSTRACT 

The present paper revisits an estimator proposed by Boes (1966) – James (1978), 
herein called BJ estimator, which was constructed for estimating mixing proportion 
in a mixed model based on independent and identically distributed (i.i.d.) random 
samples, and also proposes a completely new (smoothed) estimator for mixing 
proportion based on independent and not identically distributed (non-i.i.d.) random 
samples. The proposed estimator is nonparametric in true sense based on known 
“kernel function” as described in the introduction. We investigated the following 
results of the smoothed estimator under the non-i.i.d. set-up such as (a) its small 
sample behaviour is compared with the unsmoothed version (BJ estimator) based 
on their mean square errors by using Monte-Carlo simulation, and established the 
percentage gain in precision of smoothed estimator over its unsmoothed version 
measured in terms of their mean square error, (b) its large sample properties such 
as almost surely (a.s.) convergence and asymptotic normality of these estimators 
are established in the present work. These results are completely new in the 
literature not only under the case of i.i.d., but also generalises to non-i.i.d. set-up. 

Key words: mixture of distributions, mixing proportion, smoothed parametric  

estimation, fixed design regression model, mean square error, optimal band width, 
strong consistency, asymptotic normality. 

1. Introduction 

Let 𝑋1,𝑋2,…,𝑋𝑛 be a sequence of independent and not identically distributed 
(non-i.i.d.) random variables with continuous distribution functions (d.f.s) 
{Fi(x),1≤i≤n}. Let H(x) be a continuous cumulative distribution function (cdf) of 
mixture of component cdfs 𝐻1(x),...,𝐻𝑚(x), (m≥2) such that  H(x) = ∑ 𝑝𝑗𝐻𝑗

𝑚
𝑗=1 (x), 

where {𝑝𝑗; 1≤j≤m} is a set of mixing proportions satisfying (i) 0<𝑝𝑗<1, (ii) ∑ 𝑝𝑗
𝑚
𝑗=1  = 

1. Let �̅�𝑛(x) = 𝑛−1 ∑ 𝐹𝑖
𝑛
𝑖=1 (x)→ H(x) as n →∞ and 𝐻𝑗(x)= 𝑛𝑗

−1 ∑ 𝐹𝑗𝑖

𝑛𝑗

𝑖=1
(x) → 𝐻𝑗(x), 
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𝑛𝑗→∞,  j=1,2,…,m; H(x), 𝐻𝑗(x) are known d.f.s. The problem of estimation of 

mixing proportions 𝑝𝑗 in a mixture  

H(x) = 𝒑𝟏𝑯𝟏(x) + 𝒑𝟐𝑯𝟐(x) +…+ 𝒑𝒎𝑯𝒎(x)                         (1.1) 

of m known distributions 𝐻𝑗(x) is investigated based on independent random 

samples of sizes n, 𝑛𝑗 generated from the fixed design regression models 

𝑋𝑖 = β𝑡𝑖 + 𝜖𝑖 , 1≤ i ≤ n, 𝜖𝑖~i.i.d.F(x)                       (1.2) 

𝑋𝑗𝑖 = 𝛽𝑗𝑡𝑗𝑖 + 𝜖𝑗𝑖, 1≤ i ≤ 𝑛𝑗, j = 1, 2,…,m, 𝜖𝑖𝑗~i.i.d. 𝐹𝑗(x),         (1.3) 

β’s and t’s are known reals satisfying the model conditions 

𝛽𝑗 > 0, ∑ 𝑡𝑖
𝑛
𝑖=1  =0 and  

1

𝑛
∑ 𝑡𝑖

2 = o(𝑛−1).                      (1.4) 

Note that ti = ∓ 
𝑖

𝑛𝛿, i =∓1, ∓2,…, ∓n, δ ≥ 
3

2
 fulfill (1.4) and �̅�𝑛(x)=𝑛−1 ∑ 𝐹𝑖

𝑛
𝑖=1 (x) 

= F(x) +O(
1

𝑛
∑ 𝑡𝑖

2) + … = H(x) + o(𝑛−1) and 𝐻𝑛𝑗
(x)=n𝑗

−1 ∑ 𝐹𝑗𝑖

𝑛𝑗

𝑖=1
(x)→𝐻𝑗(x), j=1,2 as 

𝑛𝑗→∞. 

Mixture distributions have been used in a wide variety of numerous 
applications in such diversified fields as physics, chemistry, biology, social 
sciences and others. Many typical problems in which such mixtures occur have 
been well described in a series of research papers. Karl Pearson (1894) dealt 
with the application of normal mixtures to the theory of evolution, which 
considered the first paper in the mixtures of distributions. Acheson and McElwee 
(1951), who identified failures in an electronic tube in gaseous defects, 
mechanical defects and normal deterioration of the cathode. One can find the 
proportion of the population which will fail in each cause to redesign the system or 
to improve the methods of manufacturing process. Apart from this, it would be 
desirable to know the distribution of defectives for each cause. Mendenhall and 
Hader (1958) studied censored life testing as a mixed failure populations. They 
suggested an example that the engineer may identify the product as 
defective/failure and nondefective by two or more different types of causes. 
Hosmer (1973) studied characteristics such as sex, age, and length of halibut 
(fish). Odell and Basu (1976) applied them in the field of remote sensing to 
estimate the crop acreages from remote sensors on orbiting satellites. 

We shall show some of the typical problems which were described in Choi 
and Bulgren (1968): 
1.  In fishery biology, it is often desired to measure certain characteristics in 

a natural population of fish.  For this purpose samples of fish are taken and the 
desired trait is measured for each fish in the sample. However, many 
characteristics vary markedly with the age of the fish. Then, the trait has a 
distinct distribution for each age group so that the population has a mixture of 
distributions. 

2.  A geneticist analyses the inheritance of qualitative characters. In general, such 
characters vary continuously over some intervals of real numbers so that 
a given genotype may be able to produce phenotypic values over an interval of 
real numbers. Then, the phenotypic value which the geneticist observes has 
a mixture of distributions, each of which is given by a genotype.  
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3.  In photographing the absorption spectrum of an ionized atom, we obtain 
a photograph of a constantly varying intensity distribution on the photographic 
plate, and not a series of discrete "lines". This phenomenon is caused by 
several effects (such as the Doppler effect) and it is accepted in spectroscopy 
that an intensity distribution whose graph can be approximated closely by that 
of a normal density function belongs to every theoretical "line". Then the graph 
of the whole spectrum section can be considered as a mixture of normal 
density functions. 
Other references to mixed failure populations are given in papers by Davis 

(1952), Epstein (1953), Herd (1953), Steen and Wilde (1952), Everitt and Hand  
(1981), Titterington et al. (1985), McLachlan and Basford (1988), Lindsay (1995) 
and McLachlan and Peel (2000), Fu (1968-Pattern Recognition), Varli et al. 
(1975-Pattern Recognition), Clark (1976-Geology), Macdonald and Pitcher (1979-
Fisheries), Bruni et al. (1985-Genetics), Merz (1980-Physics) and Christensen et 
al. (1980-Nuclear Physics). 

The applications of finite mixture distributions describing mixture populations 
for non- i.i.d. sequence of variables are given below: 

Area Characteristic Xi 
Distribution function 

Fi(x) 

Survival 
Analysis 

life time of components 
produced by ith machine 
operated by ith foreman. 

Life time distribution of various 
products 

Nutritional 
Studies 

weight for age/height for age/ 
weight for height of ith infant of 
ith origin or group. 

Distribution of weight for age/height 
of ith infant 

Fisheries 
Fish length or weight of  age of 
ith fish. 

Distribution of weight/length of ith 
fish 

The mixing model with two component populations becomes    

H(x) = p𝑯𝟏(x) + (1-p)𝑯𝟐(x). 

Here, 𝑋𝑖 is the characteristic with distribution function 𝐹𝑖(x) assuming  

F̅𝑛(x) = n-1∑ 𝐹𝑛
𝑖=1 i(x) = H̅𝑛(𝑥)→ H(x)  

F̅𝑗𝑛(x) = n-1∑ 𝐹𝑛
𝑖=1 ji(x) = H̅𝑗𝑛(𝑥)→ 𝐻𝑗(x)  as n→∞ 

and n, n1 and n2 are independent random sample sizes from mixed and 

component populations selected in such a way that n = n1 + n2 with n1 = [ρn], 

n2 = [(1-ρ)n], 0< ρ <1.  
More details on such examples can be found in Choi and Bulgreen (1968), 

Harris (1958), Blischke (1965), Fu (1968-Pattern Recognition), Varli et al.  
(1975-Pattern Recognition), Clark (1976-Geology), Macdonald and Pitcher  
(1979-Fisheries), Odell and Basu (1976-Remote sensing), Bruni et al. (1985-
Genetics), Merz (1980-Physics) and Christensen et al. (1980-Nuclear Physics), 
etc. 
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i.i.d case: The mixing model for i.i.d. case is 

F(x) = pG1(x)+(1-p)G2(x)                                      (1.5) 

where F(x), G𝑗(x); j=1,2 are cdfs of mixed and component populations 

respectively. The following estimator is studied in the literature. 

Boes (1966)-James (1978) (BJ) estimator: Let 𝐹𝑛(x)= 𝑛−1 ∑ 𝐼𝑛
𝑖=1 (𝑋𝑖≤x) be the 

empirical distribution function of a random sample X𝑖, 1≤i≤n from a mixture of two 

known component distribution functions G𝑗, j=1,2. Boes (1966) proposed an 

estimator of p given by 

  𝒑𝒏,𝟏(x) = 
�̃�𝒏(𝒙)−  𝑮𝟐(𝒙)

𝑮𝟏(𝒙)−𝑮𝟐(𝒙)
                                (1.6) 

and shown as a minimax unbiased estimator, and derived the Cramer-Rao lower 
bound.  James (1978) considered the problem of estimating the mixing proportion 
in a mixture of two known normal distributions. He studied the simple estimators 
based on (a) the number of observations lower than a fixed point r, (b) the 
numbers lower than s and greater than t, and (c) the sample mean. Van 
Houwelingen (1974) used Boes (1966) estimator to estimate the mixing 
proportion by using frequency densities and obtained the Cramer-Rao lower 
bound. Jayalakshmi (2002) used BJ estimator using kernel-based empirical 
distribution and established that smoothing improves efficiency when the 
component distributions are known. 

In the present work, we extend the idea of estimation of mixing proportion p in 
two directions: 

 The estimators based on kernel based empirical d.f. called smoothed 
estimations are proposed under regression models (1.2) - (1.3). 

 The proposed parametric estimators are based on independent, but not 
identically distributed (non-i.i.d.) samples generated by the fixed design 
regression models described by (1.2)-(1.3). 

The main object of the present paper is to confine attention to m=2 case in the 
model (1.1) and to construct parametric estimators when component distributions 
are known, based on the usual empirical and kernel-based distribution functions 
defined by 

𝐻𝑛(x) = 𝑛−1 ∑ 𝐼𝑛
𝑖=1 (Xi ≤ x), �̂�𝑛(x)= 𝑛−1 ∑ 𝐾𝑛

𝑖=1 (
x− Xi

an
),         (1.7) 

{𝑎𝑛} being the smoothing sequence satisfying 0< 𝑎𝑛 →0, n𝑎𝑛 →∞ defined by 

 𝑝𝑛,1(x) =  
H̃n(x)− H2(x)

H1(x)− H2(x)
 , 𝑝𝑛,2(x) =  

Ĥn(x)− H2(x)

H1(x)− H2(x)
 .          (1.8) 

We study the small and large sample behaviour of the proposed parametric 

estimators and establish the superiority of smoothed estimator 𝑝𝑛,2(x) over 

unsmoothed one 𝑝𝑛,1(x) in the sense of minimum mean square error. The results 

of the present investigations for the non-i.i.d. sequences are completely new in 
the literature. 

In section 2, we obtain the exact expressions for MSEs of the proposed 

estimators in order to establish the superiority of 𝑝𝑛,2(x) over 𝑝𝑛,1(x) for some fixed 

x. Furthermore, large sample behaviour, such as asymptotic normality and rates 
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of a.s. convergence of the proposed estimators is also established. In section 3, 

the crucial choice of smoothing parameter ‘𝑎𝑛’ in kernel based estimator 𝑝𝑛,2(x) is 

discussed and its value is determined by employing minimum mean square 

criterion. Section 4 deals with establishing superiority of 𝑝𝑛,2(x) over 𝑝𝑛,1(x). 

Section 5 explains the small sample comparisons by Monte Carlo method based 
on the samples generated by regression models. 

2. Asymptotics of 𝒑𝒏,𝟏(x) and 𝒑𝒏,𝟐(x) 

We now present the properties of both estimators 𝑝𝑛,1(x) and 𝑝𝑛,2(x) under the 

fixed design regression model (1.3). The properties such as mean square errors 

(MSEs), rates of a.s. convergence, and asymptotic normality of 𝑝𝑛,1(x) and 𝑝𝑛,2(x) 

are established. We first consider the representations of the proposed estimators: 
from the mixing model, 

  H(x) = p𝐻1(x) + (1-p)𝐻2(x)                     (2.1) 

H(x) – 𝐻2(x) = 𝑑12(x)p for each x, where 𝑑12(x)= 𝐻1(x) - 𝐻2(x) 

A.S. Representations to 𝒑𝒏,𝟏(x), 𝒑𝒏,𝟐(x): from (1.8) and (2.1), 

d12(x)[𝑝𝑛,1(x)-p] = H̃n(x) - H(x) = 𝑛−1 ∑ (𝑛
𝑖=1 I(𝑋𝑖≤x) - 𝐹𝑖(x) + 𝐹𝑖(x) – H(x)) 

    =: 𝑛−1 ∑ 𝑍1𝑖
𝑛
𝑖=1 (x) + 𝜏𝑛1(x)                                  (2.2) 

where by (1.4) and by the assumption on regression model 

 𝜏𝑛1(x) = 𝑛−1 ∑ 𝐹𝑖
𝑛
𝑖=1 (x) – H(x)= o(n-1∑ 𝑡𝑖

2𝑛
1 ) = o(n-1)              (2.3) 

Similarly, from (1.8) and (2.1) 

 d12(x)[pn,2(x)-p] = Ĥn(x) – H(x) = Ĥn(x) – E Ĥn(x) + E Ĥn(x) – H(x) 

   =: n-1 ∑ [𝐾𝑛
𝑖=1 (

x− Xi

an
) – E K(

x− Xi

an
)] + 𝜏𝑛2(x) 

   = 𝑛−1 ∑ 𝑍2𝑖
𝑛
𝑖=1 (x) + 𝜏𝑛2(x)                                 (2.4) 

with 𝜏𝑛2(x) = o(n-1) as in (2.3). 

2.1.  Mean Square Error of 𝒑𝒏,𝟏(x) and 𝒑𝒏,𝟐(x) 

We first consider the small sample property, i.e. MSEs of both estimators 
𝑝𝑛,𝑗(x), j=1,2 for each x in the following, which will help in establishing the 
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superiority of smoothed estimator over unsmoothed version based on a random 
sample of exact size n under the regression model. 

Theorem 2.1. Let {𝑋𝑖: 1≤i≤n} be a sequence of non-i.i.d. random variables with 
corresponding sequence of uniformly continuous distribution functions {𝐹𝑖(x): 

1≤i≤n}. If {𝐹𝑖}, the kernel density function k and {𝑎𝑛} in (1.7) satisfy 

AI:    i) 𝐹𝑖(x) is uniformly continuous distribution function with finite qth 

derivatives 𝐹𝑖
(𝑞)

(x) < ∞, 1 ≤ i ≤ n and  

 𝐻𝑛
(𝑞)

(x) = 
1

n
  ∑ 𝐹𝑖

(𝑞)
(x), q = 2,4,6 

      ii) 𝐻𝑛(x) = n-1∑ 𝐹𝑛
𝑖=1 i(x) → H(x) as n→∞ 

     AII:         i) The kernel function satisfies 𝜇2𝑗(K) = ∫  𝑡
∞

−∞
2j dK(t) ≠ 0 and  

𝜇𝑗(K) = ∫  𝑡
∞

−∞
j dK(t) = 0 for  j=1,3,… 

ii) 𝜓𝑗(K) = 2 ∫ 𝑡
∞

−∞
j K(t) dK(t) < ∞ , j = 0, 1, 2, 3, 4 

     AIII:   {an} is a sequence of bandwidths such that 

i) 0 < an ↓ 0 ; nan → ∞ as n → ∞ 

ii) nan 
4 → 0 as n → ∞ 

then  

MSE [𝒑𝒏,𝟐(x)] = MSE(𝒑𝒏,𝟏(x)) - 𝒅𝟏𝟐
−𝟐(x)[ 

𝒂𝒏

𝒏
�̅�𝒏

(𝟏)
(x)𝝍𝟏(K) - 

𝒂𝒏
𝟒

𝟒
 �̅�𝒏

(𝟐)𝟐
(x)𝝁𝟐

𝟐(K)] 

+ O(
𝒂𝒏
𝟐

𝒏
) + o(𝒂𝒏

𝟒) 

Proof: From (2.4), 

 𝑑12
2 (x)nMSE[pn,2(x)] = Var(𝑛−1/2 ∑ 𝑍2𝑖

𝑛
𝑖=1 (x)) + n𝜏𝑛2

2            (2.5) 

where 𝜎𝑛2
2   = Var(𝑛−1/2 ∑ 𝑍2𝑖

𝑛
𝑖=1 (x)) 

     = 𝑛−1 ∑ 𝐸𝑛
𝑖=1 𝑍2𝑖

2 (x) 

              =  𝑛−1 ∑ 𝜎2𝑖
2𝑛

𝑖=1  

𝜎2𝑖
2  = E K2 ( 

x−Xi

an
) - E2 K( 

x−Xi

an
) 

            = 𝐼1𝑖 - 𝐼2𝑖
2  (say) 

where 𝐼1𝑖 = E K2 ( 
x−Xi

an
) = ∫ K2 ( 

x−u

an
) dFi(u) = ∫ Fi(x-ant) dK2(t) 

   = Fi(x)∫dK2(t) – Fi
(1)(x)an∫tdK2(t) + 

𝑎𝑛
2

2!
Fi

(2)(x)∫t2dK2(t) - 
𝑎𝑛

3

3!
Fi

(3)(x)∫t3dK2(t)  

+ 
𝑎𝑛

4

4!
Fi

(4)(x)∫t4dK2(t) + o(𝑎𝑛
4)  
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= Fi(x) 𝜓0(K) – an Fi
 (1) (x) 𝜓1(K) + 

𝑎𝑛
2

2!
  Fi

 (2)(x) 𝜓2(K) - 
𝑎𝑛

3

3!
Fi

(3)(x) 𝜓3(K) 

+ 
𝑎𝑛

4

4!
 Fi

(4)(x) 𝜓4(K) + o(𝑎𝑛
4)                                       (2.6) 

where 𝜓0(K) = 2∫ 𝐾
∞

−∞
(t)dK(t)= 2∫ 𝑦

1

0
dy = 1, while 

𝐼2𝑖 = E K( 
x−Xi

an
) = ∫𝐹i (x - ant)dK(t) 

     = Fi (x) +  
an 
2

2!
 Fi 

(2) (x) ∫  𝑡
∞

−∞
2dK(t) +  

an 
4

4!
 Fi 

(4) (x)∫  𝑡
∞

−∞
4dK(t) + o(an

4)                

     =: 𝐹𝑖(x) + 
𝑎𝑛

2

2
 𝐹𝑖

(2)
(x)𝜇2(K)+ 

𝑎𝑛
4

4!
 𝐹𝑖

(4)
(x) 𝜇4(K) + o(𝑎𝑛

4)                   (2.7) 

From (2.5) and (2.7), 

𝜎𝑛2
2  = 𝑛−1 ∑ {[𝐹𝑖

𝑛
𝑖=1 (x) - 𝑎𝑛𝐹𝑖

(1)
(x)𝜓1(K) + 

𝑎𝑛
2

2
 𝐹𝑖

(2)
(x)𝜓2(K) - 

𝑎𝑛
3

3!
 𝐹𝑖

(3)
(x)𝜓3(K) 

+ 
𝑎𝑛

4

4!
 𝐹𝑖

(4)
(x)𝜓4(K) + o(𝑎𝑛

4)]  

– (𝐹𝑖(x) + 
𝑎𝑛

2

2
 𝐹𝑖

(2)
(x)𝜇2(K)+ 

𝑎𝑛
4

4!
 𝐹𝑖

(4)
(x) 𝜇4(K) + o(𝑎𝑛

4))2} 

        = 𝑛−1 ∑ 𝐹𝑖
𝑛
𝑖=1 (x)(1- 𝐹𝑖(x)) -𝑎𝑛𝐻𝑛

(1)
(x)𝜓1(K)+ 

𝑎𝑛
2

2
�̅�𝑛

(2)
(x)𝜓2(K)  

- 
𝑎𝑛

3

6
𝐻𝑛

(3)
(x) 𝜓3(K) - 𝑎𝑛

2  𝑛−1 ∑ 𝐹𝑖
𝑛
𝑖=1 (x)𝐹𝑖

(2)
(x)𝜇2(K)  

- 
𝑎𝑛

4

12
 𝑛−1 ∑ 𝐹𝑖

𝑛
𝑖=1 (x)𝐹𝑖

(4)
(x)𝜇4(K) + o(

𝑎𝑛
4

𝑛
) 

         = 𝑛−1 ∑ 𝐹𝑖
𝑛
𝑖=1 (x)(1- 𝐹𝑖(x)) - 𝑎𝑛𝐻𝑛

(1)
(x)𝜓1(K)  

 +𝑎𝑛
2  (

1

2
𝐻𝑛

(2)
(x)𝜓2(K) - 𝑛−1 ∑ 𝐹𝑖

𝑛
𝑖=1 (x)𝐹𝑖

(2)
(x)𝜇2(K))+O(𝑎𝑛

3)         (2.8) 

and from (2.7), 

𝜏𝑛2
2  = (𝑛−1 ∑ 𝐸𝑛

𝑖=1  K( 
x−Xi

an
)– H(x))2 

      = [𝐻𝑛(x) – H(x)+ 
𝑎𝑛

2

2
 𝐻𝑛

(2)
(x)𝜇2(K)+ 

𝑎𝑛
4

4!
�̅�𝑛

(4)
(x)𝜇4(K)+o(𝑎𝑛

4)]2 

      =: [𝜉𝑛,0(x) + 𝑎𝑛
2  𝜉𝑛,2(x) + 𝑎𝑛

4𝜉𝑛,4(x) + o(𝑎𝑛
4)]2 

      = 𝜉𝑛,0(x)[𝜉𝑛,0(x)+ 2𝑎𝑛
2𝜉𝑛,2(x)+ 2𝑎𝑛

4𝜉𝑛,4(x)+ o(𝑎𝑛
4)]+ 𝑎𝑛

4𝜉𝑛,2
2 (x) + o(𝑎𝑛

4)  (2.9) 

      = 𝑎𝑛
4𝜉𝑛,2

2 (x) + O (
𝑎𝑛

2

𝑛
) 

in view of 𝜉𝑛,0(x) = o(𝑛−1), where 𝜉𝑛,2(x) = 
1

2
𝐻𝑛

(2)
(x)𝜇2(K). 

Thus, from (2.5), (2.8) and (2.9), 

MSE(𝑝𝑛,2(x)) = 𝑑12
−2(x)𝑛−1[𝑛−1 ∑ 𝐹𝑖

𝑛
𝑖=1 (x)(1- 𝐹𝑖(x))-𝑎𝑛𝐻𝑛

(1)
(x)𝜓1(K) 

          + 𝑎𝑛
2(

1

2
𝐻𝑛

(2)
(x)𝜓2(K) - 𝑛−1 ∑ 𝐹𝑖

𝑛
𝑖=1 (x)𝐹𝑖

(2)
(x)𝜇2(K))] 
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+ 𝑑12
−2(x)𝜉𝑛,0(x)[𝜉𝑛,0(x) + 2𝑎𝑛

2𝜉𝑛,2(x) + 2𝑎𝑛
4𝜉𝑛,4(x)]  

+ 𝑎𝑛
4  𝜉𝑛,2

2 (x) + o(
𝑎𝑛

4

𝑛
) 

           = 𝑑12
−2(x)[𝑛−1 ∑ 𝐹𝑖

𝑛
𝑖=1 (x)(1- 𝐹𝑖(x))/n - 

𝑎𝑛

𝑛
𝐻𝑛

(1)
(x)𝜓1(K) + 𝑎𝑛

4  𝜉𝑛,2
2 (x)]  

+ O(
𝑎𝑛

2

𝑛
) 

as 𝜉𝑛,0(x) = 𝐻𝑛(x) – H(x) = o(𝑛−1) as n → ∞ 

𝑛−1 ∑ 𝐹𝑖
𝑛
𝑖=1 (x)(1-𝐹𝑖(x)) = 𝑛−1 ∑ 𝐹𝑖

𝑛
𝑖=1 (x) - 𝑛−1 ∑ 𝐹𝑖

2𝑛
𝑖=1 (x) 

     = H̅𝑛(x) - 𝐻𝑛
2(x) - 𝑛−1(∑ 𝐹𝑖

2𝑛
𝑖=1 (x)- n𝐻𝑛

2(x)) 

     = H̅𝑛(x)(1-H̅𝑛(𝑥))–(𝑛−1 ∑ (𝐹𝑖
𝑛
𝑖=1 (x)- 𝐻𝑛(x))2 

    = H̅𝑛(x)(1 - H̅𝑛(x)) – 𝑉𝑛𝐹(x)                      (2.10) 

where 𝑉𝑛𝐹(x) = n-1 ∑(𝐹 i(x) - H̅n(x))2 > 0 and by considering the terms containing 
𝑎𝑛

2

𝑛
 

as of higher order, 

MSE(𝑝𝑛,2(x)) = 𝑑12
−2(x)[

 �̅�𝑛(𝑥)[1−�̅�𝑛(𝑥)]

𝑛
 - 

VnF(𝑥)

n
] – 𝑑12

−2(x)[
𝑎𝑛

𝑛
�̅�𝑛

(1)
(x)𝜓1(K) 

+ 
𝑎𝑛

4

4
 𝐻𝑛

(2)2
(x)𝜇2

2(K)] + O(𝜉𝑛,0(x) 𝑎𝑛
2) + o(𝑎𝑛

4) 

Corollary 2.1: Under the conditions of Theorem 2.1 on {Fi(x)}, 

MSE(𝑝𝑛,1(x)) = 𝑑12
−2(𝑥)[

 �̅�𝑛(𝑥)[1−�̅�𝑛(𝑥)]

𝑛
 - 

VnF(𝑥)

n
] + O(𝑛−2) 

where 𝑉𝑛𝐹(x) = n-1 ∑(𝐹 i(x) - H̅n(x))2 > 0 

Proof: This proof follows exactly the similar line of argument as for the proof of 
Theorem 2.1.  

2.2.  Asymptotic Normality of 𝒑𝒏,𝟏(x) and 𝒑𝒏,𝟐(x) 

We now consider the limiting distribution of BJ estimators 𝑝𝑛,𝑗(x), j=1,2 of p 

using Lyapunov CLT to the sequence {𝑍2𝑖(x)} of independent random variables in 
the following Theorem. 

Theorem 2.2: Under the conditions AI – AIII on {Fi}, the kernel function k, and the 
sequence {an} for each fixed x, 

√𝒏 (pn,2(x) – p)     𝑳    ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ N(0, 
𝝉𝟐

𝒅𝟏𝟐
𝟐 (𝒙)

) as n → ∞ 

where 𝜏2 = lim
𝑛→∞

[ F̅𝑛(x)(1 - F̅𝑛(x))  - 𝑉𝑛𝐹(𝑥)], 𝑉𝑛𝐹(𝑥)=n-1 ∑(𝐹i(x) - F̅n(x))2 >0 

Proof: Note from (2.4) 

d12(x)[pn,2(x)-p] = 𝑛−1 ∑ 𝑍2𝑖
𝑛
𝑖=1 (x) + 𝜏𝑛2(x) 
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with 𝜏𝑛2(x) = 𝑛−1 ∑  [𝑛
1 E K( 

𝑥−𝑋𝑖

𝑎𝑛
 ) – H(x)] 

      = 𝐻𝑛(x) – H(x) + 
𝑎𝑛

2

2
 𝐻𝑛

(2)
(x) 𝜇2(K) + o(𝑎𝑛

2) → 0 as n→∞ 

  𝑍2𝑖(x) = K( 
𝑥−𝑋𝑖

𝑎𝑛
 ) – E K( 

𝑥−𝑋𝑖

𝑎𝑛
 ), |𝑍2𝑖(𝑥)| ≤ 2 ‖𝐾‖ = M < ∞ 

  𝜎2𝑖
2  = Var 𝑍2𝑖(x) 

  
𝑠𝑛2
2

𝑛
 = ∑

𝜎2𝑖
2

𝑛
 = 𝑛−1 ∑[𝐹𝑖(x)(1-𝐹𝑖(x)) - 𝑎𝑛𝐹𝑖

(1)
(x)𝜓1(K) + O(𝑎𝑛

2)] 

  = H̅𝑛(x)(1-𝐻𝑛(x)) - 𝑉𝑛𝐹(x) - 𝑎𝑛𝐻𝑛
(1)

(x)𝜓1(K) + O(𝑎𝑛
2 /n) 

 𝑠𝑛2
2  = O(n) 

In order to apply Lyapunov CLT to the sequence {𝑍2𝑖(x)}, consider the 
Lyapunov condition 

1

𝑠𝑛2
3  ∑ 𝐸𝑛

1 |𝑍𝑖|
3 = 

𝑛

𝑠𝑛2
3  [𝑛−1 ∑ 𝐸𝑛

1 |𝑍2𝑖(𝑥)|3] 

= O( 
𝑛

𝑛3/2 ) →0 as n→∞. 

Now, Lyapunov condition is satisfied, and Lyapunov CLT to the sequence 
{𝑍2𝑖(x)} holds.  As 𝜏𝑛2(x)→0 as n → ∞ 

𝑛−1/2 ∑  𝑍2𝑖
𝑛
1 (x)     𝐿    ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   N(0,1) 

𝑠𝑛2

𝑛1/2 → [H(x)(1-H(x)) – V(x)]1/2 = τ 

where V(x) = lim
𝑛→∞

𝑉𝐹(x) = lim
𝑛→∞

𝑛−1 ∑(𝐹𝑖(x) - �̅�𝑛(x))2 

i.e. 𝑑12(x) √𝑛 (𝑝𝑛,2(x) – p)     𝐿    ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   N(0, 𝜏2) 

√𝑛 (𝑝𝑛,2(x) – p)     𝐿    ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   N(0, (𝜏/𝑑12(𝑥))2) 

Thus, the Theorem is proved.  

Corollary 2.2: Under the conditions of Theorem 2.1 on {Fi(x)}, 

√𝒏 (pn,1(x) – p)     𝑳    ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ N(0, 
𝝉𝟐

𝒅𝟏𝟐
𝟐 (𝒙)

) as n → ∞ 

Proof: This proof follows exactly the similar line of argument as for the proof of 

Theorem 2.2.    ∎ 

2.3. Rates of strong convergence of 𝒑𝒏,𝟏(x) and 𝒑𝒏,𝟐(x) 

We now establish a.s. convergence of the BJ type estimators 𝑝𝑛,1(x) and 

𝑝𝑛,2(x)  defined in (1.8) under non-i.i.d. set-up in the following result: 

Theorem 2.3: Under the conditions of Theorem 2.1, 

I. 𝒑𝒏,𝟐(𝐱) − 𝐩 = O( 
𝐥𝐨𝐠𝒏 

𝒏
)
𝟏

𝟐 a.s. 
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II. �̂�𝒏(x) = �̂�𝒏(x) – H(x) = O( 
𝐥𝐨𝐠 𝒏 

𝒏
)
𝟏

𝟐 a.s. as n → ∞  

Proof: Note that from (2.4) and (2.8) 

 E (𝑍2𝑖
2 (x)) = 𝜎2𝑖

2  = 𝐹𝑖(x)(1-𝐹𝑖(x)) - 𝑎𝑛𝐹𝑖
(1)

(x)𝜓1(K) + O(𝑎𝑛
2)  

      ≤ 
1

4
 + |𝜓1(𝐾)| = C < ∞ 

 𝜎𝑛2
2  = 

1

𝑛
 ∑𝐸 [𝑍2𝑖

2 (𝑥)] = 
∑𝐹𝑖(x)(1−𝐹𝑖(x))

𝑛
 - 

𝑎𝑛𝜓1(K)∑𝐹𝑖
(1)

(x)

𝑛
 + O(𝑎𝑛

2) 

        = H̅𝑛(x)(1- �̅�𝑛(x)) - 𝑉𝑛𝐹(𝑥) - 𝑎𝑛𝐻𝑛
(1)

(x)𝜓1(K) + O(𝑎𝑛
2) < ∞ 

By applying Bernstein (1946) inequality to {𝑍2𝑖(x)} with M=2, 

 P(𝑛−1 ∑𝑍𝑛2(x) > t) ≤ exp ( - 
𝑛𝑡2

2  

C + 
2

3
 𝑡
 ) 

setting t = ( 
4𝐶 log 𝑛 

𝑛
)
1

2  

P(𝑛−1 ∑𝑍𝑛2(x) > t) ≤ exp [ - 
𝑛4𝐶 log𝑛

2𝑛  

𝐶+ 
2

3
 ( 

4𝐶 log𝑛 

𝑛
)
1
2

 ] 

    = exp [ - 
𝑛4𝐶 log𝑛

2𝑛  

C(1+ 
2

3𝐶
 ( 

4 log𝑛 

𝑛
)
1
2 )

 ] 

    = exp [  
−2 log𝑛 

1+ 
2

3𝐶
 ( 

4 log𝑛 

𝑛
)
1
2 )

 ] 

    ≤ 𝑛−2 for sufficiently large. 

     ⇒ ∑ 𝑃∞
𝑛≥1 (�̅�𝑛2 > t ) ≤ ∑ 𝑛−2∞

𝑛≥1  < ∞ 

By Borel–Cantelli lemma, we conclude that �̅�𝑛2 = O(
𝑙𝑜𝑔𝑛

𝑛
)1/2 as n→∞. 

Therefore, as 𝜏𝑛2(x)→0 as n → ∞,  

(pn,2(x) – p) 𝑑12(x) = �̅�𝑛2 + 𝜏𝑛2 𝑎. 𝑠.̿̿ ̿̿ ̿ O(
𝑙𝑜𝑔𝑛

𝑛
)1/2 

i.e. pn,2(x) – p = O(
𝑙𝑜𝑔𝑛

𝑛
)1/2 a.s. for each x as n→∞.  

(II) is an immediate consequence of part(I).  Hence the result follows.  

Corollary 2.3: Under the conditions of Theorem 2.1 on {Fi(x)}, 

I. 𝒑𝒏,𝟏(𝐱) − 𝐩 = O( 
𝐥𝐨𝐠𝒏 

𝒏
)
𝟏

𝟐 a.s. 

II. �̃�𝒏(x) = �̃�𝒏(x) – H(x) = O( 
𝐥𝐨𝐠 𝒏 

𝒏
)
𝟏

𝟐 a.s. as n → ∞ 

Proof: The proof follows exactly the similar line of argument as for the proof of 
Theorem 2.3.     
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3. Optimal bandwidth 𝒂𝒏,𝒐𝒑𝒕 

We select the optimal 𝑎𝑛,𝑜𝑝𝑡 as that 𝑎𝑛 for which MSE (𝑝𝑛,2(x)) is the minimum. 

Solving the equation 
𝜕MSE (𝑝𝑛,2(x))

𝜕𝑥
 = 0 for 𝑎𝑛; 

i.e. M = MSE(𝑝𝑛,2(x))= 
 (�̅�𝑛(𝑥)[1−�̅�𝑛(𝑥)]−𝑣𝑛𝐹(𝑥))

𝑛
 - 

𝑎𝑛

𝑛
 𝜉𝑛,1(x) + 𝑎𝑛

4  𝜉𝑛,2
2 (x) 

𝜕M

𝜕𝑎𝑛
 = 0 = - 

1

𝑛
 𝜉𝑛,1(x) + 4𝑎𝑛

3  𝜉𝑛,2
2 (x) 

so that  

𝑎𝑛,𝑜𝑝𝑡 = [ 
𝝃𝒏,𝟏(𝒙)

𝟒𝜉𝑛,2
2 (x)

 ]𝟏/𝟑 ∙ 𝒏−𝟏/𝟑                             (3.1) 

where 𝜉𝑛,1(x) = 𝐻𝑛
(1)

(x)𝜓1(K), 𝜉𝑛,2
2 (x)= 

1

4
 𝐻𝑛

(2)2
(x)𝜇2

2(K), 𝜓1(K) = 2∫ 𝑡K(t)dK(t)  

4. Comparisons between the estimators 

We first compare the performance of the proposed smoothed estimator 𝑝𝑛,2(x) 

with Boes-James type estimator pn,1(x), when H1(x), H2(x) are known based on 
the minimum mean square error (MSE) criterion under non-i.i.d. set-up. Note that 
from Theorem 2.1 and Corollary 2.1, 

MSE (𝑝𝑛,2(x)) < MSE (pn,1(x)) 

If 
𝑎𝑛

𝑛
 𝐻𝑛

(1)
(x)𝜓1(K) > 

𝑎𝑛
4

4
 𝐻𝑛

(2)2
(x)𝜇2

2(K) 

If 𝑎𝑛𝐻𝑛
(1)

(x) 𝜓1(K) > n𝑎𝑛
4  [

1

4
 𝐻𝑛

(2)2
(x)𝜇2

2(K)]               (4.1) 

for finite values of n. Since both terms on the left side of the above inequality are 
always positive and in view of n𝑎𝑛

4  → 0 for moderate n, (4.1) holds. The gain in 

precision of 𝑝𝑛,2(x) over pn,1(x) is defined as 

MSE (pn,1(𝑥))− MSE ( 𝑝𝑛,2(x))

MSE(𝑝𝑛,1(x)) 
  × 100. 

5. Monte Carlo Simulation 

A simulation study is carried out in the estimation of p by 𝑝𝑛,𝑗(x); j=1,2 when 

two component distributions are known and are estimated by using empirical 
distribution function and kernel distribution function for Normal and Exponential 
populations. The procedure is given in appendix A. 
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Table 5.1.  Simulation results of 𝑝𝑛,𝑗(𝑥0) and 𝑝𝑛,𝑗(𝑥0) for different sets N of 

 sample size n with p=0.5 and X0 = -2, -1, -0.5, 0.5, 1, 2 and X0 = 
 0.2, 0.3, 0.33, 0.4, 0.5, 0.6 for Exponential population  

p=0.5 N 

𝑯𝟏(x)=N(𝛃𝒕𝟏𝒊,𝟎. 𝟓𝟐), 𝑯𝟐(x)= N(𝛃𝒕𝟐𝒊,𝟑
𝟐), 

H(x)=N(𝛃𝒕𝒊,(𝟐. 𝟏𝟓𝟏)𝟐) 

p=0.5 

𝑯𝟏(x)=Exp(2), 𝑯𝟐(x)=Exp(3), 
H(x)=Weibull(1.25,k=0.5) 

𝐩n,1(𝒙𝟎) 𝐩n,2(𝒙𝟎) 

𝑴𝑺�̂� 

Efficiency 𝐩n,1(𝒙𝟎) 𝐩n,2(𝒙𝟎) 

𝑴𝑺�̂� 

Efficiency 

𝐩n,1(𝒙𝟎) 𝐩n,2(𝒙𝟎) 𝐩n,1(𝒙𝟎) 𝐩n,2(𝒙𝟎) 

X0=-2 
n =12 

10 0.538 0.119 0.026 0.006 78.03 

X0=0.2 
n=12 

0.69 0.76 0.11 0.02 80.11 

25 0.525 0.140 0.035 0.011 70.04 0.67 0.76 0.12 0.03 70.94 

50 0.525 0.144 0.039 0.013 66.12 0.58 0.74 0.12 0.04 61.31 

75 0.516 0.148 0.044 0.014 67.36 0.54 0.76 0.11 0.04 59.82 

100 0.531 0.154 0.039 0.014 64.12 0.50 0.75 0.10 0.05 48.81 

X0=-1 
n=12 

10 0.369 0.228 0.051 0.017 67.21 

X0=0.3 
n=12 

0.1889 0.865 0.055 0.011 79.59 

25 0.431 0.248 0.059 0.015 74.57 0.211 0.874 0.062 0.010 83.34 

50 0.383 0.249 0.054 0.024 55.66 0.211 0.868 0.062 0.012 80.19 

75 0.377 0.252 0.047 0.025 47.14 0.211 0.869 0.062 0.012 81.22 

100 0.376 0.249 0.048 0.024 49.31 0.211 0.867 0.062 0.012 80.19 

X0= 
-0.5 
n=12 

10 0.460 0.300 0.106 0.038 64.14 

X0=0.33 
n=12 

0.57 0.86 0.1810 0.0614 66.09 

25 0.362 0.265 0.081 0.032 60.68 0.32 0.87 0.0680 0.0127 81.37 

50 0.405 0.257 0.078 0.039 49.74 0.34 0.89 0.0734 0.0104 85.83 

75 0.402 0.255 0.074 0.039 45.84 0.33 0.89 0.0717 0.0082 88.62 

100 0.396 0.248 0.077 0.038 49.66 0.35 0.88 0.0757 0.0115 84.84 

X0=0.5 
n=12 

10 0.463 0.388 0.041 0.033 19.42 

X0=0.4 
n=12 

0.50 0.85 0.08 0.02 73.61 

25 0.446 0.360 0.042 0.028 32.43 0.40 0.89 0.07 0.01 83.50 

50 0.438 0.342 0.051 0.031 38.39 0.34 0.90 0.05 0.01 85.67 

75 0.475 0.335 0.066 0.032 51.79 0.30 0.90 0.04 0.01 75.67 

100 0.461 0.325 0.068 0.033 50.95 0.28 0.90 0.03 0.01 65.91 

X0=1 
n=12 

10 0.58 0.16 0.081 0.021 73.55 

X0=0.5 
n=12 

0.47 0.35 0.08 0.05 42.27 

25 0.52 0.16 0.067 0.017 74.28 0.49 0.47 0.09 0.07 19.86 

50 0.51 0.19 0.061 0.021 65.92 0.39 0.40 0.08 0.06 26.23 

75 0.47 0.17 0.061 0.022 64.30 0.44 0.43 0.08 0.07 21.28 

100 0.47 0.18 0.056 0.024 57.39 0.40 0.41 0.08 0.06 24.23 

X0=2 
n=12 

10 0.439 0.127 0.045 0.012 73.97 

X0=0.6 
n=12 

0.071 0.879 0.034 0.011 67.70 

25 0.512 0.135 0.036 0.012 67.50 0.083 0.836 0.039 0.025 36.48 

50 0.525 0.169 0.039 0.022 43.46 0.071 0.822 0.034 0.028 17.11 

75 0.494 0.163 0.053 0.024 53.91 0.075 0.827 0.036 0.027 24.21 

100 0.518 0.153 0.047 0.021 55.75 0.071 0.822 0.034 0.028 17.16 
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6. Comments 

In the paper it is shown that when the component normal populations with 
parameters are N(βt1i,0.25), N(βt2i,9) and the mean value of estimate pn,1(x0) and 

pn,2(x0) is close to its actual value p. The simulation results show that 𝑀𝑆�̂� for 
smoothed parametric estimator is less than that of unsmoothed estimator for 
different values of x, uniformly for all samples. Thus, the smoothed estimator is a 
better estimator in terms of minimum MSE when compared to BJ estimator. The 
average gain in efficiency due to smoothing lies between 19% to 88% for different 
sets N of size n. 
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APPENDIX A 

Random samples of sizes n1=6 and n2=6 are generated from the two 
component mixtures of the normal populations with parameters (𝜇1,𝜇2)=(βt1i,βt2i) 

and (𝜎1
2,𝜎2

2)=(0.52,32) and with parameters (𝜃1,𝜃2) = (2,3) for Exponential 
populations. The mixed sample of size n = n1+n2 = 12 is generated from the 

normal population with parameters (μ = p𝜇1+q𝜇2) = (βti=pβt1i+qβt2i) and 𝜎2 = 

(p𝜎1
2+q𝜎2

2), and in the case of Exponential population, the mixed sample is drawn 
from Weibull population with shape parameter k less than 1. Since Weibull 
distribution with shape parameter k<1 arises as a mixture of Exponential 
distributions (Jewel 1982), the samples of sizes n, n1, n2 are independent. Taking 

p=q= 0.5, β=0.1 and ti = ∓ 
𝑖

𝑛𝛿 ; j = 1, 2, 𝛿 =1.5 are selected in such a way that ∑ 𝑡𝑖 

= 0 and ∑𝑡𝑖
2 → 0. The present simulation study is to estimate parametric 

estimators such as pn,1(x) and pn,2(x) for x=x0 defined as follows. 

𝐩n,1(𝒙𝟎) =  
�̃�𝐧(𝒙𝟎)− 𝐇𝟐(𝒙𝟎)

𝐇𝟏(𝒙𝟎)− 𝐇𝟐(𝒙𝟎)
  and  𝐩n,2(𝒙𝟎) =  

�̂�𝐧(𝒙𝟎)− 𝐇𝟐(𝒙𝟎)

𝐇𝟏(𝒙𝟎)− 𝐇𝟐(𝒙𝟎)
 

where H̃n(𝑥0), Ĥn(𝑥0) are estimated by the usual empirical and kernel-based 

distribution functions and 𝐻𝑗(x), j=1,2 such as 

H̃n(x) = 
1

n
 ∑ 𝐼𝑛

𝑖=1 (Xi ≤ x) , if I(Xi ≤ x), assign 1 otherwise 0. 

�̂�n(𝑥0) = n-1 ∑ 𝐾𝑛
𝑖=1 (

𝑥0− Xi

an
); 𝐻𝑗(x) = 

1

nj
 ∑ 𝐹𝑗𝑖(

𝑛𝑗

𝑖=1
𝑥0).   

Here, we used the Epanechnikov kernel function as k(u) = 
3

4
 (1 - u2); |𝑢|≤1 for 

Normal distribution, and for Exponential distribution we used Gaussian kernel 

function as k(u) = 
1

√2𝜋
 𝑒−𝑢2

2 . The distribution function of the Epanechnikov kernel 

function is 

K( 
𝑥0− Xi

an
 ) = 

3

4
 [

𝑥0− Xi

an
 - 

1

3
 (

𝑥0− Xi

an
 )3 + 

2

3
] 

Thus, the estimators becomes 

    pn,1(𝑥0) = 

1

n
 ∑ 𝐼𝑛

𝑖=1 (X𝑖 ≤ 𝑥0)− 
1

n2
 ∑ 𝐹2𝑖(

𝑛2
𝑖=1 𝑥0)

1

n1
 ∑ 𝐹1𝑖(

𝑛1
𝑖=1

𝑥0)− 
1

n2
 ∑ 𝐹2𝑖(

𝑛2
𝑖=1

𝑥0)
 

pn,2(𝑥0) = 
n−1  ∑ 𝐾𝑛

𝑖=1 (
𝑥0− Xi

an
)− 

1

n2
 ∑ 𝐹2𝑖(

𝑛2
𝑖=1 𝑥0)

1

n1
 ∑ 𝐹1𝑖(

𝑛1
𝑖=1

𝑥0)− 
1

n2
 ∑ 𝐹2𝑖(

𝑛2
𝑖=1

𝑥0)
                                           (5.1) 

where 𝐹𝑗𝑖(x) are the cumulative distribution functions of Normal distribution and 

Exponential distribution. 
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All computations are done by using MS Excel, and the procedure is as 
follows. 

1. Generate n uniform random numbers between (0,1). 

2. Generate the cumulative distribution function of Normal and Exponential 

distribution  by taking different means βtji and variances 𝜎𝑗
2; j=1,2 at x = 𝑥0 

3. Generate the mixed normal and Weibull observations by taking different 

means βti = pβt1i + qβt2i and variance 𝜎2 = p𝜎1
2 + q𝜎2

2 and θ = p𝜃1 + q𝜃2 
respectively with k<1. 

4. Calculate (5.1) by taking X0 = -2, -1, -0.5, 0.5, 1, 2 related to Normal 
distribution and X0= 0.2, 0.3, 0.33, 0.4, 0.5, 0.6 related to Exponential 
distribution. 

Generate N=100 mixed and component independent sample sets with sample 
sizes n=12 and n1= 6 and n2=6, so that n = n1+n2 and calculate pn,1(x0) and 

pn,2(x0), their mean values �̅�𝑛,𝑗(𝑥0) = 
1

𝑁
 ∑𝑝𝑛,𝑗 (𝑥0) and their mean square errors 

𝑀𝑆�̂� (𝑝𝑛,𝑗(𝑥0)) = 
1

𝑁
 ∑ (𝑝𝑛,𝑗(

𝑁
𝑖=1 𝑥0) - �̅�𝑛,𝑗(𝑥0))2 ; j=1,2. Sets are ignored when p ≥1. 

The results are presented in table 5.1. 
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THE ODD GENERALIZED EXPONENTIAL LOG-LOGISTIC 
DISTRIBUTION GROUP ACCEPTANCE SAMPLING PLAN 

Devireddy Charana Udaya Sivakumar1, Rosaiah Kanaparthi 2,  
Gadde Srinivasa Rao3, Kruthiventi Kalyani1  

ABSTRACT 

In this manuscript, a group acceptance sampling plan (GASP) is developed when 
the lifetime of the items follows odd generalized exponential log-logistic distribution 
(OGELLD), the multiple number of items as a group can be tested simultaneously 
in a tester. The design parameters such as the minimum group size and the 
acceptance number are derived when the consumer’s risk and the test termination 
time are specified. The operating characteristic (OC) function values are 
calculated (intended) according to various quality levels and the minimum ratios of 
the true average life to the specified average life at the specified producer’s risk 
are derived. The methodology is illustrated through real data. 

Key words: odd generalized exponential log-logistic distribution, group 

acceptance sampling plan, truncated life test. 

1.  Introduction 

In the present highly competitive global market, different items/products are 
categorized on several factors of end products. One such factor is 
quality/durability of a product, which can be examined through most of statistical 
quality control techniques, which are the two important statistical tools for 
ensuring the quality of the product, which are (i) Process control and (ii) Product 
control. In acceptance sampling plans for a truncated life test, the utmost issue is 
to determine the sample size from a lot under cogitation. In most of the statistical 
quality control experiments, it is not possible to perform 100% inspection due to 
various reasons. It is implicitly assumed in the usual sampling plan; the decision 
of accepting or rejecting a lot is on the basis of a sample of items.  To save cost 
and time in the life test, it is very often to put a number of items in a tester. In this 
life test, a tester is called a group and the number of items in each tester is called 
the group size. The acceptance sampling via the group life test is called the group 
acceptance sampling plan (GASP), which is also often enacted under a truncated 
life test. For such a type of test, the determination of the sample size is equivalent 

                                                           
1  UGC BSR Fellows, Department of Statistics, Acharya Nagarjuna University, Guntur – 522 510, India.  
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 E-mail:gaddesrao@gmail.com. ORCID ID: https://orcid.org/0000-0002-3683-5486. 



104                                     D. C. U. Sivakumar, et al.: The odd generalized exponential… 

 

 

to fixation of the number of groups. This type of testers is customarily used in the 
case of the so-called sudden death testing, which is discussed by Pascual and 
Meeker (1998) and Vlcek et al. (2004). Jun et al. (2006) introduced this group 
concept into acceptance sampling plan and developed variable sampling plans for 
sudden death testing for the Weibull distribution. GASPs under a truncated life 
test have been studied by many researchers for different lifetime distributions.  

A group sampling plan based on truncated life test based on the gamma 
distributed items was contemplated by Aslam et al. (2009).  Aslam and Jun 
(2009a, 2009b) developed a group acceptance sampling plan for truncated life 
tests based on the inverse Rayleigh, log-logistic and Weibull distributions. 
Balamurali and Jun (2009) proposed a repetitive group sampling procedure for 
variables inspection. Rao (2009, 2010) presented a group acceptance sampling 
plans for lifetimes following a generalized exponential distribution and Marshall-
Olkin extended Lomax distribution. Group acceptance sampling plans for Pareto 
distribution of the second kind was discussed by Aslam et al. (2010). 
Radhakrishnan and Alagirisamy (2011) developed a group acceptance sampling 
plan using weighted binomial distribution. Ramaswamy and Anburajan (2012) 
developed a group acceptance sampling plan using weighted binomial on 
truncated life tests for inverse Rayleigh and log-logistic distributions. A group 
acceptance sampling plan using weighted binomial for a truncated life test when 
the lifetime of an item follows exponential and Weibull distributions was 
contemplated by Anburajan and Ramaswamy (2015). Rao and Ramesh (2015) 
considered a group acceptance sampling plans for exponentiated half logistic 
distribution. Rao et al. (2016) studied group acceptance sampling plans for 
lifetimes following an exponentiated Fréchet distribution. Rao and Rao (2016) 
developed a two-stage group acceptance sampling plan based on life tests for 
half logistic distribution. Group acceptance sampling plans for odds exponential 
log-logistic distribution and Type-II generalized log-logistic distribution were 
contemplated by Rosaiah et al. (2016a, 2016b). 

To reduce the experimental time and cost, GASPs have been used (see Jun 
et al., (2006)). In this case, the total number of items n to be tested is divided into 
equal-sized groups according to the number of available experimental testers. 
Suppose ‘r’ items are in each group and there are a total of ‘g’ groups, then 

.n rg  The items in each group are tested independently under identical 

environmental conditions. Moreover, all the testers run simultaneously. The 
experiment is stopped at a pre-specified time t. If ‘c’ is the acceptance number for 
this experiment, then a lot is accepted if the recorded number of failures in each 
group is less than ‘c’ during the experimental time t. The single sampling plans 
handle this problem by assuming a parametric model for the lifetime distribution 
and then deriving the minimum sample size ‘n’ needed to ensure certain mean or 
median life of the items under investigation. It is further assumed that the 
experimental time and the number of items in each group are prefixed in advance. 
Since n=rg, determining ‘n’ is equivalent to determining ‘g’.  

The main purpose of this manuscript is to develop the GASPs for the odd 
generalized exponential log-logistic distribution (OGELLD). Gupta (1962) 
suggested that for a skewed distribution, the median represents a better quality 
parameter than the mean. On the other hand, for symmetric distribution, mean is 
preferable to use as a quality parameter. Since OGELLD is a skewed distribution, 
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we prefer to use the percentile point as the quality parameter and it will be 

denoted by 
q

t .  

The rest of this manuscript is organized as follows. In Section 2, we describe 
concisely the OGELLD distribution. The design of group acceptance sampling for 
lifetime percentiles under a truncated life test is discussed in Section 3. In Section 
4, description of the proposed methodology with real data example is presented. 
A comparison of distributions is discussed in Section 5. Finally, conclusions are 
made in Section 6.  

2.  The Odd Generalized Exponential Log-Logistic Distribution 
(OGELLD) 

In this section, we provide a brief summary of the odd generalized exponential 
log-logistic distribution (OGELLD). The OGELLD was introduced and studied 
quite extensively by Rosaiah et al. (2016c). The probability density function (pdf) 
and cumulative distribution function (cdf) of OGELLD respectively are given as 
follows: 

 
   

1
1 1

1
(t; , , , ) 1 ,  0, , , , 0

t t

f t e e t
 


 

 


        



 

  
    

 
 

 (1) 

and 
 

1

(t; , , , ) 1 , 0, , , , >0.
t

F e t





       
 

   
 

                           (2) 

where  , λ are the scale parameters and ,   are the shape parameters. The 

100q-th percentile of the OGELLD is given as:  

1
1,     where   ln(1 )q q qt q

        .                                           (3) 

Hence, for the fixed values of 
0 0 and      , the quantile qt  given in 

Equation (3) is the function of scale parameter 
0  , that is 0

0q qt t     ,  

where 
0

0

0

0 1
1

0 ln(1 )

qt

q






   

.                                                       (4) 

Note that 
0  also depends on

0 0 and   , to build up acceptance sampling 

plans for the OGELLD ascertain 
0

q qt t , equivalently that   exceeds 
0 . 
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3. The Group Acceptance Sampling Plan (GASP) 

In this section, we provide group acceptance sampling plans (GASPs) when a 
lifetime of the product is an OGELLD with known scale and shape parameters

,  . We propose the GASP under the truncated life test, which is based on the 

total number of failures from all groups. The procedure of the proposed plan is as 
follows [Aslam et al. (2011a)]: 

 Step 1:  Randomly draw a sample of size n from a production lot, allocate r 
items to each of g groups (or testers) so that n = rg and put them on test until 

the pre-determined 
0t  units of time.  

 Step 2:  Accept the lot when the number of failures from all g groups is smaller 
than or equal to c. Truncate the test and reject the lot as soon as the number 

of failures from all g groups is larger than c before 
0t . 

The probability of accepting a lot for the group sampling plan based on the 
number of failures from all groups under a truncated life test at the test time 

schedule 
0t  

is 

                  
0

P ( ) 1
c

rg ii

a

i

rg
p p p

i





 
  

 
                                     (5) 

where ‘g’ is the number of groups, ‘c’ is the acceptance number, ‘r’ is the group 

size, and ‘p’ is the probability of getting a failure within the life test schedule, 
0t . 

Since the product lifetime follows OGELLD, we have  0p F t . Usually, it would 

be convenient to determine the experiment termination time, 0t , as 
0 0

0 q qt t  for a 

constant 
0

q and the targeted 100q-th lifetime percentile,
 

0

qt . Let qt be the true 

100q-th lifetime percentile. Then, p can be rewritten as 

             
0 0 0

1
1

1 1
q q q q

t
t t

p e e







   

 
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 

   
     
    

              (6)       

In order to find the design parameters of the proposed GASP, we prefer the 
approach based on two points on the OC curve by considering the producer’s and 
consumer’s risks. In our approach, the quality level is measured through the ratio 

of its percentile lifetime to the lifetime, 
0

q qt t . These percentile ratios are very 

helpful to the producer to enhance the quality of products. From the producer’s 

perspective, the probability of lot acceptance should be at least 1   at the 

acceptable reliability level (ARL),  p
1
. Thus, the producer demands that a lot 

should be accepted at various levels, say 
0

q qt t =2, 4, 6, 8, 10 in Equation (6). On 

the other hand, from the consumer’s viewpoint, the lot rejection probability should 
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be at most   at the lot tolerance reliability level (LTRL), p
2
. In this way, the 

consumer considers that a lot should be rejected when 
0/q qt t

 
=1, in Equation (6).  

                                1 1

0

(1 ) 1
c

i rg i

i

rg
p p

i




 
   
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                                         (7) 
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 
                                           (8)  

where 
1p  and 

2p  are given by  

             

       0 0 01 1

1 21  and 1
q q q q q q

t t

p e p e

 
 

         
      

  
                  (9) 

The plan parametric quantities for distinct values of parameters , and    

are constructed. Given the producer’s risk 0.05   and termination time 

schedule 
0

0 qqtt 
 
with 

0 0.5 or 1,q 
 
the three parameters of the proposed 

group acceptance sampling plan under the truncated life test at the pre-specified 

time, 0t , with = = =2    are obtained according to the consumer’s risk 

0.25,0.10,0.05and 0.01   for 50th and 25th percentiles, which are shown in 

Tables 1 to 4.   

4. Description of the proposed methodology with real data example 

We demonstrate the application of the proposed group acceptance sampling 
plan for the OGELLD using real lifetime data set from Dey et al. (2018), which 
represent the survival times (in days) of 72 guinea pigs infected with virulent 
tubercle bacilli. Guinea pigs are known to have high susceptibility to human 
tuberculosis, which is one of the reasons to choose guinea pigs for such a study. 
Here, we consider only the study where all animals in a single cage are under the 
same regimen. The data were observed and reported by Bjerkedal (1960). For 
ready reference the data set is given below:  

0.1, 0.33, 0.44, 0.56, 0.59, 0.72, 0.74, 0.77, 0.92, 0.93, 0.96, 1, 1, 1.02, 1.05, 
1.07, 1.07, 1.08, 1.08, 1.08, 1.09, 1.12, 1.13, 1.15, 1.16, 1.2, 1.21, 1.22, 1.22, 
1.24, 1.3, 1.34, 1.36, 1.39, 1.44, 1.46, 1.53, 1.59, 1.6, 1.63, 1.63, 1.68, 1.71, 1.72, 
1.76, 1.83, 1.95, 1.96, 1.97, 2.02, 2.13, 2.15, 

2.16, 2.22, 2.3, 2.31, 2.4, 2.45, 2.51, 2.53, 2.54, 2.54, 2.78, 2.93, 3.27, 3.42, 3.47, 
3.61, 4.02, 4.32, 4.58, 5.55. 
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Before illustrating the methodology, our model is tested for goodness of fit. 
The maximum likelihood estimates of the three parameters of OGELLD for the 

survival times of guinea pigs data are ˆ ˆ ˆ1.1513, 1.1606 and 2.6538     . 

Using the Kolmogorov-Smirnov test, we found that the maximum distance 
between the data and the fitted OGELLD is 0.089 with p-value 0.617. Thus, the 
three parameter OGELLD provides a reasonable fit for the survival times of 
guinea pigs data. The goodness of fit for our model is emphasized by plotting the 
density plot and  Q-Q plot displayed in Figure 1. The plan parameters are also 
computed at fitted parametric values and are displayed in Tables 5 for 50th 
percentiles. Suppose that it is desired to develop a group acceptance sampling 
plan to satisfy that the 50th percentile lifetime is greater than survival times of 
guinea pigs 0.20 days through the experiment to be completed survival times of 
guinea pigs by 0.40 days to protect the producer’s risk at 5%. For 

ˆ ˆ ˆ1.1513, 1.1606 and 2.6538     , the consumer's risk is 0.25  , r=5, 

0 0.5q 
 
and 

0/q qt t =2, the minimum number of groups and the acceptance 

number are g=6 and c=2 from Table 5.  Thus, the design can be implemented as 
follows: select a total of 30 guinea pigs and allocate five guinea pigs to each of 
the 6 groups. We can accept the lot when no more than two failures occur before 
survival times of guinea pigs 0.40 days from each of the 6 groups. According to 
this plan, the survival times of guinea pigs could have been accepted because 
there are only two failures before the termination time 0.40 days. 

5.  Comparison of distributions 

In Table 7, we compare the plan parameters of the proposed group 
acceptance sampling plan with the generalized log-logistic distribution (GLLD) 
studied by Aslam et al. (2011b) and odds exponential log-logistic distribution 

(OELLD) studied by Rosaiah et al. (2016a), when 0.10   and 
05, 0.5qr   . 

The acceptance number for the OGELLD is smaller as compared to GLLD and 
OELLD for 50th percentile.  
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Figure 1.  The density plot and Q-Q plot of the fitted OGELLD for the survival 
times of guinea pigs data. 

6.   Conclusions 

In this article, a group acceptance sampling plan is developed when the 
lifetime of the product follows OGELLD. The plan parametric quantities like the 
number of groups, ‘g’, and the acceptance number ‘c’ are determined by 
considering the consumer's risk and producer's risk simultaneously. Our proposed 
plan noticed that if the percentile ratio increases, the number of groups ‘g’ 
reduces and as ‘r' increases the number of groups reduces for all the parametric 
combinations considered in this article. The proposed plan is illustrated with a real 
lifetime data set in health sciences, survival times of guinea pigs in days, and 
results show that our methodology performs well as compared with existing 
sampling plans.  
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APENNDIX 

Table 1.  GASP for OGELLD with 2, 2 and 2     for 50th percentile 

  
0/q qtt  

r=5 r=10 

q =0.50 q =1.0 q =0.50 q =1.0 

c g ( )aP p  c g ( )aP p  c g ( )aP p  c g ( )aP p  

0.25 2 1 8 0.9797 3 4 0.9531 1 4 0.9797 - - - 

4 0 4 0.9928 0 1 0.9730 0 2 0.9928 1 2 0.9947 

6 0 4 0.9986 0 1 0.9944 0 2 0.9986 0 1 0.9888 

8 0 4 0.9995 0 1 0.9982 0 2 0.9995 0 1 0.9964 

0.10 2 1 11 0.9635 3 4 0.9531 1 6 0.9572 - - - 

4 0 7 0.9874 0 1 0.9730 0 4 0.9857 1 2 0.9947 

6 0 7 0.9975 0 1 0.9944 0 4 0.9971 0 1 0.9888 

8 0 7 0.9992 0 1 0.9982 0 4 0.9991 0 1 0.9964 

0.05 2 2 18 0.9866 3 4 0.9531 2 9 0.9866 - - - 

4 0 9 0.9839 0 1 0.9730 0 5 0.9821 1 2 0.9947 

6 0 9 0.9968 0 1 0.9944 0 5 0.9964 0 1 0.9888 

8 0 9 0.9990 0 1 0.9982 0 5 0.9989 0 1 0.9964 

0.01 2 2 24 0.9715 3 4 0.9531 2 12 0.9715 - - - 

4 0 13 0.9768 1 3 0.9970 0 7 0.9750 1 2 0.9947 

6 0 13 0.9953 0 2 0.9888 0 7 0.9950 0 1 0.9888 

8 0 13 0.9985 0 2 0.9964 0 7 0.9984 0 1 0.9964 
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Table 2.  GASP for OGELLD with 2, 1.5 and 1.5     for 50th percentile  

  
0/q qtt  

r=5 r=10 

q =0.50 q =1.0 q =0.50 q =1.0 

c g ( )aP p  c g ( )aP p  c g ( )aP p  c g ( )aP p  

0.25 2 3 7 0.9502 - - - 4 5 0.9513 - - - 

4 1 4 0.9864 2 3 0.9798 1 2 0.9864 4 5 0.9513 

6 0 2 0.9643 1 2 0.9885 1 2 0.9976 1 2 0.9564 

8 0 2 0.9810 1 2 0.9966 1 2 0.9993 1 2 0.9864 

0.10 2 4 10 0.9513 - - - 4 5 0.9513 - - - 

4 1 5 0.9792 2 3 0.9798 1 3 0.9707 4 5 0.9513 

6 1 5 0.9963 1 2 0.9885 1 3 0.9946 1 2 0.9564 

8 1 5 0.9989 1 2 0.9966 1 3 0.9985 1 2 0.9864 

0.05 2 5 13 0.9548 - - - 6 8 0.9591 - - - 

4 1 6 0.9707 2 3 0.9798 1 3 0.9707 4 5 0.9513 

6 1 6 0.9946 1 2 0.9885 1 3 0.9946 1 2 0.9564 

8 1 6 0.9985 1 2 0.9966 1 3 0.9985 1 2 0.9864 

0.01 2 7 19 0.9634 - - - 7 10 0.9528 - - - 

4 1 8 0.9504 2 3 0.9798 1 4 0.9504 4 5 0.9513 

6 1 8 0.9906 1 3 0.9746 1 4 0.9906 1 2 0.9564 

8 1 8 0.9973 1 3 0.9923 1 4 0.9973 1 2 0.9864 
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Table 3.  GASP for OGELLD with 2, 2 and 2      for 25th percentile 

  
0/q qtt  

r=5 r=10 

q =0.50 q =1.0 q =0.50 q =1.0 

c g ( )aP p  c g ( )aP p  c g ( )aP p  c g ( )aP p  

0.25 2 1 22 0.9830 1 2 0.9748 1 11 0.9830 2 3 0.9604 

4 0 11 0.9936 0 1 0.9910 0 6 0.9931 0 1 0.9822 

6 0 11 0.9987 0 1 0.9980 0 6 0.9986 0 1 0.9964 

8 0 11 0.9996 0 1 0.9994 0 6 0.9996 0 1 0.9988 

0.10 2 1 31 0.9678 2 4 0.9866 1 16 0.9659 2 3 0.9604 

4 0 18 0.9896 0 2 0.9822 0 9 0.9896 0 1 0.9822 

6 0 18 0.9979 0 2 0.9964 0 9 0.9979 0 1 0.9964 

8 0 18 0.9993 0 2 0.9988 0 9 0.9993 0 1 0.9988 

0.05 2 1 38 0.9535 2 5 0.9754 1 19 0.9535 2 3 0.9604 

4 0 24 0.9862 0 3 0.9734 1 12 0.9862 0 2 0.9647 

6 0 24 0.9972 0 3 0.9946 0 12 0.9972 0 2 0.9928 

8 0 24 0.9991 0 3 0.9983 0 12 0.9991 0 2 0.9977 

0.01 2 2 66 0.9777 3 8 0.9818 2 33 0.9777 3 4 0.9818 

4 0 36 0.9793 0 4 0.9647 0 18 0.9793 0 2 0.9647 

6 0 36 0.9959 0 4 0.9928 0 18 0.9959 0 2 0.9928 

8 0 36 0.9987 0 4 0.9977 0 18 0.9987 0 2 0.9977 
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Table 4.  GASP for OGELLD with 2, 1.5 and 1.5     for 25th percentile 

  
0/q qtt  

r=5 r=10 

q =0.50 q =1.0 q =0.50 q =1.0 

c g ( )aP p  c g ( )aP p  c g ( )aP p  c g ( )aP p  

0.25 2 3 16 0.9663 3 04 0.9603 3 8 0.9663 - - - 

4 1 8 0.9923 1 02 0.9905 1 4 0.9923 1 2 0.9636 

6 0 5 0.9673 1 02 0.9983 1 4 0.9987 1 2 0.9932 

8 0 5 0.9827 1 02 0.9995 1 4 0.9996 1 2 0.9980 

0.10 2 4 24 0.9635 4 06 0.9547 4 12 0.9635 - - - 

4 1 12 0.9832 1 03 0.9788 1 6 0.9832 1 2 0.9636 

6 0 7 0.9545   1  03 0.9962 1 6 0.9970 1 2 0.9936 

8 0 7 0.9757   1 03 0.9989 1 6 0.9992 1 2 0.9936 

0.05 2 5 32 0.9640 5 08 0.9534 5 16 0.9640 - - - 

4 1 14 0.9775 1 04 0.9636 1 7 0.9775 1 2 0.9636 

6 1 14 0.9960 1 04 0.9932 1 7 0.9960 1 2 0.9932 

8 1 14 0.9989 1 04 0.9980 1 7 0.9989 1 2 0.9980 

0.01 2 7 48 0.9687 7 12 0.9564 7 24 0.9687 - - - 

4 1 20 0.9568 2 07 0.9841 1 10 0.9568 4 5 0.9773 

6 1 20 0.9920 1 05 0.9895 1 10 0.9920 1 2 0.9850 

8 1 20 0.9977 1 05 0.9969 1 10 0.9977 1 2 0.9950 
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Table 5.  GASP for OGELLD with ˆ ˆ ˆ1.1513, 1.1606 and 2.6538      for 

50th  percentile 

  
0/q qtt  

r=5 r=10 

q =0.50 q =1.0 q =0.50 q =1.0 

c g ( )aP p  c g ( )aP p  c g ( )aP p  c g ( )aP p  

0.25 

2 2 6 0.9553 - - - 2 3 0.9553 - - - 

4 0 2 0.9620 1 2 0.9724 0 1 0.9620 2 3 0.9553 

6 0 2 0.9882 0 1 0.9569 0 1 0.9882 1 2 0.9868 

8 0 2 0.9950 0 1 0.9808 0 1 0.9950 0 1 0.9620 

0.10 

2 3 9 0.9687 - - - 3 5 0.9563 - - - 

4 1 6 0.9939 1 2 0.9724 1 3 0.9939 2 3 0.9553 

6 0 3 0.9824 0 1 0.9569 0 2 0.9766 1 2 0.9868 

8 0 3 0.9925 0 1 0.9808 0 2 0.9900 0 1 0.9620 

0.05 

2 4 13 0.9706 - - - 4 7 0.9613 - - - 

4 1 7 0.9918 1 2 0.9724 1 4 0.9894 2 3 0.9553 

6 0 4 0.9766 0 1 0.9569 0 2 0.9766 1 2 0.9868 

8 0 4 0.9900 0 1 0.9808 0 2 0.9900 0 1 0.9620 

0.01 

2 5 18 0.9669 - - - 5 9 0.9669 - - - 

4 1 9 0.9867 2 3 0.9933 1 5 0.9838 2 3 0.9553 

6 0 11 0.9823 0 2 0.9713 0 6 0.9808 0 1 0.9713 

8 0 11 0.9929 0 2 0.9884 0 6 0.9922 0 1 0.9884 

 

Table 6.  Comparison between GLLD, OELLD and OGELLD 

0

q qt t  

GLLD OELLD OGELLD 

c g 
1( )aP p  c g 

1( )aP p  c g 
1( )aP p  

2 1  69 0.9959 5  12 0.9587 4 10 0.9513 

4 0  41 0.9990 1  5 0.9705 1 5 0.9792 

6 0  41 0.9999 1  5 0.9936 1 5 0.9963 

8 0    41 0.9999 0  3 0.9602 1 5 0.9989 
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FORMULATION OF THE SIMPLE MARKOVIAN
MODEL USING FRACTIONAL CALCULUS

APPROACH AND ITS APPLICATION TO ANALYSIS
OF QUEUE BEHAVIOUR OF SEVERE PATIENTS

Soma Dhar1, Lipi B. Mahanta2, Kishore Kumar Das3

ABSTRACT

In this paper, we introduce a fractional order of a simple Markovian model where the
arrival rate of the patient is Poisson, i.e. independent of the patient size. Fraction
is obtained by replacing the first order time derivative in the difference differential
equations which govern the probability law of the process with the Mittag-Leffler
function. We derive the probability distribution of the number N(t) of patients suf-
fering from severe disease at an arbitrary time t. We also obtain the mean size
(number) of the patients suffering from severe disease waiting for service at any
given time t, in the form of Eν

0.5,0.5(t), for different fractional values of server activity
status, ν = 1,0.95,0.90 and for arrival rates α = β = 0.5. A numerical example is
also evaluated and analysed by using the simple Markovian model with the help of
simulation techniques.
Key words: fractional order, arrival rate, patients, fractional calculus.

1 Introduction

From the historical point of view, fractional calculus may be described as an exten-
sion of the concept of a derivative operator from integer order n to arbitrary order α,
where α is a real or complex value, or even more complicated, a complex valued
function,

α = α(x, t) (1)

Despite the fact that this concept has been discussed since the days of Leibniz
(1695) and since then has occupied the great mathematicians of their times, no
other research area has resisted as much a direct application for centuries. Abel’s
treatment of the tautochrone problem from 1823 stood for a long time as a singular
example of an application for fractional calculus. Abel (1823) define the equation
as

dn

dxn −→
d
dx

(2)
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Differentiation and integration are usually regarded as discrete operations, in the
sense that we differentiate or integrate a function once, twice, or any whole number
of times. But in the case of integer order functions, the question is how to differenti-
ate or integrate the same. Fractional calculus is useful to evaluate the integer order
function.
Fractional Calculus is a significant topic in mathematical analysis as a result of
its increasing range of applications, that grows out of the traditional definition of
the integer order calculus of derivatives and integrals. It provides several tools for
solving differential and integral equations of fractional order. In the recent years,
fractional calculus has played a very important role in various fields, based on the
wide applications in engineering and sciences such as physics, mechanics, chem-
istry, biology, applied mathematics, probability and statistics etc.
The application-oriented approaches of fractional calculus are given in many text-
books. For examples, Oldham(1974), Samko (1993), Miller (1993), Kiryakova (1994),
Rubin (1996), Gorenflo (1997), Podlubny (1998), Hilfer (2000), Hilfer (2008), Mainardi
(2010), Herrmann (2014). These books are explicitly devoted to the practical con-
sequences of using fractional calculus.
There have been few studies related to point processes governed by difference-
differential equations containing fractional derivative operators. These processes
are direct generalizations of the classical M/M/1 queue and the linear birth-death
processes. It is well known that a fractional derivative operator induces a non-
Markovian behaviour into a system as derived by Veillette (2010). Srivastava (2001)
studied a systematic (and historical) investigations carried out by various authors
in the field of fractional calculus and its applications. Srinivasan (2008) has con-
sidered a brief elementary and introductory approach to the theory of fractional
calculus and its applications especially in developing solutions of certain families of
ordinary and partial fractional differential equations.
Moreover, parameter estimation and path generation algorithms of these new frac-
tional stochastic models were derived. It is to be noted that the proposed fractional
point models (with Markovian and non-Markovian properties) are parsimonious,
which makes them desirable for modelling real-world non-Markovian queuing sys-
tems. Dhar (2014) studied the comparison between single and multiple Markovian
queuing model in an outpatient department. Also, Mahanta (2016) proposed a sin-
gle server queueing model for severe diseases especially in outpatient department.
Further, consider the infinite server queues with time-varying arrival and departure
pattern when the parameters are varying with time derived by Dhar(2017).
It is further observed that more recently fractional point processes driven by frac-
tional difference-differential equations such as the fractional Poisson, the fractional
birth, the fractional death, and the fractional birth-death processes have already
been gaining attention as studied by Beghin (2009), Cahoy (2010), Laskin (2003),
Orsingher (2011).
Recently, Uchaikin (2008), Orsingher (2010), Cahoy (2013) have developed the
generalizations of the classical birth and death processes by using the techniques
of fractional calculus. A major advantage of these models over their classical coun-
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terparts is that they can capture both Markovian and non-Markovian structures of a
growing or decreasing system.
Uchaikin (2008) partially investigated the fractional linear birth process by using the
Riemann-Liouville derivative operator but it was generalised by Orsingher (2010)
using the Caputo derivative. Cahoy (2013) derived the inter-birth time distribution
using simulation method to simulate the fYp.
A situation of fractional calculus may be applicable in queuing system when the
server is found not working, either from the start or in between. A classic example
may be the absence of doctor(s) or his/her leaving the hospital in between for other
works, despite patients waiting for treatment.
To date, no practical implementation for any real-life problem has been attempted
using the theories as mentioned above. In this paper, an attempt is made to de-
velop a model using the concept of fractional calculus on a queuing system for
emergency service of severe patients.
In certain departments, like outpatient department, of many public hospitals, un-
availability of doctors during working hours has become a trend these days. These
doctors come to their department only at a time convenient for them. The outpatient
department of a hospital is visited by patients of all types of disease. Some of these
diseases require immediate medical attention as severe complications may arise if
treatment is delayed. This delay is commonly due to server inactivity, which may be
total or in fractions. By ’fractions’ we imply that some portions of the server is active
while some is not. Examples may be like, i) doctor is present whereas registration
desk personnel is not, or ii) all personnel are present but there is some technical
lapse, or iii) registration desk is in order but doctor is not present, and so on. Pa-
tients coming from far-off places, postponing their own schedule and engagements,
are thus deprived of timely medical services. A system, therefore, must be put in
place to make the irregularity of doctors fall in line, so that there is a check on the
server system functioning as doctors of these hospitals.

2 Basic Preliminaries

The basic definitions and properties of the fractional calculus theory used in this
study are given below.
Definition 1: Let y = f (t) be a continuous (but not necessarily differentiable) func-
tion and let partition h > 0 in the interval [0,1]. Then, the fractional derivative is
defined by Podlubny (1998)

Dn( f ) =
dn f
dtn = lim

h→0

∑
n
j=0(−1) j

(n
j

)
f (t− jh)

hn

If n is fixed then Dn f → 0 as h→ 0.
Definition 2: Grunwald Letnikov differential integral of arbitrary order q is defined
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by Podlubny(1998)

Da
q f (t) = lim

N→∞
hN
−q

[
N

∑
j=0

(−1) j
(

q
j

)
f (t− jhN)

]

where (
q
0

)
= 1(

q
j

)
=

q(q−1) . . .(q− j+1)
j!

, j ∈ N

lemma 1:
dn

dtn Da
q f (t) = Da

n+q f (t)

Definition 3: The Riemann-Liouville fractional integral operator of order a > 0 is
defined Mathai (2008) as

Ia
q f (t) =

1
Γ(q)

∫ t

a
(t− τ)q−1 f (τ)dτ, t > a

Definition 4: The Riemann-Liouville fractional derivative operator of order a is de-
fined [Haubold (2011)] as

Da
q f (t) =

dn

dtn

[
1

Γ(n−q)

∫ t

a
(t− τ)n−q−1 f (τ)dτ

]

2.1 Mittag-Leffler function

The Mittag-Leffler function, which plays a very important role in the fractional differ-
ential equations was in fact introduced by Mittag-Leffler in 1903. It is a generaliza-
tion of the exponential series, i.e. if α = 1 then we have the exponential series. The
Mittag-Leffler function Ea(t) is defined by the power series (3)

Ea(t) =
∞

∑
n=0

tn

Γ(an+1)
, a > 0 (3)

which gives the generalized Mittag-Leffler function (1.4) as defined

Eα,β (t) =
∞

∑
n=0

tn

Γ(αn+β )
, α,β > 0 (4)

This generalization was studied by Saxena (2005) and Haubold (2011).
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3 Generation of single server queuing model apply-
ing fractional concept

Consider a single-server queue with inter-arrival time and service time which are
exponentially distributed with rates λ and µ, respectively. Let N(t) be the number
of patients in the system at time t. We define

pn(t) = Pr[N(t) = n|N(0) = i], i≥ 0 (5)

M/M/1 is a special case of the general birth-and-death model with λn = λ and
µn = µ.
The generator matrix is given by (state space: 0,1,2, . . . . )

M =

−λ λ . . . 0
µ −(λ +µ) λ . . . 0
... . .

. ...


Then, the governing differential-difference equations of the system under consider-
ation are given by{

δ p0(t)
δ t =−λ p0(t)+µ p1(t)

δ pn(t)
δ t =−(λ +µ)pn(t)+µ pn+1(t)+λ pn−1(t),n≥ 1

(6)

The generator matrix is given by (state space: 0,1,2, . . . . ) the matrix below, using
the generalized Mittag-Leffler function.

Eα,β (Mtα) =
∞

∑
n=0

(Mtα)n

Γ(αn+β )

−λ n Cn
1
λ n−1 . . . Cn

n−1
λ n−k−1

µn −(λ +µ)n Cn
1
λ n−1 . . . 0

... . .
. ...



=
∞

∑
n=0

(tα)n

Γ(αn+β )

−λ n Cn
1
λ n−1 . . . Cn

n−1
λ n−k−1

µn −(λ +µ)n Cn
1
λ n−1 . . . 0

... . .
. ...



=


−∑

∞
n=0

(tα )nλ n

Γ(αn+β ) ∑
∞
n=0

(tα )nCn
1λ n−1

Γ(αn+β ) . . . ∑
∞
n=0

(tα )nCn
n−1λ n−k−1

Γ(αn+β )

∑
∞
n=0

(tα )n(λ+µ)n

Γ(αn+β ) µn −∑
∞
n=0

(tα )nCn
1λ n−1

Γ(αn+β ) . . .

... . .
. ...



=

−Eα,β (tα λ ) 1
1!

d
dλ

Eα,β (tα λ ) . . . 1
(k−1)! (

d
dλ

)k−1Eα,β (tα λ )

Eα,β (tα µ) Eα,β (tα(λ +µ)) . . .
... . .

. ...


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Here, we assume to satisfy the difference-differential equations for the state prob-
abilities with arrival rate λ > 0, service rate µ > 0 and i ≥ 0 initial patients, and we
get, {

δ ν pν
0 (t)

δ tν =−Eα,β (tα λ )pν
0 (t)+Eα,β (tα µ)pν

1 (t)
δ ν pν

n (t)
δ tν =−Eα,β (tα(λ +µ))pν

n (t)+Eα,β (tα µ)pν
n+1(t)

(7)

+Eα,β (t
α

λ )pν
n−1(t), n≥ 1,0≤ ν ≤ 1

According to Bailey (1954, 1990), pν
n (t) is the probability that there are n patients in

the queue at time t and the probability generating function is Gν(z, t), i.e.

Gν(z, t) =
∞

∑
n=0

znν pν
n (t), |z| ≤ 1 (8)

and

Ḡν(z, t) =
∞

∑
n=0

znν p̄n
ν(t)

Multiplying equation (7) by ∑
∞
n=0 znν , n = 0,1,2, . . ., we get

∞

∑
n=0

znν δ ν pν
n (t)

δ tν
= −Eα,β (t

α(λ +µ))
∞

∑
n=0

znν pν
n (t)+Eα,β (t

α
µ)

∞

∑
n=0

znν pν
n+1(t)

+Eα,β (t
α

λ )
∞

∑
n=0

znν pν
n−1(t)

=⇒
∞

∑
n=0

znν δ ν pν
n (t)

δ tν
= −Eα,β (t

α
λ )

∞

∑
n=0

znν pν
n (t)−Eα,β (t

α
µ)

∞

∑
n=0

znν pν
n (t)

+Eα,β (t
α

µ)
∞

∑
n=0

znν pν
n+1(t)+Eα,β (t

α
λ )

∞

∑
n=0

znν pν
n−1(t)

And adding with equation (8), we get

d
dt

Gν(z, t) =

(
µ

znν
+Eα,β (t

α
λ )znν −Eα,β (t

α(λ +µ))

)
(Gν(z, t)− pν

0 (t))

+
Eα,β (tα λ )(znν −1)

znν
pν

0 (t) (9)

Applying the Laplace transformation

Ḡν(z,s) =
∫

∞

0
e−st pn

ν(z, t) dt
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in equation (9), we get

(
sν Ḡν(z,s)− sν−1Gν(z,0)

)
=

(
Eα,β (tα µ)

znν
+Eα,β (t

α
λ )znν −Eα,β (t

α(λ +µ))

)
(
Ḡν(z,s)− p̄0

ν(s)
)

where p̄0
ν(s) =

∫
∞

0 e−st p0
ν(t) dt

After simplification, we get
sν Ḡν(z,s)− sν−1Gν(z,0)

=

(
Eα,β (tα µ)

znν
+Eα,β (t

α
λ )znν −Eα,β (t

α
λ )

)
Ḡν(z,s)−

(
Eα,β (tα µ)

znν
+Eα,β (t

α
λ )znν −Eα,β (t

α
λ )

)
p̄0

ν(s)

{
sν −

(
Eα,β (t

α µ)

znν +Eα,β (tα λ )znν −Eα,β (tα λ )
)}

Ḡν(z,s)

= sν−1znν i+1−
(

Eα,β (tα µ)

znν
+Eα,β (t

α
λ )znν −Eα,β (t

α
λ )

)
p0

ν

=⇒ Ḡν(z,s) =
sν−1znν i+1−

(
Eα,β (t

α µ)

znν +Eα,β (tα λ )znν −Eα,β (tα λ )
)

p0
ν

sν −
(

Eα,β (tα µ)

znν +Eα,β (tα λ )znν −Eα,β (tα λ )
)

Now, Ḡν(z,s) converges in the region |z| ≤ 1, the zero of the numerator and denom-
inator of Ḡν(z,s) must coincide.

4 Numerical Example

The results obtained below are implemented for estimating the number of arrivals
of patients with severe diseases from different departments of public hospital under
the assumption mentioned above.
For the numerical solutions of a system of fractional differential equations we use
the real data sets, such as, a) the patients waiting time; b) the service time; c) num-
ber of patients with severe disease. The data has been collected directly from a
public hospital by using the direct observational method. These data (collected for
500 patients) contains all the relevant information regarding each patient.
The simulated solution of the mean size of the arrival patients, the expected ser-
vice rate, queue size and total patients in the system over the time are displayed
in Figures (1)-(4) for ν = 1,0.95,0.90 and α = β = 0.5. ν represents server activity
status. When ν = 1, it means the server is completely (100%) active. ν = 0.95 and
0.90 implies 95% and 90% of the server is active respectively. Further, we denote the
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rate of arrival of patients who belong to non-severe and severe category as α and β .

(a) (b)

Figure 1: (a) The mean size of the arrival of patients during the time for different
values of ν = 1,0.95,0.90 and α = β = 0.5 (i.e. Eν

0.5,0.5(t)). (b) The expected service
time for different values of ν .

(a) (b)

Figure 2: (a) The mean queue size of the arrival of patients during the time for
different values of ν = 1,0.95,0.90 and α = β = 0.5 (i.e. Eν

0.5,0.5(t)). (b) The total
patients in the system over the time for different values of ν .

Figure (1) represents the mean size of the arrival of patients during time for
different values of ν . Here, X-axis denotes the time in minutes and the number
of arrivals of patients suffering from severe disease is represented by the Y-axis.
Further, curves are derived by taking different values of ν = 1,0.95,0.90 and α =

β = 0.5 (i.e. Eν
0.5,0.5(t)) and it was observed that curves are upward increasing at a

particular point of time and then start to decreases. After decreasing to a certain
point of time, curves run parallel to time axis. Also, the graph reveals that the mean
size of the arrival of the patient in the hospital from 0 to 120 minutes is high at
ν = 0.90 as compared to the value of ν = 0.95 and ν = 0.90.
Figure (2) depicts the relation between the expected service time and the number
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of patients who are in queue for getting service under the different values of ν . It
can be observed that the service time corresponding to ν = 1 is largest followed by
that of ν = 0.95 and ν = 0.90, which also shows that service time increases to the
other value of ν and slowly decreases at a point of time.
Figure(3) shows the mean queue size of the patients suffering from severe disease
during the time for different values of ν . Here, it is observed that the queue size is
stable for all values of ν at a fixed point of time.
Figure (4) defines the total number of patients in the system over the time and
shows that each curve peaks at a certain point of time and then starts downward
slope. And if ν = 1, the total number of patients remaining in the system is lesser
than the value of ν = 0.95 and ν = 0.90.
Table(1) and Table(2) below shows the values of the properties of the queue when
implemented to the real-life data.
As revealed from the tables below the pattern of mean arrival of patients, expected

Table 1: The mean arrival of patients and expected service times of Eν
0.5,0.5(t) for

different values of ν at different time periods when α = β = 0.5

Time
Mean arrival of patients expected service time

ν ν

1 0.95 0.90 1 0.95 0.90

0 28.517 ≈ 29 28.266 ≈ 28 28.015≈ 28 0.00 0.00 0.00
50 25.416≈ 25 25.290≈ 25 25.164≈ 25 2.24 4.42 3.49

150 23.021≈ 23 22.937≈ 23 22.85≈ 23 1.64 2.10 1.97
200 21.119≈ 21 21.057≈ 21 20.994≈ 21 1.36 1.58 1.53
250 19.566≈ 20 19.516≈ 20 19.46≈ 19 1.18 1.32 1.29
300 18.268≈ 18 18.226≈ 18 18.184≈ 18 1.06 1.16 1.14
350 17.163≈ 17 17.128≈ 17 17.092≈ 17 0.97 1.04 1.03
400 16.209≈ 16 16.178≈ 16 16.146≈ 16 0.90 0.96 0.95
450 15.375≈ 15 15.347≈ 15 15.319≈ 15 0.84 0.89 0.88
500 14.638≈ 15 14.613≈ 15 14.588≈ 15 0.80 0.85 0.86

service time, mean queue size and the total number of patients in the queue at
time t conforms to the findings of the simulated data. Here, it is observed that
the mean queue size of the developed queue model is not equal to zero as per
the simulated results because in real-life patients arrive at the system substantially
before the service starts. Henceforth, all values decrease with time and reach a
cusp at t = 450.
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5 Conclusion

The subject of fractional calculus is as old as differential calculus, but remains un-
explored outside its theoretical bounds. Here, we attempt to apply that concept to
queueing theory and develop its properties on the simple Markovian model. The re-
sultant characteristics of the proposed model are implemented both with simulated
and real-life values. It is revealed that the concept put forward conforms to both and
fits very well into the theory of queues, particularly when the server is not found to
function as it should.
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AN APPLICATION OF FUNCTIONAL DATA ANALYSIS
TO LOCAL DAMAGE DETECTION

Jacek Leśkow1, Maria Skupień2

ABSTRACT

Vibration signals sampled with a high frequency constitute a basic source of informa-
tion about machine behaviour. Few minutes of signal observations easily translate
into several millions of data points to be processed with the purpose of the damage
detection. Big dimensionality of data sets creates serious difficulties with detec-
tion of frequencies specific for a particular local damage. In view of that, traditional
spectral analysis tools like spectrograms should be improved to efficiently identify
the frequency bands where the impulsivity is most marked (the so-called informa-
tive frequency bands or IFB). We propose the functional approach known in modern
time series analysis to overcome these difficulties. We will process data sets as
collections of random functions to apply techniques of the functional data analysis.
As a result, we will be able to represent massive data sets through few real-valued
functions and corresponding parameters, which are the eigenfunctions and eigen-
values of the covariance operator describing the signal. We will also propose a new
technique based on the bootstrap resampling to choose the optimal dimension in
representing big data sets that we process. Using real data generated by a gearbox
and a wheel bearings we will show how these techniques work in practice.

Key words: damage detection, functional data, functional principal components,
informative frequency band.

1. Introduction

In recent years, extensive research has been focused on big data problems re-
lated to statistical signal processing. The big data problem arises when a structural
health monitoring system is supported by on-line sensors producing a signal ob-
served with e.g. 20 kHz frequency. After several hours of observations we have
millions of data points that can be used for processing. So far, many practical
applications have been based on selecting some segments of data and classical
analyses have then been conducted on selected segments. However, modern sta-
tistical inference can be based on the whole multi-million points sample when the
functional data analysis approach is used (see, for example Horváth and Kokoszka,
2012). This is especially suitable when we deal with time-varying systems and when
techniques related to time-frequency analysis are used. For example, in Yang and
Nagarajaiah (2014), results are presented on independent component analysis with
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132 J. Leśkow, M. Skupień: An application of functional...

wavelet transform. Interesting exploratory studies on frequency response function
(FRF) can be found in Staszewski and Wallace (2014).

In the case of big data and time varying systems, it is convenient to consider
data as curves. For example, for a rotating element the natural data curve would
be generated in the interval of the length of a cycle. For other signals, a natural
interval may be a second or a minute. From this perspective, the spectrogram
(see, e.g. Gryllias, et al., 2017 or Khadersab and Shivakumar, 2018) is a way of
converting a big signal into segments via Fourier analysis on sliding blocks creating
a time-frequency map. Such a map is exactly a collection of random curves. From
this point of view, a multimillion data points segment of a signal generated by a
sensor attached to some structure is seen as a collection of curves.

In recent years there is a significant research dedicated to wheel bearing diag-
nostics. Randall and Antoni (2011) presents a review of contemporary techniques.
Other publications like (Liu, et al., 2018) or (Jia, et al., 2016) present contemporary
artificial intelligence technique and their applications in the wheel bearing diagno-
sis. However, according to our knowledge, so far no one has implemented modern
statistical inference tools, based on functional data approach, to the diagnosis of
wheel bearings. In this context we would like to mention research in Spiridonakos
and Fassois (2014) dedicated to functional time series and their applications to non-
stationary random vibrations, where a functional approach is proposed in a different
context.

The main line of our article is to show how to use modern statistical tools like
functional data analysis or bootstrap to efficiently process big data sets and identify
significant frequencies. We propose a new perspective in looking at a very popular
tool in signal analysis such as the spectrogram. In Subsection 3.1. we explain
the difference between classical spectrogram and new functional one proposed by
us. Usually, the spectrogram is generated by a signal coming from an excavating
machine or by a signal generated by a wheel bearing (see, for example Cioch,
et al. 2013). Then, the proper functioning of the tested system is diagnosed by
identifying the frequency band where the signal impulsivity is most marked, called
in the sequel informative frequency bands (IFB) (see Randall and Antoni, 2011 or
Obuchowski, et al., 2014).

We propose to view the spectrogram as a collection of random curves. Us-
ing the functional data analysis approach, we are able to process such data and
quickly solve the problem of identifying the IFB. The main advantage of our method
is a possibility of using large data sets to generate few dimension of the diagnos-
tic analysis. Millions of data points are represented as random curves, then in the
appropriately defined infinitely dimensional Hilbert space the covariance operator
is considered and its empirical counterpart is studied. Finally, only few eigenvalues
and eigenfunctions of the empirical covariance operator are sufficient to efficiently
represent the signal at hand. We propose a novel technique of using bootstrap re-
sampling in deciding on dimensionality reduction. Another main advantage of our
method is that no matter what frequency of signal sampling might be, our method
provides a uniform result. On the diagram in Figure 1 we show the logic of our
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approach.

Figure 1: Flowchart of the main idea of our paper.

Our article is organized as follows. In Section 2, we present main elements
of the functional data analysis approach as applied to signals. Basic tools such
as functional principal components, Hilbert space valued random transformations,
variance and covariance operators are presented there. In Section 3, we apply
this approach to the problem of identifying the informative frequency bands for a
spectrogram. In that context we show that without discarding any data points we
are able to reduce the dimensionality of data to just a few eigenvalues and few
eigenfunctions and retain more than 80% of its energy. Finally, in Section 4 we
provide a short discussion of our results.

2. Functional data approach in statistical signal processing

Our starting point here is the new perspective on statistical signal processing
from the functional data analysis point of view. To start, assume that we observe
a signal {X(s) : s ∈ [0,T ]} and the collect time T is really huge, e.g. in the order of
several millions of individual data points. We will view such a signal as a collection
of random curves {Xn(s),s∈ [n,n+w]} each defined on the interval [n,n+w] with the
width w. These curves may be considered independent or correlated, depending
on the model and a context of study. For example, the spectrogram technique
Gryllias, et al., (2017), Khadersab and Shivakumar, (2018) transforms a long signal
{X(s) : s ∈ [0,T ]} into a collection {x1( f ), . . . ,xN( f )} of spectral densities defined
on a common frequency interval [0,Λ ], where f ∈ [0,Λ ]. In the Subsection 2.3, in
the last algorithm, we explain what our functional observations are and how they
were obtained from a discrete vibration signal. We assume those observations to
be independent. We are aware that the technic of the overlapping window may
introduce some dependence into our data structure. At this point we neglect this
dependence and we proceed as if the data were independent. However, in the



134 J. Leśkow, M. Skupień: An application of functional...

literature there is a number of cases in which methods of functional data analysis
have been adapted to series or signals by cutting them as if they were curves
observed independently (see Ramsay and Silverman (2002) and (2005)).

To simplify our notation and with no loss of generality, we will assume that Λ = 1
so all data curves are defined on the unit interval [0,1] . The observed curves will
be assumed to be square integrable. A natural choice of the realization space will
therefore be the Hilbert space H = L2[0,1]. This is a consequence of the expansion
methods (see Ramsay and Silverman (2002) and (2005)), where the functional form
of curves is obtained by a linear span of base functions. The relevant coefficients
are then estimated from discrete observation of curves at different time points by
least squares methods. This point of view allows us to introduce a Hilbert space
of squared integrable functions, where the theory of functional principal component
analysis (and many other functional methods) can be applied. From this perspective
our initial signal {X(s) : s ∈ [0,T ]} can be viewed as a collection of random curves
{Xn}, each in the space H. For such random curves, we will now introduce concepts
of mean, variance and covariance.

Note that each random curve X is as a random element acting from some prob-
ability space (Ω ,F ,P) onto L2[0,1]. If X is integrable, then there is a unique func-
tion µ ∈ L2 such that E〈y,X〉 = 〈y,µ〉 for each y ∈ L2. It follows that µ(t) = E[X(t)]
for all t ∈ [0,1]. Here 〈·, ·〉 is the scalar product in the Hilbert space H defined as

〈x,y〉=
∫ 1

0 x(s)y(s)ds with the norm defined as: ‖ f‖=
√∫ 1

0 f 2(t) dt for all f ∈ H. For
more mathematical details regarding statistics on Hilbert space the reader is re-
ferred to Horváth and Kokoszka (2012).

We recall here the notion of spectral decomposition for matrixes and functional
operator.

Theorem: 1. SupposeA is a symmetric, positive definited k×k matrix. Then, there
is an orthonormal matrix U = [u, . . . ,uk] whose columns are the eigenvectors of
A, i.e.

UTU = I and Auj = λ juj

Moreover, UTAU = Diag[λ1, . . . ,λk] The orthonormality of U is equivalent to the
assertion that the vectors u, . . . ,uk form an orthonormal basis in the Euclidean
space Rk. Theorem 1 implies that

A
(k×k)

=
k

∑
i=1

λi ui
(k×1)

ui
T

(1×k)
= U

(k×k)
Λ

(k×k)
UT

(k×k)
,

a representation known as a spectral decomposition of A.

The above ideas can be easily extended to a separable Hilbert space. Suppose
ΨΨΨ is a symmetric positive–definite Hilbert–Schmidt operator in L2. Covariance op-
erator (1) and its sample counterpart (2) are in this class, provided E‖X‖4 < ∞. The
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operator ΨΨΨ then admits the functional counterpart of spectral decomposition (1)

〈ΨΨΨ(x),x〉=
〈 ∞

∑
i= j

λ j〈x,v j〉v j,x
〉
=

∞

∑
i= j

λ j〈x,v j〉2

where scalars λ j are eigenvalues and v j corresponding eigenfunctions, satisfying
equation ΨΨΨ(v j) = λ jv j.

2.1. Theoretical and empirical covariance operators

Since we are adopting the Hilbert space approach, the usual covariance will be
an operator, that is a transformation from the Hilbert space to the Hilbert space.
This is analogous to the traditional concept of covariance, where a real-valued sig-
nal X generates a covariance function transforming real values to real values. Let
us have a closer look at the formal definition of the covariance operator.

For X integrable and EX = 0, the covariance operator of X is defined by

C(x) = E[〈X ,x〉X ], x ∈ L2, (1)

where

C(x)(t) =E[〈X ,x〉X(t)] = E
∫ 1

0
X(s)x(s)dsX(t) =

=
∫ 1

0
E[X(s)X(t)]︸ ︷︷ ︸

=c(s,t)

x(s)ds =
∫ 1

0
c(s, t)x(s)ds.

In the sequel, the covariance operator C will be our central point of a study as
it fully describes the energy generated by the random element X , which in turn
represents a signal under study. While studying the covariance operator, we will
focus on characterizing its eigenvalues. They will be important in reducing the
dimensionality of C to just a few of non-negative numbers. For more theoretical
properties of the covariance operators see Horváth and Kokoszka (2012).

The main task of statistical signal processing in the functional data analysis con-
text will be to introduce an empirical covariance operator Ĉ that is fully defined by
random curves x1, . . . ,xN and for sufficiently large sample size N approximates the
theoretical covariance operator C that describes the signal of interest. Therefore,
assume that a sample of random functions x1, . . . ,xN corresponds to the signal X .
Recall that the spectrogram can be viewed as a collection of random curves with
arguments in the frequency interval. In general, however, such random functions
can represent segments of signals from different time intervals or replica of signals
collected via some transformations.
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For x1, . . . ,xN we define the sample covariance operator as:

Ĉ(x) =
1
N

N

∑
i=1
〈xi,x〉xi, x ∈ H. (2)

It is important to note that in the formula (2) the symbol x corresponds to any
function x from the Hilbert space H while xi is the observed random function xi gen-
erated by the signal of interest. In such a way the estimator Ĉ given in (2) approxi-
mates the theoretical covariance operator C defined in (1). For more mathematical
theory related to this approximation the reader is refereed to (Bosq, 2000).

For covariance operators which are symmetric, positive defined and are defined
on a Hilbert space and are Hilbert-Schmidt operators we have a very interesting
property. Suppose ΨΨΨ is a symmetric, positive definite Hilbert–Schmidt operator
with eigenfunctions v j and eigenvalues λ j, satisfying λ1 > λ2 > · · · . Then,

sup
‖x‖=1

{〈ΨΨΨ(x),x〉 : 〈x,v j〉= 0, 1≤ j ≤ i−1, i < p}= λi

and the supremum is reached if x = vi. The maximizing function x is unique up to a
sign. The upper bound p for index i is defined in Subsection 2.2.

Of course, the empirical covariance operator Ĉ given in (2) satisfies the above
property. This in turn gives us the following facts fundamentally important in the
subsequent statistical considerations:

• the empirical covariance operator Ĉ defined in (2) is fully defined by its eigen-
functions and eigenvalues,

• the covariance and the total variance of the sample (thus the signal) will be
described by the estimated eigenvalues.

In what follows, we will show how to apply these facts. To start, recall that the
random functions x1, . . . ,xN correspond to the signal of interest. Now, fix the integer
number p� N. Next, choose the basis u1,u2, . . . in H such that:

Ŝ2 =
N
∑

i=1

∥∥∥xi−
p
∑

k=1
〈xi,uk〉uk

∥∥∥2
←min

Then, each curve xi can be approximated by
p
∑

k=1
〈xi,uk〉uk =

p
∑

k=1
ckuk. Hence, an

infinite dimensional curve xi is represented by a p variate vector (〈xi,u1〉, . . . ,〈xi,up〉).
Now we will use the fundamental fact that the basis elements u1, . . . ,up can be
chosen to correspond to the eigenfunctions of the sample covariance Ĉ. More
precisely, functions û1, û2, . . . , ûp minimizing Ŝ2 are equal (up to a sign) to normalized
eigenfunctions of the sample covariance operator Ĉ.

Note that scores 〈x, ûk〉=
∫ 1

0 x(t)ûk(t)dt measure the importance of the kth func-
tion ûk in the representation
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x≈
p

∑
k=1
〈x, ûk〉ûk. (3)

In the sequel, we will call ûk the k− th functional principal component. One of its
important properties is orthonormality.

The eigenvalues are extremely important in describing the total energy of the
signal. For a random element X with values in the Hilbert space H we have:

E‖X‖2 =
∞

∑
j=1

E〈X ,v j〉2 =
∞

∑
j=1
〈C(v j),v j〉=

∞

∑
j=1

λ j.

The quantity E‖X‖2 can be called theoretical total variance. Its empirical equiv-
alent, sample total variance, based on a sample of random functions x1, . . . ,xN is
defined as:

1
N

N

∑
i=1
‖xi‖2 =

1
N

N

∑
i=1
〈xi,xi〉=

1
N

N

∑
i=1

〈 N

∑
j=1
〈xi, û j〉û j,

N

∑
j=1
〈xi, û j〉û j

〉
=

=
N

∑
j=1

1
N

N

∑
i=1
〈xi, û j〉2 =

N

∑
j=1
〈Ĉ(û j), û j〉=

N

∑
j=1

∞

∑
k=1

λ̂k 〈û j, ûk〉2︸ ︷︷ ︸
=δ jk

=
N

∑
j=1

λ̂ j,

where δ jk is the Kronecker delta - a function of two variables, defined as follows:

δ jk = δ ( j,k) =

{
1, if k = j

0, if k 6= j
and λ̂ j is interpreted as variance in the direction

û j. In other words, the empirical functional principal component û j generated by
the empirical covariance operator Ĉ explains the fraction of the total sample vari-

ance equal to λ̂ j/
N
∑

k=1
λ̂k. The above approach will be referred to as the Functional

Principal Component Analysis or FPCA for short.

2.2. Reduction of dimensionality

While working with big data sets generated by signals, the crucial point is to
select the number p of eigenvalues that give a reasonable approximation of the
sample total variance. One of the methods of selecting p, for which function xi has

the best approximation given by the formula
p
∑
j=1
〈xi, û j〉û j is the CPV method. This

method is based on calculating the cumulative percentage of the total variance
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(CPV) explained by the first p empirical functional principal components

CPV (p) =

p
∑

i=1
λ̂i

N
∑

i=1
λ̂i

. (4)

We choose p for which CPV (p) exceeds a desired level. Ideally, one would like
to recover 100% of the total variance, however in practical situations we usually
settle with 80% or higher. Such approach has a dramatic effect on our ability to
process big data generated by the signals observed with high frequency over long
periods of time. First, we split the signal into a sequence of random functions and
then we follow the approach above to identify the first p eigenvalues. In the fol-
lowing section we will show that for vibration data coming from the gearbox of the
excavating machine choosing p as small as 8 retrieves a large percentage of the
total variance.
Below, we present our original method, based on bootstrap technique, which allows
us to precisely evaluate the percentage of variance explained with a confidence in-
terval.

CPV bootstrap algorithm.

Step 1. We start from the initial sample of random functions x1, . . . ,xN . We
sample with replacement the first bootstrap sample x∗11 , . . . ,x∗1N from the initial set
x1, . . . ,xN . It is important that the bootstrap sample is of the same size as the origi-
nal one. For such bootstrap sample we calculate the first bootstrap value CPV (p)∗1

of CPV (p) (see formula (4)).

Step 2. We repeat Step 1 B times. Usually, we take B = 1000. As a result, we
get B bootstrap replications {CPV (p)∗1, . . . ,CPV (p)∗B}.

Step 3. We produce a 95% confidence interval for CPV (p) using 2.5% and
97.5% empirical quantiles from the replications {CPV (p)∗1, . . . ,CPV (p)∗B}.

We illustrate the logic of our bootstrap procedure on the diagram in Figure 2.
The below procedure is admissible from the statistical point of view as it is recon-
structing the true unknown distribution of the CPV (p), which in turn is based on
the unknown distribution of eigenvalues. For a more detailed discussion related
to eigenvalues distribution in the functional approach see e.g. (Mas, 2002). We
would like to emphasize that our method allows us to analyse big data sets gener-
ated by signals observed over a long period of time using just 8 eigenvalues and 8
associated eigenfunctions. In general, one can start with even 2 eigenvalues, cal-
culate the CPV (3)/CPV (2) and bootstrap it to get its confidence intervals and then
see whether adding third eigenvalue significantly improves CPV(3) as compared to
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CPV(2). The reader can find an explanation of this improvement in Subsection 3.2
on the example of analysed data set. Additional argument is provided by studying
the convergence of the ratio CPV (p+1)/CPV (p) and identifying the proper p, where
it starts to stabilize (Figure 3).

Figure 2: Flowchart of finding the empirical distribution of CPV (p) via bootstrap
algorithm.

Figure 3: Visualization of the ratio CPV (p+1)/CPV (p) based on experimental data
set.

In the following subsection, we will show how to apply the dimensionality reduc-
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tion obtained from FPCA to the problem of identification of informative frequency
bands (IFB).

2.3. FPCA and informative frequency bands for spectrogram

Let us start with a definition. We define the Informative Frequency Band (IFB)
generated by a series of squared absolute of Short-Time Fourier Transforms
|ST FT (t, f )|2, t = 0, . . . ,T and f ∈ [0,Λ ] as such a subset A⊂ [0,Λ ] that

IE
E
(A)

de f
=

∑
f∈A

T
∑

t=0
|ST FT (t, f )|2

∑
f∈[0,Λ ]

T
∑

t=0
|ST FT (t, f )|2

≥ L, (5)

where E is the total energy of the signal and IE is the energy within the frequency
set A and ST FT (t, f ) defined in (6). The threshold value L, 0 ≤ L ≤ 1 is usually
selected to be bigger than 80%.

To simplify the search for the frequency set A defined in (5), we start from a
one-element subset that contains the most energy and we augment it successively
adding element by element in the order of the energy contribution. This is repre-
sented by the algorithm below.

Identification of IFB by STFT.

Step 1. Identify first f1 such that ∑
T
t=0 |ST FT (t, f1)|2 is the biggest.

Step 2. Obtain the ranking of frequencies fi via

T

∑
t=0
|ST FT (t, f1)|2 ≥ . . .

T

∑
t=0
|ST FT (t, fi)|2 ≥ . . .

T

∑
t=0
|ST FT (t, fI)|2 .

where I is the cardinality of a set of frequencies (discretizated interval of frequen-
cies).
Step 3. From the above ranking we identify the subset Aspectr = { f1, f2, . . . , fK} in-
duced by spectrogram such that

IE
E
(Aspectr)≥ L,

where IE
E (·) was defined in (5).

The above procedure does not involve FPCA, it simply ranks the frequencies in
the decreasing order of their influence on the total variability generated by STFT. We
will now show how FPCA and the reduction of dimensionality obtained via CPV (p)
helps identify the impulsive frequencies.
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IFB identification algorithm via FPCA.

Step 1. Represent the raw data produced by the spectrogram as random functions
x1, . . . ,xN . In the Subsection 3.1, we explain how to obtain curves {xi, . . . ,xN}. Us-
ing the functional approach, find the empirical covariance estimator Ĉ (see (2)), the
corresponding eigenvalues {λ̂i, i= 1, . . . ,N} and the functional principal components
{ûi( f ), i = 1, . . . ,N; f ∈ [0,Λ ]} (see (3)). Using the CPV (p) technique identify your
choice of p. We still use formula (5) with one modification - in place of |ST FT (t, f )|2

we insert FPC representation of the curve, i.e. |xt( f )|2 = |
p
∑
j=1
〈û j,xt〉û j( f )|2

Step 2. Identify first f1 such that ∑
T
t=0 |xt( f1)|2 is the biggest.

Step 3. Obtain the ranking of frequencies fi via

T

∑
t=0
|xt( f1)|2 ≥

T

∑
t=0
|xt( f2)|2 ≥ . . .≥

T

∑
t=0
|xt( fI)|2

Step 4. From the above ranking we identify the FPCA induced subset AFPCA =

{ f1, f2, . . . , fR} such that

IE
E
(AFPCA)≥ L,

where IE
E (·) was defined in (5).

In the next Section dedicated to applications we will show how close the sets
Aspectr and AFPCA are.

3. Application to gearbox and wheel bearing data

In this Section we will show the application of the functional data approach pre-
sented in the previous section to the spectrogram in the context of identifying the
informative frequency band (IFB). Recall that the spectrogram represents the signal
as a collection of short-time Fourier transforms (STFT). Using time-frequency plots
produced by sequences of STFTs one tries to identify the frequency bands where
the excitation (energy) of the signal of interest is the most significant. From our
perspective, however, the spectrogram is a collection of random curves. To make
our point more precise let X be a signal of interest. Recall that the STFT is defined
as:

STFT(t, f ) =
∞∫
−∞

w(t− τ)X(τ)e−2πi f τ dτ, (6)

where w(·) is the window function, t ∈ [0,T ] and the frequency f ∈ [0,Λ ]. The dis-
crete version of STFT is defined as follows:
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STFT(t, f ) =
M−1

∑
k=0

Xkw(t− k)e−2πi f k/M. (7)

3.1. Spectrogram and FPCA on data

A spectrogram is a visual representation of the spectrum of frequencies in a
signal as it varies with time or some other variable. A common format is a graph
with two geometric dimensions: the vertical axis represents frequency, the horizon-
tal axis is time; a third dimension indicating the amplitude of a particular frequency
at a particular time is represented by the intensity or colour of each point in the
image. Here we will analyse the spectrogram generated by the open-pit excavating
machine from a Polish brown coal mine. The signal is the acceleration signal gen-
erated in the gearbox of this machine. The raw signal that combines four signals
from four sensors has a length of 20480 data points. The impulses are convoluted
with the raw signal and then the spectrogram of the result is analysed. The resulting
signal {X(s) : s ∈ [0,T ]} is represented in Figure 4.

Figure 4: Acceleration signal with the impulses.

The spectrogram corresponding to the above signal is represented in Figure 5
on the left panel. The spectrogram of the signal obtained after the dimensionality
reduction done by FPCA method is shown on the right panel. Here, we clarify how
to create particular spectrograms.

Traditional data spectrogram: First, decompose the signal {X(s) : s ∈ [0,T ]} into
the set of overlap narrowband sub-signals {Xt(s) : s∈ [t, t+w]}N−1

t=0 . Next, use Fourier
transform (FFT) to calculate the magnitude of the frequency spectrum for each
sub-signal (FFT is a digital process). Vertical (or horizontal) line in the image cor-
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responds to each sub-signals; a measurement of magnitude vs. frequency for a
specific moment in time. Finally, these spectrums or time plots are then ”laid side
by side” to form the image or a three-dimensional surface, or slightly overlapped
(windowing) in various ways. To sum up, a spectrogram is a frequency-time domain
map, representing an energy of signal (power spectrum). Its values are stored in a
huge matrix {|STFT(t, f )|2} f∈[0,Λ ]; t∈[0,T ] with entries defined in (7).

Spectrogram via FPCA method: We process a vibration signal similarly to tradi-
tional method with the difference that each sub-signal selected by windowing is con-
verted into function, hence we view a spectrogram as a collection of random curves.
According to our notation, for each t = 0, . . . ,N−1 we convert {|ST FT (t, f )|2}Λ

f=0 into
random curves {xt( f ) : f ∈ [0,Λ ]}t=0,...,N−1, where Λ is fixed maximum frequency,
and xt ∈ L2[0,Λ ]. Conversion of vectors (here, rows of the matrix {|ST FT (t, f )|2}Λ

f=0)
to curves is carried out with the use of basis expansion in L2[0,1] space. Here, we
used the program R and its package fda.usc with the function fdata2fd to pro-
duce functional object. The type of functional basis is Bspline by default, but of
course it is possible to change basis to any other, for example Fourier basis. Next,
we reduce dimensionality of those curves using FPCA. For curves, represented by
combination of several eigenfunctions and scores we calculate STFT defined in (6)
achieving again a matrix {|STFT(t, f )|2} f∈[0,Λ ]; t∈[0,T ] which has graph representation
in Figure 5 on right panel. From our perspective, the spectrogram is a collection of
random curves indexed by the parameter t (time). In other words, the spectrogram
is a set which define the energy of functions. Consequently, IFB is a subset of those
functions whose energy within this band is close to the total energy.

Figure 5: Traditional data spectrogram (left) and spectrogram via FPCA method
(right).

Our data set is a relatively big 513×1265 matrix with entries {|ST FT (t, f )|2}. The
second dimension (frequencies f ) range is 513 = 29 +1 and it refers to the sample
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frequency. The first dimension (time t) is 1265 and it refers to the number of win-
dows N covering a signal of length 20480 (16 ·N = 20480−256). Here, we have used
Hamming window (a function describing the way of sampling within a signal, given
by formula w(t− k) = 0.53836− 0.46164cos( 2π(t−k)

M−1 ); k = 1, . . . ,M) of length 256 = 28

and an overlap M = 240. Next, each row of {|ST FT (t, f )|2} is converted to func-
tion xt( f ), t = 0, . . . ,1−N , which forms our functional data set. The last step is to
approximate those curves with principal components expansion.

We will now show how the FPCA method works in practice. We choose p = 8
first functional principal components generated by the empirical covariance oper-
ator Ĉ induced by the random curves x1, . . . ,xN corresponding to the spectrogram.
How to obtain the empirical operator was explained in previous Section 2, i.e. in
formula (2). It is worth to notice, that x in (2) is any element of the Hilbert space H,
so the easiest way to choose this element is to take any basis element. Moreover,
Ĉ is fully described by its eigenfunction and eigenvalues, which are known from the
data. We illustrate our eight empirical principal components in Figure 6, which is
a fragment of a 8×8 matrix of small pictures. On the diagonal, first four from the
eight functional principal components ûi, i = 1, . . . ,8 are represented. Outside the
diagonal, we show the scatterplots of scores {(PCk

i ,PCk
j )}N

k=1 , i 6= j, i, j = 1, . . . ,8.
Recall that scores PCk

i = 〈ûi,xk〉, where ûi are the eigenfunctions of the empirical
covariance operator Ĉ and xk, k = 1, . . . ,N is a function from the sample {x1, . . . ,xN}.
In our case N = 1265. The more the scatterplots are irregular, the less correlation
between them. Ideally, one would like to have a zero correlation between them
since we want our functional principal components to be orthogonal. Our graphs
confirm the idea of the weak correlation between the scores, hence our empirical
FPC are indeed orthogonal.

In Table 1, we show the percentage of variance explained by each of the first
eight functional principal components FPC(i), i = 1, . . . ,8.

Table 1: Percentage of variability explained by each empirical functional compo-
nent.

FPC1 FPC2 FPC3 FPC4 FPC5 FPC6 FPC7 FPC8
52.62% 9.91% 5.48% 4.07% 3.36% 2.38% 2.10% 1.96%
Total explained: 81.88%

First four empirical functional components are quite informative, explaining as
much as 72.08% of variability so we show the corresponding 4×4 matrix of plots
of the scores, which are highly uncorrelated confirming orthogonality of empirical
FPC (see values of correlation in the top of the boxes outside the diagonal).



STATISTICS IN TRANSITION new series, March 2019 145

Figure 6: First four FPC with scatterplots of scores.
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3.2. Cumulative percentage of variance (CPV) study

The previous subsection was devoted to illustrating how our FPCA method
works in practice. For the first eight empirical functional eigenvalues λ̂1, . . . , λ̂8 we
have obtained a quite reassuring result: they represent as much as 81.88% of
variance. From the statistical perspective, however, we would like to get more infor-
mation on the variability of the CPV (p) coefficient. In other words, we would like to
be able to measure the variability of our estimate with the point value of 81.88%. To
answer this question, we will apply the CPV bootstrap algorithm introduced in the
previous Section 2.
The statistical features of the bootstap distribution of CPV(8) are shown in Figure 7.

Descriptive statistics
of CPV(8) Values

Minimum 80.43000
2.5% quantile 81.02000
Median 81.78000
Mean 81.79348
97.5% quantile 82.54025
Maximum 82.98000
Variance 0.14648
Skewness −0.00285
Kurtosis 3.07514

Figure 7: Descriptive statistics for CPV (8) based on bootstrap samples.

The most important message from the above calculations is that the 95% confi-
dence interval for CPV(8) is from 81.02% (the 2.5% quantile) to 82.54% (the 97.5%
quantile). This means that CPV as a random variable is quite concentrated around
its point value 81.88% and that our results are quite reliable and have only a small
spread.

To analyse the speed of convergence CPV (p+ 1)/CPV (p)
p→∞−→ 1 we have per-

formed the bootstrap distribution study of this ratio and have obtained the results
presented in Figure 8.
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Descriptive statistics
of CPV(9)/CPV(8) Values

Minimum 1.01612
2.5% quantile 1.01719
Median 1.01859
Mean 1.01864
97.5% quantile 1.02023
Maximum 1.02113
Variance 6.56e−07
Skewness 0.19956
Kurtosis 2.95591

Figure 8: Normality of CPV (9)/CPV (8) based on bootstrap samples.

Again, we see the usefulness of the bootstrap method. From the bootstrap
method we get the 95% confidence interval for the proportion CPV (9)/CPV (8) is
[1.017;1.020] which means that increasing p from 8 to 9 we will get only 2% more of
the variance explained. This is sufficient argument to stop at p = 8. Adding more
FPC’s dose not improve significantly total variance explained.

3.3. Application to informative frequency bands

In our experiment, we set the threshold L defined in (5) as 80%. Therefore, for
our vibration data coming from the gearbox we will be looking for two sets: Aspectr

and AFPCA such that IE
E (Aspectr)≥ 80% and IE

E (AFPCA)≥ 80%. We will see how close
those two sets are on real applications using vibration signals.

Searching for Aspectr that satisfies (5) may be quite time consuming as we have
to consider all possible subsets of frequencies from the set [0,Λ ]. For example, for
the vibration gearbox data one would have to deal with 2513 combinations! As de-
scribed in the previous Section, we start the search by identifying the frequency f1

that maximizes ∑
T
t=0 |ST FT (t, f )|2, then select the second in the order of the energy

contribution and so on.

The analysis based on CPV (p) presented in the previous subsection has shown
that p= 8 first functional principal components reproduce as much as 81.88% of the
total variability in the data. Therefore, the FPCA method induced by the spectro-
gram of gearbox signal creates the eight-dimensional vector of scores, taken from
the functional expansion. This means reducing the dimensionality of our problem
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from 1265 windows with 513 frequencies in each to 8× 513 considering spectro-
gram data as a functions of frequencies. This means, that finding AFPCA is much
faster than Aspectr, especially for large data sets.

Below, we provide a listing of all frequencies pertaining to Aspectr and AFPCA.

Aspectr ={447.13,455.11,439.14,463.1,431.16,471.08,423.17,479.06,415.19,

542.94,550.92,534.96,487.05,526.97,558.91,518.99,566.89,407.2,

495.03,511,574.88,503.02,335.35,343.33,327.36,399.22,351.31,

319.38,359.3,391.24}.

Aspectr has 30 elements.

AFPCA ={447.13,455.11,439.14,463.1,431.16,471.08,423.17,479.06,415.19,

542.94,534.96,550.92,487.05,526.97,558.91,407.2,518.99,566.89}.

AFPCA has 18 elements.
Note that the first 10 frequencies coincide, up to the second decimal point (in

Hz). If we consider frequencies from the intersection B = Aspectr ∩AFPCA , then the
percentage of signal energy describing IFB is already at the level of 74,03%, not
very far from the threshold of 80%.

We have applied the above analysis to the data set generated by a wheel bear-
ing and described in Cioch et al. (2013). The sets Aspectr and AFPCA are shown
below for these data

Aspectr = {1272.51,1291.23,1253.8,1309.94,3106.43,3125.15,3087.72,1235.09,1328.65

3143.86,3069.01,1347.37,3162.57,3050.29,1216.37,1366.08,3031.58,3181.29

1197.66,1384.8,}

AFPCA = {1272.51,1291.23,1253.8,1309.94,3106.43,1235.09,3125.15,1328.65,3087.72

3143.86,3069.01,1347.373162.57,1216.37,3050.29,1366.08,3181.29,3031.58

1384.8,1197.66}.

A careful examination of the above listings for both data sets shows that both
sets contain the same frequencies. They are shown in the order of their importance
in energy explained in Section 2. Therefore, the only change we have using the
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FPCA is the change of the order of the energy importance of the frequency. Ob-
serve, however, that such a change is not dramatic. FPCA preserves the order of
the first five frequencies and then makes only small changes, never bigger than two
places in the order of energy.

4. Conclusions

Our article is devoted to introducing the functional data approach to analyse big
data generated by signals available for structural health monitoring. We show that
applying the FPCA - the functional principal component approach - we can reduce
the dimensionality of the data from several millions to several thousands. Using
such an approach we show the importance of the eigenfunctions and eigenvalues
calculated for functions generated by observing the signal. It turns out that the
popular coefficient - the cumulative percentage of the variance explained (CPV)
exceeds 80 per cent for the initial few functional components. We show that this
approach applied to the signal generated by the excavating machine can be helpful
in identifying informative frequency bands. Moreover, applying the bootstrap ap-
proach we can show that the CPV has a relatively small dispersion, which proves
the numerical stability of our results.
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AN ALTERNATIVE MATRIX TRANSFORMATION TO
THE F TEST STATISTIC FOR CLUSTERED DATA

Sukanya Intarapak1, Thidaporn Supapakorn 2

ABSTRACT

For the regression analysis of clustered data, the error of cluster data violates the
independence assumption. Consequently, the test statistic based on the ordinary
least square method leads to incorrect inferences. To overcome this issue, the trans-
formation is required to apply to the observations. In this paper we propose an al-
ternative matrix transformation that adjusts the intra-cluster correlation with House-
holder matrix and apply it to the F test statistic based on generalized least squares
procedures for the regression coefficients hypothesis. By Monte Carlo simulations
of the balanced and unbalanced data, it is found that the F test statistic based
on generalized least squares procedures with Adjusted Householder transformation
performs well in terms of the type I error rate and power of the test.

Key words: adjusted Householder, clustered data, F test statistic, generalized least
squares, intra-cluster correlation.

1. Introduction

Clustered data arise in many situations such as health research (multiple patients
within a hospital) (see Miall and Oldham (1955) and Ng et al. (2004)), education
study (multiple students within a school) (see McCulloch and Shayle (2001)) and
biological science (multiple children within a family) (see Agarwal et al. (2005)).
Clustered data are characterized as data that can be classified into a number of
distinct groups or clusters (see Galbraith et al. (2010)). Any two responses from
different clusters are independent, but pairs of responses within clusters are cor-
related, and the correlation is the same for all pairs of individuals from the same
cluster, which is called the intra-cluster correlation (see Eldridge et al. (2009)). In
general, the regression technique assumes that the errors in observations are in-
dependent, identically and normally distributed. This assumption will not be always
held for clustered data. Battese et al. (1988) proposed a regression method for
analysing clustered data, which is called the nested error regression model.

The nested error regression model is expressed as

yi j = xi jβ +ui + ei j, i = 1, . . . ,c; j = 1, . . . ,ni, (1)

1Department of Mathematics, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand.
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2Corresponding Author, Department of Statistics, Faculty of Science, Kasetsart University, Bangkok,
Thailand. E-mail: fscitdps@ku.ac.th. RCID ID: https://orcid.org/0000-0003-0019-9884.
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where yi j is the observed response for the jth sample unit in the ith cluster, xi j =

(xi j0,xi j1, . . . ,xi j,k−1) is the n× k matrix of explanatory variables and xi j0 is the n×
1 column vector where entries are all 1, β = (β0,β1, . . . ,βk−1)

′ is the k vector of
regression coefficients and ni is the number of sample units observed in the ith
cluster (∑c

i=1 ni = n). The random effect ui and random error ei j are assumed to be
independent of each other and distributed as N(0,σ2

u ) and N(0,σ2
e ), respectively.

The model (1) can be written as

y = Xβ + ε, (2)

where y=(y1, . . . ,yc)
′ with yi =(yi1, . . . ,yini), X=(X1, . . . ,Xc)

′ with Xi =(Xi10, . . . ,Xini,k−1)

and ε = (ε1, . . . ,εc)
′ with εi = (εi1, . . . ,εini). Further, εi j = ui + ei j,ε ∼ N(0,σ2V),σ2 =

σ2
u +σ2

e ,V has block-diagonal variance-covariance matrix with Vi = (1−ρ)Ini +ρJni

for the ith cluster where ρ = σ2
u /σ2 is the intra-cluster correlation, Ini is the ni× ni

identity matrix and Jni is the ni×ni matrix consisting of all 1s.

For testing the hypothesis about regression coefficients in the nested error re-
gression model, formerly, Wu et al. (1988), Rao et al. (1993) and Lahiri and Li
(2009) showed that the F test statistic based on ordinary least squares procedures
leads to highly inflated type I error rate. Wu et al. (1988) proposed a modification of
the F test statistic with known intra-cluster correlations, which is much better than
the F test statistic based on ordinary least squares procedures by type I error rate.
Rao et al. (1993) presented the F test statistic based on generalized least squares
procedures with the Fuller–Battese transformation (see Galbraith et al. (2010)) in
order to make observations independent and then applied the F test statistic to the
observations under valid assumption. The F test statistic with the Fuller–Battese
transformation performs similar to the modification of the F test statistic in con-
trolling the type I error rate. Furthermore, the power of F test statistic with the
Fuller–Battese transformation increases as the intra-cluster correlation increases,
whereas the power of the modification of F test statistic decreases. The power of
the F test statistic based on ordinary least squares procedures is not comparable
because of type I error rate inflation.

Recently, Lahiri and Li (2009) suggested the transformation for the F test statis-
tic based on generalized least squares procedures that is part of the Helmert ma-
trix (see Lancaster (1965)), unlike the Fuller–Battese transformation. Like previous
work, the F test statistic with part of Helmert matrix performs as well as in control-
ling the type I error rate, but the power of the test is not considered.

In this paper, we propose an alternative transformation for the generalized least
squares procedures by applying Householder matrix (see Householder (1958)). In
Section 2 we review several F test statistics for testing linear hypothesis regarding
the regression coefficients under the nested error regression model. Monte Carlo
study concerning the type I error rate and the power of the F test statistic is con-
ducted in Section 3 as well as the real application. The results of the simulation are
presented in Section 4.
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2. The F test statistics

2.1. Prior F test statistics

Under model (1), suppose that the hypothesis of interest is H0 : Cβ = q, where C is
a known m× k matrix of rank m(< k), and q is a known m× 1 constant vector. The
F-statistic based on ordinary least squares procedures is

FOLS =
(Cβ̂ −q)′{C(X′X)−1C′}−1(Cβ̂ −q)/m

( y−Xβ̂ )′(y−Xβ̂ )/(n− k)

where β̂ = (X′X)−1X′y.
FOLS leads to highly inflated type I error rate when the intra-cluster correlation

increases. When the intra-cluster correlation is known, Wu et al. (1988) proposed
a modification of the F test statistic by multiplying the numerator and the denom-
inator of FOLS by a chi-squared distribution with n− k and m degrees of freedom,
respectively.

The modification of the F test statistic is

FWU = FOLS×
{n− tr(PV)}/(n− k)

tr(PCV)/m
,

where P = X(X′X)−1X′,PC = XC(X′CXC)
−1X′C,XC = X(X′X)−1C′ and tr is the trace

operator.
Afterwards Rao et al. (1993) presented the F test statistic based on generalized

least squares procedures with the Fuller–Battese transformation under model (1).
Define Ti = Ini−n−1

i (1− [{1−ρ}/{1+(ni−1)ρ}]1/2)Jni ,y
∗
i = Tiyi,X∗i = TiXi, and

ε∗i = Tiεi. Then the transformed model can be written as y∗ = X∗β + ε∗, where
ε ∼ N(0,σ2

e In) and σ2
e = σ2(1−ρ). Thus, the F test statistic based on generalized

least squares procedures with the Fuller–Battese transformation is

FRAO =
(Cβ ∗−q)′(X∗′C X∗C)

−1(Cβ ∗−q)/m
(y∗−X∗β ∗)′(y∗−X∗β ∗)/(n− k)

,

where β ∗ = (X∗′X∗)−1X∗′y∗ and X∗C = X∗(X∗′X∗)−1C′.
Recently, unlike the Fuller–Battese transformation, Lahiri and Li (2009) pro-

posed the transformation for the F test statistic based on generalized least squares
procedures, which is part of the Helmert matrix. Generally, the Helmert matrix is
orthogonal (see Farhadian and Asadian (2017)), but Lahiri and Li (2009) used the
Helmert matrix by ignoring the first row. Thus, the part of the Helmert matrix is not
orthogonal.

Let Gi be an (ni− 1)× ni matrix which is part of the Helmert matrix by ignoring
the first row, i.e. 1′ni

/
√

ni. Multiplying both sides of the model (2) by Gi then the
transformed model is written as y? = X?β + ε?, where ε? ∼ N(0,σ2

e In−c) and σ2
e =

σ2(1−ρ). The F test statistic based on generalized least squares procedures with
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part of the Helmert transformation is

FLAH =
(Cβ ?−q)′(X?′

C X?
C)
−(Cβ ?−q)/m

(y?−X?β ?)′(y?−X?β ?)/(n− c− k)
,

where β ? = (X?′X?)−1X?′y? and X?
C = X?(X?′X?)−1C′.

2.2. F test statistic with an alternative transformation

For the F test statistic based on generalized least squares procedures, the transfor-
mation matrix is the necessary part to make the observations independent. Unlike
the previous transformations, we propose an alternative transformation that adjusts
the Householder matrix.

The Householder matrix (see Appendix) is taken into account because of its or-
thogonal, symmetry and idempotent properties, which are necessary for the trans-
formation matrix. The Householder matrix for the ith cluster, denoted by Hi, can be
written in a simple form as

Hi =



1 0 0 · · · 0
0 −1√

ni−1
−1√
ni−1 · · · −1√

ni−1

0 −1√
ni−1

(ni−1)(ni−3)+
√

ni−1
(ni−1)(ni−2) · · · −1

(ni−1)+
√

ni−1
...

...
...

. . .
...

0 −1√
ni−1

−1
(ni−1)+

√
ni−1 · · · (ni−1)(ni−3)+

√
ni−1

(ni−1)(ni−2)


.

Even if Hi is orthogonal, the error term of the transformed model is still fallacious,
that is the error term is not independent. Therefore, Hi is required to be adjusted.
Let Di be an ni×ni matrix, which is defined as

Di =


1 0 0 · · · 0

−ρ
√

ni−1
√

1+(ni−2)ρ− (ni−1)ρ2 0 · · · 0
0 0

√
1−ρ · · · 0

...
...

...
. . .

...
0 0 0 · · ·

√
1−ρ


such that (HiDi)(HiDi)

′ = Vi. Now, we have the alternative matrix transformation,
Pi, which is the inverse of matrix (HiDi), also, yAH

i = Piyi,XAH
i = PiXi and εAH

i = Piεi.
Then, the transformed model can be written as yAH = XAHβ + εAH , where

yAH = (yAH
1 , . . . ,yAH

c )′ with yAH
i = (yAH

i1 , . . . ,yAH
ini

),

XAH = (XAH
1 , . . . ,XAH

c )′ with XAH
i = (XAH

i10 , . . . ,X
AH
ini,k−1)

and ε
AH = (εAH

1 , . . . ,εAH
c )′ with ε

AH
i = (εAH

i1 , . . . ,εAH
ini

).

Currently, the assumption of the error is valid, i.e. var(εAH
i )= var(Piεi)= var{(HiDi)

−1εi}=
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σ2(HiDi)
−1Vi (HiDi)

−1′ =σ2Ini , and cov(εAH
i ,εAH

j )= 0 for i 6= j, that is cov(yAH
i ,yAH

j )=

0 for i 6= j.
Ultimately, the F test statistic based on generalized least squares procedures

with Adjusted Householder transformation is

FAH =
(Cβ AH −q)′(XAH ′

C XAH
C )−1(Cβ AH −q)/m

(yAH −XAHβ AH)′(yAH −XAHβ AH)/(n− k)
,

where β̂ AH = (XAH ′XAH)−1XAH ′yAH and XAH
C = XAH(XAH ′XAH)−1C′.

3. Simulation study

3.1. A Monte Carlo simulation

In this section the data sets are randomly generated to illustrate how various meth-
ods of statistical inference perform for analysing the clustered data. Following Wu
et al. (1988), Rao et al. (1993) and Lahiri and Li (2009), the nested error regression
model with two covariates (i.e. x1 and x2) is considered:

yi j = β0 +β1xi j1 +β2xi j2 +ui + ei j, i = 1, . . . ,c; j = 1, . . . ,ni. (3)

The data sets of (xi j1,xi j2) are generated from the bivariate normal distribution
with additional random effects components to allow for the intra-cluster correlations
ρx1 and ρx2 on both x1 and x2, respectively:

xi j1 = µx1 +ux1i + ex1i j, xi j2 = µx2 +ux2i + ex2i j,

where ux1i∼N(0,σ2
ux1

), ex1i∼N(0,σ2
ex1

), ux2i∼N(0,σ2
ux2

), ex2i∼N(0,σ2
ex2

), ρx1 =σ2
ux1

/σ2
x1
,

ρx2 = σ2
ux2

/σ2
x2
, σ2

x1
= σ2

ux1
+σ2

ex1
,σ2

x2
= σ2

ux2
+σ2

ex2
,σ2 = σ2

u +σ2
e ,σ

2
u = σ2

ux1
+σ2

ux2
,σ2

e =

σ2
ex1

+σ2
ex2

. ux1 ,ux2 and ei j are independent. Moreover, ux1i and ux2i are correlated
with covariance σux1x2 , and ex1i and ex2i are correlated with covariance σex1x2 .

Let ρx1x2 = σux1x2/σx1 σx2 and corr(x1,x2) = σx1x2/σx1σx2 , where σx1x2 = σux1x2 +

σex1x2 and corr(x1,x2) denote the correlation between xi j1 and xi j2. For the nested
error regression model with two covariates, the parameters are set accordingly to
the previous researchers (see Wu et al. (1988), Rao et al. (1993) and Lahiri and
Li (2009)). Then, without loss of generality, σ2

x1
= σ2

x2
= 20, ρx1 = 0.1,ρx2 = 0.5,

ρx1x2 = 0,corr(x1,x2) =−0.33, µx1 = 100,µx2 = 200,β0 = 10,β1 = β2 = 0 and σ2 = 10.
Given (xi j1,xi j2), yi j is generated by model (3) with five different values for intra-

cluster correlation (ρ = 0, 0.05, 0.1, 0.3 and 0.5) and five different numbers of
clusters (c = 3, 4, 5, 10 and 15) for the balanced data. When the data is unbalanced,
there are three clusters (c = 3) and the sets of the sample size are varied. The
simulated data (yi j,xi j1,xi j2) are repeated 10,000 replications for all conditions and
the F test statistics are computed for each replication to obtain the type I error rate
and the power of the test.
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3.2. Type I error rate

Type I error rate is obtained by the proportion of times that the p-value for the F
test statistic is smaller than the nominal level. The measurements are the binary
variables corresponding to the rejection regions of the null hypothesis H0 : β1 = β2 =

0. We then test the null hypothesis of no effect of the regression coefficients at 5%
and 10% nominal levels and the confidence interval of the type I error rate (α̂) is
calculated from α̂ +Zα/2

√
α̂(1− α̂)/10000 (see Lahiri and Li (2009)). If the nominal

level is 5% and 10%, the type I error rate should not exceed 5.43% and 10.49%,
respectively.

In Table 1, for the balanced data with the sample sizes (n) of 20, 30, 100 and
150, the results show that FAH ,FLAH ,FRAO and FWU perform as well as in controlling
the type I error rate. Under the F test statistic based on generalized least squares
procedures, FAH performs as well as FRAO in terms of the type I error rate. The F
test statistic with the Fuller–Battese transformation and the F test statistic with the
Adjusted Householder transformation are slightly different but they come up with
the same hypothesis testing conclusion, consequently, the type I error rate of FRAO

is disregarded. Furthermore, the type I error rates of FWU exceed the limit for large
intra-cluster correlation (ρ = 0.5) and FOLS leads to highly inflated the type I error
rate for almost situations.

When the sample sizes of each cluster are unbalanced, the results show that
FAH ,FLAH and FWU perform well in controlling the type I error rate for a small sam-
ple size (n=15) and small intra-cluster correlations (ρ ≤0.1) as shown in Table 2.
Under the unbalanced data and large sample sizes (n=30 and 90), FAH ,FLAH and
FWU maintain the nominal level for small intra-cluster correlations (ρ ≤0.1) when
the sample sizes of each cluster are slightly different, such as (n1,n2,n3)=(9,10,11),
(29,30,31). While the sample sizes of each cluster are widely varied, such as
(n1,n2,n3)=(5,10,15), (3,3,24), (10,20,60), (3,3,84), all F test statistics lead to highly
inflated type I error rate for all intra-cluster correlations, except for ρ = 0.

3.3. Power of the test

Power of the test is obtained by the proportion of times that rejects the null hypoth-
esis when the alternative hypothesis is true at the nominal level. Table 3 reports
the power of the F test statistic of the null hypothesis H0 : β1 = β2 = 0 against the
specified alternative at nominal 5% and 10% levels for the balanced data. For large
intra-cluster correlations, the power of FAH gains over the others. For very small
intra-cluster correlations (≤0.05), the power of FAH performs as well as FWU , on the
contrary, the power of FLAH is the lowest as shown in Figures 1 - 4. For example,
when ci× ni = 10× 10 and ρ =0.05, the power of FLAH is approximately 53% com-
pared to the power of FAH , which is 74%. Note that a slight decrease of the power
of FAH occurs when ρ increases from 0 to 0.1.

For a small sample size, the powers of FAH and FWU are similar when ρ ≤ 0.1 as
shown clearly in Figure 1 and 2, whereas the power of FAH is higher than that of FWU

when ρ ≥ 0.3. For a large sample size, Figure 3 and 4 confirm that the power of FAH



STATISTICS IN TRANSITION new series, March 2019 159

is higher than that of FWU and the powers of FAH and FLAH increase as ρ increases,
while the power of FWU decreases as ρ increases, theoretically corresponding to
the power of test established by Rao and Wang (1995). The illustration is shown in
Figure 4(b). That is, when the nominal level is 10% and the alternative hypothesis
is H1 : β1 = β2 = 0.2, the power of FAH increases from 87.07% to 90.42%, but the
power of FWU decreases from 87.07% to 54.14% as ρ increases for ci×ni = 10×10.

Similar to the balanced data, when the sample sizes of each cluster are unbal-
anced, the powers of FAH and FWU are higher than the power of FLAH for almost all
situations as shown in Table 4.

Table 1. Type I error rates (%) of the test H0 : β1 = β2 = 0 at nominal 5% and 10%
levels for the balanced data

Nominal level 5% Nominal level 10%
c×ni ρ FOLS FWU FLAH FAH FOLS FWU FLAH FAH

4×5 0 5.05 5.05 4.28 5.05 10.15 10.15 8.73 10.15
0.05 5.57* 4.83 3.69 4.88 11.23* 10.11 8.23 9.95
0.1 6.29* 4.73 3.55 4.69 12.14* 9.75 7.70 9.72
0.3 9.84* 4.76 4.19 4.83 16.54* 9.44 8.37 9.77
0.5 14.74* 4.82 3.88 5.03 23.22* 9.52 8.43 9.89

3×10 0 5.20 5.20 4.42 5.20 9.84 9.84 9.24 9.84
0.05 6.44* 4.85 4.29 4.97 12.24* 10.10 9.17 9.86
0.1 8.15* 4.74 4.29 4.99 14.59* 9.99 9.17 9.91
0.3 15.30* 4.37 4.29 4.96 23.04* 9.21 9.17 10.04
0.5 22.74* 4.04 4.29 5.11 31.83* 8.72 9.17 9.97

5×20 0 4.88 4.88 4.68 4.88 9.97 9.97 9.46 9.97
0.05 8.99* 4.75 4.82 4.73 15.71* 9.80 9.86 9.94
0.1 13.38* 5.13 5.05 4.86 21.22* 10.00 9.86 10.06
0.3 28.99* 5.02 4.75 4.68 38.41* 9.47 9.45 9.54
0.5 43.21* 5.72* 5.04 5.38 51.83* 10.89* 10.20 10.27

10×10 0 5.18 5.18 4.76 5.18 10.42 10.42 10.15 10.42
0.05 7.28* 5.43 4.53 5.12 12.74* 9.90 9.32 9.97
0.1 9.14* 4.76 4.92 4.82 16.06* 9.67 9.93 9.86
0.3 19.11* 5.11 4.54 4.85 27.73* 10.18 9.40 9.62
0.5 28.47* 5.49* 4.99 5.21 37.31* 10.11 9.86 9.86

15×10 0 5.01 5.01 4.87 5.01 9.93 9.93 9.78 9.93
0.05 7.09* 4.91 5.17 4.94 13.17* 9.93 10.07 9.79
0.1 10.17* 5.26 5.20 5.40 16.69* 10.29 9.93 10.49
0.3 19.15* 5.04 4.71 4.85 27.92* 9.99 9.35 9.59
0.5 28.05* 5.50* 5.20 5.28 37.03* 10.10 10.18 10.01

*indicates that the type I error rate exceeded the limit
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Table 2. Type I error rates (%) of the test H0 : β1 = β2 = 0 at nominal 5% and 10%
levels for the unbalanced data
Nominal level 5% Nominal level 10%

c×ni ρ FOLS FWU FLAH FAH FOLS FWU FLAH FAH

4,5,6 0.0 5.41 5.41 3.73 5.41 10.33 10.33 7.76 10.33
0.05 5.50* 5.09 3.60 5.19 10.84* 10.26 7.65 10.32
0.1 5.74* 5.00 3.27 4.91 11.10* 10.03 7.52 10.30
0.3 8.85* 6.05* 4.47 6.90* 15.75* 11.73* 9.09 13.14*
0.5 13.05* 7.15* 5.11 8.95* 21.18* 12.98* 10.21 15.71*

3,3,9 0.0 4.76 4.76 3.43 4.76 10.04 10.04 7.54 10.04
0.05 5.46* 5.23 3.71 5.28 10.53* 10.19 7.93 10.13
0.1 6.62* 6.13* 4.23 6.19* 11.87* 11.27* 8.65 11.66*
0.3 8.85* 7.35* 5.76* 8.76* 15.75* 13.26* 11.13* 15.27*
0.5 12.90* 9.53* 7.48* 12.09* 20.90* 16.33* 13.82* 19.90*

9,10,11 0.0 4.64 4.64 4.36 4.64 9.77 9.77 8.87 9.77
0.05 5.90* 4.79 4.05 4.97 11.58* 9.70 9.13 9.63
0.1 8.53* 5.79* 4.38 5.88* 14.82* 11.19* 9.49 10.93*
0.3 15.52* 5.81* 5.32 6.89* 24.06* 11.53* 10.29 12.97*
0.5 23.11* 6.05* 5.80* 7.79* 32.43* 11.88* 11.18* 14.09*

5,10,15 0.0 4.83 4.83 4.25 4.83 9.60 9.60 8.47 9.60
0.05 6.32* 5.68* 5.22 6.01* 11.87* 11.11* 10.16 11.36*
0.1 7.81* 6.54* 5.88* 7.03* 14.29* 12.42* 10.98* 13.17*
0.3 16.03* 10.98* 10.16* 12.50* 23.78* 17.84* 16.76* 20.06*
0.5 23.94* 13.89* 14.91* 17.97* 33.20* 22.08* 22.66* 26.56*

3,3,24 0.0 4.69 4.69 4.02 4.69 9.60 9.60 8.59 9.60
0.05 6.19* 5.82* 5.08 5.85* 11.79* 11.55* 10.07 11.39*
0.1 7.76* 7.19* 6.37* 7.38* 14.60* 13.77* 12.36* 13.99*
0.3 15.66* 12.99* 11.96* 14.40* 24.21* 20.94* 19.41* 22.28*
0.5 23.63* 17.91* 17.59* 20.93* 32.39* 26.32* 26.12* 29.77*

29,30,31 0.0 4.86 4.86 4.87 4.86 10.19 10.19 10.07 10.19
0.05 10.22* 5.12 5.06 5.34 17.59* 10.37 9.97 10.49
0.1 15.97* 6.02* 5.04 5.85* 24.07* 11.13* 10.29 11.27*
0.3 32.75* 6.06* 5.68* 6.53* 41.29* 10.71* 10.80* 12.14*
0.5 45.53* 4.89 6.15* 7.11* 53.74* 9.93 11.60* 12.68*

10,20,60 0.0 5.19 5.19 4.88 5.19 10.12 10.12 9.60 10.12
0.05 10.50* 7.50* 7.95* 8.03* 17.17* 13.40* 13.90* 13.91*
0.1 15.18* 9.15* 10.97* 11.04* 22.81* 15.27* 18.26* 18.30*
0.3 32.84* 14.70* 23.37* 23.80* 41.13* 22.05* 31.27* 31.56*
0.5 46.12* 17.70* 34.42* 35.03* 54.39* 24.33* 42.84* 43.77*

3,3,84 0.0 5.16 5.16 5.04 5.16 10.23 10.23 10.01 10.26
0.05 10.80* 10.65* 10.00* 10.71* 17.95* 17.78* 16.86* 17.67*
0.1 15.88* 15.61* 14.47* 15.57* 23.78* 23.32* 22.29* 23.51*
0.3 33.25* 32.08* 30.92* 31.96* 41.91* 40.65* 39.75* 40.85*
0.5 45.95* 43.53* 43.56* 44.61* 54.28* 52.10* 51.78* 52.87*

*indicates that the type I error rate exceeded the limit
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Table 3. Power estimates (%) of the test H0 : β1 = β2 = 0 versus specified
alternatives at nominal 5% and 10% levels for the balanced data

Nominal level 5% Nominal level 10%
c×ni β1 β2 ρ FWU FLAH FAH FWU FLAH FAH

4×5 0.1 0.1 0 8.18 5.41 8.18 14.63 10.50 14.63
0.05 7.90 5.00 7.91 14.88 10.52 14.78
0.1 7.61 4.89 7.39 13.93 10.02 13.88
0.3 7.40 5.95 7.78 13.67 11.34 14.50
0.5 7.25 6.41 8.63 13.43 12.20 15.44

0.2 0.2 0 18.30 9.28 18.30 28.02 16.51 28.02
0.05 18.19 9.39 17.91 28.21 17.27 28.04
0.1 16.93 9.83 16.80 26.63 17.73 27.16
0.3 15.38 12.02 17.29 25.32 20.24 27.62
0.5 15.20 15.18 21.13 24.13 25.37 32.14

3×10 0.1 0.1 0 9.38 6.80 9.38 17.02 12.93 17.02
0.05 9.55 7.37 9.48 16.50 14.02 16.52
0.1 9.34 7.09 9.11 15.79 13.46 16.25
0.3 8.17 8.07 9.53 14.71 14.52 17.03
0.5 - 10.02 11.31 - 17.26 18.75

0.2 0.2 0 26.02 15.71 26.02 37.86 25.40 37.86
0.05 24.55 16.92 24.19 36.20 27.36 36.01
0.1 23.21 16.94 23.93 34.16 27.42 35.42
0.3 19.32 21.36 25.76 29.40 32.44 37.35
0.5 - 29.28 32.19 - 41.92 45.22

5×20 0.1 0.1 0 25.94 16.45 25.94 37.39 25.86 37.39
0.05 20.84 16.40 21.48 31.47 26.33 32.06
0.1 18.13 17.29 20.97 28.02 27.34 31.13
0.3 14.13 22.11 23.83 21.23 32.29 34.65
0.5 - 28.62 30.15 - 40.66 41.95

0.2 0.2 0 76.63 53.93 76.63 84.63 66.49 84.63
0.05 65.53 55.20 68.96 75.89 67.79 79.17
0.1 58.24 58.35 67.68 69.56 70.21 77.99
0.3 39.62 69.27 72.96 50.81 79.21 82.22
0.5 - 83.74 85.32 - 90.69 91.72

10×10 0.1 0.1 0 26.73 15.21 26.73 38.15 24.72 38.15
0.05 23.88 16.43 23.91 34.81 25.35 35.13
0.1 22.65 17.44 23.71 33.89 27.58 35.35
0.3 17.86 21.33 25.23 26.34 31.74 36.14
0.5 - 26.76 29.42 22.16 38.90 41.54

0.2 0.2 0 79.46 51.02 79.46 87.07 63.60 87.07
0.05 73.96 52.92 74.30 82.52 65.02 83.35
0.1 69.77 56.65 73.14 80.17 68.67 82.64
0.3 53.22 66.54 74.73 64.90 77.44 83.65
0.5 - 80.28 84.00 54.14 87.68 90.42

-indicates that power of the test cannot be compared
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Table 3. Power estimates (%) of the test H0 : β1 = β2 = 0 versus specified
alternatives at nominal 5% and 10% levels for the balanced data (cont.)

Nominal level 5% Nominal level 10%
c×ni β1 β2 ρ FWU FLAH FAH FWU FLAH FAH

15×10 0.1 0.1 0 39.85 21.93 39.85 52.53 33.09 52.53
0.05 35.06 22.85 35.22 47.41 33.09 47.74
0.1 31.40 23.75 33.93 43.96 35.84 46.54
0.3 23.01 29.53 34.22 32.92 41.73 47.22
0.5 - 39.55 43.25 28.74 52.81 56.39

0.2 0.2 0 93.48 69.79 93.48 96.56 80.00 96.56
0.05 90.04 72.15 90.59 94.54 82.09 95.01
0.1 86.16 74.57 89.01 91.89 83.93 93.76
0.3 70.50 85.17 90.52 79.78 91.41 94.76
0.5 - 94.34 96.12 70.21 97.13 98.12

-indicates that power of the test cannot be compared

Table 4. Power estimates (%) of the test H0 : β1 = β2 = 0 versus specified
alternatives at nominal 5% and 10% levels for the unbalanced data

Nominal level 5% Nominal level 10%
n1,n2,n3 β1 β2 ρ FWU FLAH FAH FWU FLAH FAH

4,5,6 0.1 0.1 0 7.11 4.49 7.11 13.59 7.38 13.59
0.05 6.56 4.11 6.51 12.56 7.01 12.64
0.1 7.21 4.52 7.10 13.90 7.96 14.02
0.3 - 5.59 - - 9.96 -
0.5 - 7.21 - - 13.35 -

0.2 0.2 0 13.27 9.22 13.27 22.12 14.38 22.12
0.05 12.42 8.77 12.50 21.59 14.16 21.73
0.1 13.70 9.73 13.78 22.98 15.23 23.28
0.3 - 11.07 - - 18.28 -
0.5 - 13.73 - - 22.43 -

3,3,9a 0.1 0.1 0 6.63 4.33 6.63 13.53 7.82 13.53
0.05 6.83 4.59 6.82 14.08 8.53 13.90
0.1 - 5.55 - - 9.93 -

0.2 0.2 0 13.13 9.26 13.13 22.40 15.60 22.40
0.05 15.81 12.76 16.00 35.21 27.59 35.43
0.1 - 11.04 - - 17.28 -

9,10,11b 0.1 0.1 0 9.47 6.93 9.47 26.05 17.06 26.05
0.05 9.06 6.58 8.91 23.75 16.79 23.87
0.1 - 7.95 - - 18.73 -
0.3 - 9.57 - - 23.76 -

0.2 0.2 0 17.08 13.21 17.08 37.99 26.94 37.99
0.05 17.03 13.73 16.97 36.61 28.11 36.86
0.1 - 14.19 - - 29.18 -
0.3 - 16.11 - - 34.60 -

-indicates that power of the test cannot be compared
For H1 : β1 = β2 = 0.1 and H1 : β1 = β2 = 0.2,

a when ρ = 0.3 and 0.5, all F-statistics cannot control the type I error rate,
b when ρ = 0.5, all F-statistics cannot control the type I error rate
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Table 4. Power estimates (%) of the test H0 : β1 = β2 = 0 versus specified
alternatives at nominal 5% and 10% levels for the unbalanced data (cont.)

Nominal level 5% Nominal level 10%
n1,n2,n3 β1 β2 ρ FWU FLAH FAH FWU FLAH FAH

5,10,15c 0.1 0.1 0 9.38 7.73 9.38 25.64 19.10 25.64
0.05 - 9.20 - - 21.60 -

0.2 0.2 0 16.58 13.93 16.58 37.61 30.03 37.61
0.05 - 16.14 - - 32.97 -

3,3,24c 0.1 0.1 0 9.35 7.92 9.35 25.36 20.95 25.36
0.05 - 8.95 - - 22.23 -

0.2 0.2 0 16.30 14.33 16.30 37.15 31.68 37.15
0.05 - 15.76 - - 33.09 -

29,30,31 0.1 0.1 0 22.06 15.51 22.06 66.77 50.09 66.77
0.05 18.79 16.52 19.84 56.97 52.79 61.31
0.1 - 16.58 - - 54.96 -
0.3 - - - - - -
0.5 10.33 - - 28.31 - -

0.2 0.2 0 32.76 24.81 32.76 77.10 63.12 77.10
0.05 28.29 25.82 30.38 68.79 65.08 72.92
0.1 - 26.16 - - 67.57 -
0.3 - - - - - -
0.5 17.41 - - 38.58 - -

10,20,60d 0.1 0.1 0 22.26 18.53 22.26 68.03 58.74 68.03
0.2 0.2 0 33.35 28.68 33.35 77.79 70.11 77.79

3,3,84d 0.1 0.1 0 22.00 21.31 22.00 66.90 64.93 66.91
0.2 0.2 0 32.80 31.34 32.79 77.35 75.29 77.35

-indicates that power of the test cannot be compared
For H1 : β1 = β2 = 0.1 and H1 : β1 = β2 = 0.2,

c when ρ = 0.1, 0.3 and 0.5, all F-statistics cannot control the type I error rate,
d when ρ = 0.05, 0.1, 0.3 and 0.5, all F-statistics cannot control the type I error rate
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Figure 1: Power estimates (%) of F test statistic versus intra-cluster correlation at
nominal 5% level and c× ni = 3× 10 corresponding to the alternatives hypothesis
(a) H1 : β1 = β2 = 0.1 and (b) H1 : β1 = β2 = 0.2

Figure 2: Power estimates (%) of F test statistic versus intra-cluster correlation at
nominal 10% level and c×ni = 3×10 corresponding to the alternatives hypothesis
(a) H1 : β1 = β2 = 0.1 and (b) H1 : β1 = β2 = 0.2
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Figure 3: Power estimates (%) of F test statistic versus intra-cluster correlation at
nominal 5% level and c×ni = 10×10 corresponding to the alternatives hypothesis
(a) H1 : β1 = β2 = 0.1 and (b) H1 : β1 = β2 = 0.2

Figure 4: Power estimates (%) of F test statistic versus intra-cluster correlation at
nominal 10% level and c×ni = 10×10 corresponding to the alternatives hypothesis
(a) H1 : β1 = β2 = 0.1 and (b) H1 : β1 = β2 = 0.2
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3.4. An application

In this section, we consider the data from Smith (1980). This data set covers the val-
ues of pattern intensity on soles of 14 families chosen from Polish family data (see
Table 5). The families consist of siblings, together with their mothers and fathers.
Here, y is the 49×1 vector of values of pattern intensity on soles of feet of siblings
and X is the 49×3 matrix of ones in the first column and values of pattern intensity
on soles of feet of mother and father. In the real data, the intra-cluster correlation
is usually unknown and it must be estimated for the F test statistic. The Srivas-
tava estimator of the intra-cluster correlation, 0.4922, (see Srivastava and Katapa
(1986)) is applied in this section. In order to test the regression coefficients for the
nested error regression model, the p-value of FAH , FWU , FLAH and FOLS are less than
0.05, then we reject the null hypothesis (H0) at the significance level of 5%. This in-
dicates that at least one regression coefficient is significant to the model. Note that
the intra-cluster correlation estimator, the important characteristic of the clustered
data, is not used to compute FOLS and FLAH . In addition, the errors in observations
of FOLS do not correspond to the assumption of regression analysis even the power
of the test is quite high. Therefore, the FAH and FWU using Srivastava estimator of
the intra-cluster correlation are suggested and the power of FAH is higher than FWU

for applying to this application.

Table 5. Values of pattern intensity on soles of feet in 14 families

Family no. Mother Father Siblings
1 2 3 2,2
2 2 3 2,3
3 2 3 2,2,2
4 2 4 2,2,2,2,2
5 6 7 6,6
6 4 3 4,3,3
7 4 3 2,2,3,6,3,5,4
8 3 7 2,4,7,4,4,7,8
9 5 5 5,6
10 5 4 4,5,4
11 5 6 5,3,4,4
12 2 4 2,4
13 6 3 4,3,3,3
14 2 3 2,2,2

Table 6. The F test statistics, p-values and powers for data set in Table 5

Method F p-value power
FOLS 21.2343 0.0000003 0.9999997
FWU 4.7388 0.0135 0.9865
FLAH 7.4865 0.0021 0.9979
FAH 6.4756 0.0033 0.9967
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4. Conclusion

For clustered data analysis with compound symmetry correlation structure of known
intra-cluster correlation, the proposed transformation by Adjusted Householder ma-
trix can be used to adjust the correlation of the error term and then allowed to be
applied to the F test statistic based on generalized least squares procedures. The
simulation study shows that the F test statistic with Adjusted Householder trans-
formation performs as well as the other methods for the balanced and unbalanced
data, except for the F test statistic based on standard ordinary least squares proce-
dures, in controlling the type I error rate regarding regression coefficients hypothe-
sis testing for small and large sample sizes. The power of the F test statistic with
Adjusted Householder transformation is always higher than that with part of the
Helmert transformation for the balanced and unbalanced data. Also, the power of
the F test statistic with Adjusted Householder (FAH ) and part of the Helmert (FLAH )
transformations are the increasing functions of the intra-cluster correlation whereas
the power of the modification of the F test statistic (FWU ) is the decreasing function.
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APPENDIX

Householder matrix

For any n×n symmetric matrix, in this paper we consider the variance-covariance
matrix V = [vi j]; i = 1,2, . . . ,n and j = 1,2, . . . ,n, which is the compound symmetry
correlation structure. The corresponding Householder matrix, H, is a symmetry
and orthogonal matrix in the form

H = In−2ww′.

Let w = (w1, . . . ,wn)
′ be a column vector which is a unit vector of Euclidean norm

where
w1 = 0,w2 =

v21−α

2γ
and wl =

vl1

2γ
; l = 3, . . . ,n.

α and γ are determined by

α =−sgn(v21)
√

Σn
i=2v2

i1 where sgn(v21) =

{
−1 for v21 < 0

+1 for v21 > 0

and γ =
√

1
2 (α

2− v21α).
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SURVIVAL REGRESSION MODELS FOR SINGLE EVENTS 
AND COMPETING RISKS BASED ON PSEUDO-

OBSERVATIONS 

Ewa Wycinka1, Tomasz Jurkiewicz2 

ABSTRACT 

Survival data is a special type of data that measures the time to an event of 
interest. The most important feature of survival data is the presence of censored 
observations. An observation is said to be right-censored if the time of the 
observation is, for some reason, shorter than the time to the event. If no censoring 
occurs in the data, standard statistical models can be used to analyse the data. 
Pseudo-observations can replace censored observations and thereby allow 
standard statistical models to be used.  
In this paper, a pseudo-observation approach was applied to single-event and 
competing-risks analysis, with special attention paid to the properties of the 
pseudo-observations. In the empirical part of the study, the use of regression 
models based on pseudo-observations in credit-risk assessment was investigated. 
Default, defined as a delay in payment, was considered to be the event of interest, 
while prepayment of credit was treated as a possible competing risk. Credits that 
neither default nor are prepaid during the follow-up were censored observations. 
Typical application characteristics of the credit and creditor were the covariates in 
the regression model. In a sample of retail credits provided by a Polish financial 
institution, regression models based on pseudo-observations were built for the 
single-event and competing-risks approaches. Estimates and discriminatory power 
of these models were compared to the Cox PH and Fine-Gray models. 

Key words: generalised estimating equations, cumulative incidence function, 

probability of default, credit risk, survival analysis. 

1. Introduction 

In the past few decades, survival analysis methods have become more widely 
used, not only in biostatistics, where their roots are, but also in many other 
branches of science, including economics, and the social sciences. Survival 
analysis is a term that covers a vast collection of different methods that focus on 
timing and duration prior to an event’s occurrence (Mills, 2011). Among these 
methods are parametric and non-parametric estimation of survival time 
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distributions, and parametric and semiparametric regression models. The 
common goal of these methods is to handle censored observations that are 
inevitable in time-to-event analysis. A quite new and innovative approach to the 
problem of censoring is the idea of pseudo-observations that can replace both 
complete and censored actual observations. Pseudo-observations can be applied 
to many different objectives; this paper focuses on the usefulness of pseudo-
observations in the development of regression models for survival functions in the 
case that a single event is analysed and in the competing risk analysis. The first 
objective was to review the properties of pseudo-observations in these two 
situations. The second goal was to compare the results and performance of the 
regression models for pseudo-observations with some of the more classical 
survival models that are currently most popular – in this case, the Cox 
Proportional Hazards model for single events (Cox, 1972) and the Fine-Gray 
model for competing risks (Fine and Gray, 1999). 

2. Pseudo-observations for single events and competing risks 

The methodology of pseudo-observations was first proposed by Andersen et 
al. (2003). The main idea of this approach is to replace censored observations by 
the function of event times 𝑓(𝑇), for which an expected value is 𝐸(𝑓(𝑇)). The 

condition is that an unbiased estimator �̂� of 𝜃 = 𝐸(𝑓(𝑇)) exists. Let 𝑛 be the 
sample size (𝑖 = 1, … , 𝑛). A pseudo-observation for 𝑓(𝑇) for individual 𝑖 at 

a predefined series of time points 𝑡 = 1, … , 𝐻 is defined as 

�̂�𝑖(𝑡) = 𝑛�̂�(𝑡) − (𝑛 − 1)�̂�(−𝑖)(𝑡) (1) 

and is evaluated by the leave-one-out method. �̂�(𝑡) is the estimator in the sample 

of size 𝑛 at time 𝑡, and �̂�(−𝑖)(𝑡) is the estimator at time 𝑡 in the sample of size 

 𝑛 − 1, consisting of all units except the 𝑖-th individual. The pseudo-observation is 

then a contribution of the 𝑖-th unit to the 𝐸(𝑓(𝑇)) estimate in the sample of size 𝑛. 
Although the aim of using pseudo-observations is to replace the censored 
observations, pseudo-observations are calculated for all units in the sample (both 
completed and censored observations). Therefore, an 𝑛 × 𝐻 matrix of pseudo-
observations is obtained. Subsequently, pseudo-observations are used as 
dependent variables in a generalised regression model with some link function 𝑔: 

 𝑔(𝐸(𝑓(𝑡)|𝑋)) = 𝛽0 + ∑ 𝛽𝑗𝑋𝑗 = 𝛽𝑇𝑋. (2) 

For each unit 𝐻 pseudo-observations are calculated. Multiple measurement is 
a source of correlation in the data set; a possible solution to this deficiency would 
be to use generalised estimating equations (GEE), which are the generalisation of 
regression models for the case of correlated data (Andersen et al., 2003). 

2.1. Single event 

Assume that there is only one type of event and 𝑇 is the time to that event, 

while 𝑇𝐶 is the time to censoring. Due to the right censoring, we can observe 
min(𝑇, 𝑇𝐶). The survival function is the probability that the unit does not 

experience the event until time 𝑡 

 𝑆(𝑡) = 𝑃(𝑇 > 𝑡). (3) 
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In the survival analysis to the assumed sole type of event (single event), the 
survival function 𝑆(𝑡) can be estimated with the use of the Kaplan-Meier (KM) 
estimator 

 �̂�(𝑡) = ∏ (1 −
𝐷𝑗

𝑁𝑗
)𝑡𝑗≤𝑡 ,         (4) 

where 𝐷𝑗 is the number of events at time 𝑡𝑗, 𝑁𝑗 is the number at risk just prior to 

time 𝑡𝑗, and 𝑡𝑗 for 𝑗 = 1, … , 𝑟 (𝑟 ≤ 𝑛) are distinct event times. The KM estimator is 

a maximum likelihood estimator (Klein and Moeschberger, 2003). 

The 𝑖-th pseudo-observation based on the survival function is 

�̂�𝑖(𝑡) = 𝑛�̂�(𝑡) − (𝑛 − 1)�̂�(−𝑖)(𝑡),       (5) 

where �̂�(𝑡) is the estimated survival function at time 𝑡 in a sample of size 𝑛 and 

�̂�−𝑖(𝑡) is the estimated survival function derived from the 𝑛 − 1 sample (without 

the 𝑖-th observation) (Andersen and Perme 2010). At 𝑡 = 0, the pseudo-
observations for survival functions for all units are equal to one. 

As 𝑡 increases, the values of pseudo-observations for units in the cohort 
increase at each event time observed in the cohort (see Figure 1). Between any 
two successive event times, the values of pseudo-observations do not change. 
As a result, the curve of pseudo-observations over time for a particular unit is 
a step function with a varying length of steps depending on the successive event 
times. If the event for a unit is observed, the pseudo-observation drops below 
zero at the event time. At the subsequent time points, the unit that has just been 
excluded from the cohort has negative and increasing pseudo-values. If the unit is 
censored, then, beginning at the next event time after censoring, the values of 
pseudo-observations for that unit start decreasing. They remain, however, 
positive until the end of the follow-up (see Figure 1). 

 

 

Figure 1.  The pseudo-observations for the survival function over time in 

a censored data set for the individual with event time 𝑡=7 (risk 1) and 
the individual with censored time 𝑡𝑐=7 (censored) 

 
As long as the units are in the cohort, they have similar pseudo-values. The 

values of pseudo-observations increase at each event time observed in the 
cohort. Therefore, the value of the pseudo-observation for the unit at its event 
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time is greater if the event occurred later in time. The later the event occurs, the 
greater the drop is (see Figure 2). The same pattern is observed if the 
observation is censored (see Figure 3).  

 

 

Figure 2.  Pseudo-observations for the survival function over time for the units 
with event times 𝑡=4,..9 

 

 

 

Figure 3.  Pseudo-observations for the survival function over time for the units 

with censoring times 𝐶=4,..9 

 

In the absence of censoring, the pseudo-value at time 𝑡 reduces to the 

indicator that 𝑇 > 𝑡. Therefore, the pseudo-observations are equal as long as the 
unit is observed in the cohort; after the event, the value of the pseudo-observation 
falls to zero and is constant until the end of the follow-up (see Figure 4). In this 
case, pseudo-observations are also independent. 
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Figure 4.  Pseudo-observations for the survival function over time for an individual 

with a survival time 𝑡=7 in a data set with no censoring 

 

2.2. Competing risks 

Let (𝑇, 𝐶) be a bivariate random variable, such that 𝑇 is a continuous variable 

representing the time of the first event, and 𝐶 = 𝑘 (𝑘 = 1, … , 𝑝) is a discrete 
variable denoting the type of event. If the time of the observation for some units is 
shorter than the time of the first event, we encounter right censoring. In such 
a situation, 𝐶 = 0 and 𝑇𝑐 is the time at which the observation was censored; what 

we only know is that 𝑇 > 𝑇𝑐. Due to the right censoring, the variable (𝑇, 𝐶) is only 

partially observable, and we observe a pair (min{𝑇 , 𝑇𝑐}, 𝐶). As a result, the joint 
distribution of (𝑇, 𝐶) is difficult to identify and can be estimated only by making 
some unverifiable assumptions (Pintilie, 2006, p. 41). 

The subdistribution of event 𝑘 (cumulative incidence function, CIF) is the 

probability, until time 𝑡, that event 𝑘 will occur 

 𝐹𝑘(𝑡) = 𝑃(𝑇 ≤ 𝑡, 𝐶 = 𝑘).        (6) 

The subdistribution is not a proper distribution because 

 𝑙𝑖𝑚
𝑡→∞

𝐹𝑘(𝑡) = 𝑃(𝐶 = 𝑘) ≤ 1.        (7) 

The equality 𝑃(𝐶 = 𝑘) = 1 holds if there is only one type of event (no 
competing risks). The sum of the subdistributions for all types of events is 
a marginal distribution of the variable 𝑇 

 𝐹(𝑡) = 𝑃(𝑇 ≤ 𝑡) = ∑ 𝐹𝑘(𝑡)
𝑝
𝑘=1 .       (8) 

The maximum likelihood estimator of the subdistribution is 

 �̂�𝑘(𝑡) = ∑ ℎ̂𝑘𝑗�̂�(𝑡𝑗−1)𝑡𝑗≤𝑡 ,        (9) 

where ℎ̂𝑘𝑗 is the cause-specific hazard at time 𝑡𝑗 for event 𝑘. This can be defined 

as ℎ̂𝑘𝑗 =
𝐷𝑘𝑗

𝑁𝑗
, where 𝐷𝑘𝑗 is the number of events of type 𝑘 at time 𝑡𝑗, 𝑁𝑗 is the 

number at risk just prior to time 𝑡𝑗, and 𝑡𝑗, for 𝑗 = 1, … , 𝑟 (𝑟 ≤ 𝑛) are distinct event 

times. �̂�(𝑡𝑗−1) is the survival function for all types of events just before time 𝑡𝑗. 
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It is worth noting that the estimate depends not only on the number of 
individuals who have experienced the 𝑘-th type of event, but also on the number 
of individuals who have not experienced any type of event (Binder et al., 2014). 
Usually, only one type of event is of interest and other types of event are treated 
as competing risks to it. In such a situation, it is reasonable to consider only two 
types of event: the event of interest (risk 1) and every other event combined 
(risk 2). This approach will be considered later in this paper. 

The pseudo-observation for the unit 𝑖, at time 𝑡, for the event type 𝑘, based on 
the CIF, has the form 

 �̂�𝑖𝑘(𝑡) = 𝑛�̂�𝑘(𝑡) − (𝑛 − 1)�̂�𝑘
(−𝑖)

(𝑡).      (10) 

Here, �̂�𝑘(𝑡) is the estimated CIF for the 𝑘-th event at time 𝑡 using all 

observations, and �̂�𝑘
(−𝑖)

(𝑡) is the estimated CIF derived from all but the 𝑖-th 
observation. When units are in a cohort, have the same pseudo-observation 
values for the CIF at subsequent times. At 𝑡 = 0, a pseudo-observation for the 
CIF equals zero. Then, as time increases, pseudo-observations decrease, taking 
negative values. Figure 4 shows pseudo-observations over time for a unit that 
leaves the cohort at time 7. If the unit leaves the cohort due to an event of type 1, 
the pseudo-observation jumps above one at the time of the event, and then, at 
subsequent times, gradually decreases towards one. When the unit leaves the 
cohort due to an event of type 2, the pseudo-values remain negative and 
decreasing at all subsequent times (Andersen and Perme, 2010). If an individual 
is censored at time 𝑡, the pseudo-observations start increasing as of the next 
event time recorded in the data set (see Figure 5). 

 

 

Figure 5.  A comparison of the development of pseudo-values over time for three 
units that leave a cohort at time 7 due to either risk 1, risk 2, 
or censoring 

 
As we compare the pseudo-observations for units with the same cause of 

leaving a cohort but at different times, we can see greater changes in the pseudo-
values for later departures (see Figure 6). Jumps in the values of pseudo-
observations are higher if the event of type 1 happens later, due to the reduction 
in time of the risk set. 
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Figure 6. Pseudo-observations for units that experienced (a) risk 1 or (b) risk 2 or 
were (c) censored at different times (t=4,...9). Different scales are used 
in each figure 

 
In a special case with no competing risks, the estimated CIF for the type-1 

event reduces to the estimation of the distribution function (�̂�𝐶𝐼𝐹), and the survival 

function can be estimated as �̂�𝐶𝐼𝐹(𝑡) = 1 − �̂�𝐶𝐼𝐹(𝑡). If survival functions are 

estimated directly with a Kaplan-Meier estimator or as �̂�𝐶𝐼𝐹(𝑡), the estimations are 
equal. However, as we show in the empirical part of the study, in the case of 
pseudo-observations based on these estimators, this equality no longer holds. 
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If no censoring occurs in the data set, the pseudo-observations for risk 
1 reduce to the indicator 𝐹1(𝑡) = 1[𝑇1 ≤ 𝑡]. They equal zero as long as the unit is 
in the cohort and rise towards one as the event of type 1 (risk 1) happens. The 
pseudo-observations for risk 2 equal zero at all time points, even after the 
occurrence of the event of type 2 (risk 2) (see Figure 7). 

 

 

Figure 7.  Pseudo-observations for the CIF for risk 1 and risk 2 over time in a data 
set with no censoring 

3. Regression models based on pseudo-observations 

For each unit there are 𝐻 pseudo-observations – one for each predefined 
point in time. As a result, the data transformed into pseudo-observations is no 
longer independent, and generalised linear models (GLM) cannot be applied. 
Generalised estimating equations (GEEs) are the generalisation of GLM models 
for correlated data, as introduced by Liang and Zeger (1986). This is a method for 
analysing data collected in clusters where observations within a cluster may be 
correlated, but observations from different clusters are independent. The variance 
is a function of the expectation, and a monotone transformation of the expectation 
is linearly related to the explanatory variable (Højsgaard et al., 2005). The 
pseudo-observations are dependent variables in GLMs for a given link function 
𝑔(. ). The regression model is 

𝑔(�̂�𝑘(𝑡)|𝑋) = 𝛽0 + ∑ 𝛽𝑗𝑋𝑗
∗𝑚+𝐻

𝑗=1        (11) 

Here, the vector 𝑋∗ includes indicators of time points 𝑋 = (𝑋𝑚+1, … , 𝑋𝑚+𝐻) for 𝑡 =
1, … , 𝐻 (as dummy variables), as well as the covariates 𝑋 = (𝑋1, … , 𝑋𝑚). When a 

complementary log-log link function is used, such as 𝑔(𝑥) = log (− log(𝑥)) for a 
single event, then the regression model has the form 

 log (− log(𝑆(𝑡|𝑋))) = 𝛽0 + ∑ 𝛽𝑗𝑋𝑗
∗𝑚+𝐻

𝑗=1       (12) 

and can be depicted as 

 𝑆(𝑡|𝑋) = exp (−exp (𝛽0 + ∑ 𝛽𝑗𝑋𝑗
∗))𝑚+𝐻

𝑗=1 .      (13) 

Estimated coefficients for time points can be put into the model as time-
dependent coefficients 𝛽0(𝑡): 

 𝑆(𝑡|𝑋) = exp (−exp (𝛽0 + 𝛽0(𝑡) + ∑ 𝛽𝑗𝑋𝑗))𝑚
𝑗=1 .    (14) 
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Finally, the survival function can be expressed as 

 𝑆(t|X) = 𝑆0(t)exp ∑ 𝛽𝑗𝑋𝑗
𝑚
𝑗=1 ,        (15) 

which is a formula for the Cox PH model. Coefficients can be interpreted as a 
logarithm of a proportional hazards ratio. 

In the case of competing risks, the link function 𝑔(𝑥) = log (− log(1 − 𝑥)) is 
used, and the regression model has the form 

 log (− log(1 − 𝐹𝑘(𝑡|𝑋))) = 𝛽0 + ∑ 𝛽𝑗𝑋𝑗
∗𝑚+𝐻

𝑗=1 ,      (16) 

which can also be expressed in the form 

 𝐹𝑘(𝑡|𝑋) = 1 − exp (−exp (𝛽0 + 𝛽0(𝑡) + ∑ 𝛽𝑗𝑋𝑗))𝑚
𝑗=1 .    (17) 

This form is analogous to the proportional hazard model on the subdistribution 
hazard function in the Fine-Gray model. Coefficients 𝛽𝑗  can be interpreted as 

logarithms of the subdistribution hazard ratios, if all covariates are time 
independent (Haller et al., 2013, p. 44). 

Estimations of the parameters are based on the estimating equations 

 ∑ (
𝜕

𝜕𝛽
𝑔−1(𝛽𝑇𝑋𝑖

∗))𝑇𝑉𝑖
−1 (�̂�𝑖 − 𝑔−1(𝛽𝑇𝑋𝑖

∗)) = 0𝑖 .    (18) 

Here, 𝑉𝑖 is a working covariance matrix. The efficiency of the estimators 
depends on the choice of 𝑉𝑖 matrix, which should resemble the true covariance. 
The GEE method fits marginal mean models and, as a result, only the correct 
specification of marginal means is required for the parameter estimation to be 
consistent and asymptotically normal (Højsgaard et al., 2005). The covariance 
structure does not need to be specified correctly; however, it is necessary to 
make an assumption about the type of this structure (considered the working 
covariance matrix or working correlation matrix). Four different types of working 
correlation matrix are usually considered. 

The simplest – the independent working correlation structure – assumes that 

𝜌𝑡1,𝑡2
= 𝑐𝑜𝑟𝑟 (�̂�(𝑡1), �̂�(𝑡2)) = 0 for each pair (�̂�(𝑡1), �̂�(𝑡2)) and 𝑡1 ≠ 𝑡2. The 

compound symmetry (exchangeable) structure treats 𝜌𝑡1,𝑡2
= 𝑐𝑜𝑟𝑟 (�̂�(𝑡1), �̂�(𝑡2)) 

for all pairs as equal but unknown. The autoregressive structure of order 1 (AR1) 

has the form 𝑐𝑜𝑟𝑟 (�̂�(𝑡1), �̂�(𝑡2)) = 𝜌𝑡1−𝑡2, which reflects that observations further 

apart in time are less correlated. Finally, the unstructured working correlation 

matrix consists of a set of 𝑐𝑜𝑟𝑟 (�̂�(𝑡1), 𝜃(𝑡2)) that differs for each pair. 

Agresti (2007) pointed out that if correlations are small, all working correlation 
structures yield similar estimates of parameters in GEE models and similar 
standard errors. In the Monte Carlo study, Klein and Andersen (2005) showed 
that there are no significant differences in estimations of GEE models for pseudo-
observations with different working covariance matrices and recommended the 
use of the independent working covariance matrix. 

The choice of the number of time points has little influence on the model fit. 
In the Monte Carlo simulations, Klein and Andersen (2005) showed that it is 
enough to choose five to ten time points, equally spaced on the event scale, to 
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evaluate pseudo-observations for the fitting model for the entire curve. Parameter 
estimates are quite insensitive to the number of time points. However, Andersen 
and Perme (2010) suggested that, nevertheless, all time points should be used if 
possible. 

One of the problems with the implementation of GEE models is that GEE is 
a non–likelihood-based method. Therefore, information criteria such as Akaike 
Information Criterion (AIC) or Bayesian Information Criterion (BIC) cannot be 
directly applied, which creates problems with the choice of best model. The GEE 
models for pseudo-observations with the log-log link function are analogues to the 
Cox PH and Fine-Gray models; therefore, in the empirical study, a variable 
selection, and consequently a choice of models, was performed for the last 
models. The Akaike selection criterion (Akaike 1974) was used to choose the best 
subset of covariates separately in the Cox PH and Fine-Gray models (Kuk and 
Varadhan, 2013). Subsequently, these sets of covariates were used in the 
equivalent GEE models. 

4. Empirical study 

We considered a cohort of 5,000 retail credits granted during 12 consecutive 
months by a Polish financial institution. All credits were granted for a fixed term of 
24 months. The cohort was followed for 15 months from the moment the first 
credit was granted. Each credit could terminate in one of two ways: being 
completely paid back earlier than scheduled (early repayment) or by defaulting. 
A defaulted credit was considered one that had a delay in instalment payments of 
at least 90 days. We observed both types of termination in the cohort, as well as 
censoring. Censored observations were credits for which neither default nor early 
repayment were observed during the follow-up. That is, for those credits, all 
instalments were paid on time or with a delay shorter than 90 days. Figure 8 
shows the distribution of events and censoring over the months of the credits’ life, 
observed at the end of the follow-up. 

 

Figure 8. Distribution of the causes of termination during the follow-up of credits 
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Due to its definition, default cannot be observed for the first three months after 
credit granting. Early repayments and censoring were not lagged. Through the 
specificity of the analysed problem in the data set, we observed single events for 
particular time points with no censoring (𝑡=1,2) and competing events with 

censoring (𝑡=3,…,15). The objective was to evaluate one model of the probability 
of default for all time points in the presence of competing risk and heavy 
censoring. 

To evaluate the probability of default, we laid down pseudo-observations and 
built GEE models for those pseudo-observations. Variables describing a creditor 
and a credit at the time of credit granting were used as covariates in these 
models. These variables included information such as age of the applicant, 
property, educational level, purpose of the credit, amount and instalment 
payments. To comply with the requirements of the financial institution sharing the 
data, the names of the variables were anonymised and are denoted in this paper 
by the letter X and one or more numbers. 

All the variables were categorised and included in models as dummy 
variables. Two approaches were applied that resulted in different methods of 
assessing the pseudo-observations. The first assumed that the only type of 
analysed event was default; all other reasons for leaving the cohort of credits 
were considered to be censoring. In this approach, pseudo-observations were 
evaluated for the survival function (formula 5). 

The second approach considered two causes of events: default and early 
repayment. Regular payments were handled as censored observations. Pseudo-
observations were calculated (formula 10) for all event times due to the small 
number of analysed time points. To choose the set of covariates for GEE models, 
variable selection for the Cox PH model for single events, and the Fine-Gray 
model for competing events, was conducted at the first step with AIC using a 
stepwise algorithm (Venables and Ripley, 2002). Four different working 
covariance matrices were then applied. 

Parameter estimations for all of the types of matrices were very close. 
Differences were only observed for estimates of parameters of dummy variables 
for time points, but these differences had no influence on the models’ fit. The 
independence matrix was a slightly better fit for the model, and the results for this 
matrix are presented in the latter part of the paper. Table 1 shows the results of 
estimations of the GEE model for the CIF and estimates of the Fine-Gray model 
with the same set of covariates. Estimates of the parameters in both models are 
very similar. The GEE model, apart from covariates, also includes dummy 
variables for time points for which pseudo-values were calculated. Time point 1 
(t1) is not included in the model because it is a reference group. 

The CIF changes not only at the time of the considered event, but also at the 
time of the competing event. This is why time point 2 is included in the model, 
despite no default having occurred – this is one of the differences between 
competing- and single-event approaches. Values of the estimates for the 
subsequent time points increase, which is associated with higher wages for the 
units leaving a cohort later (compare Figure 6). Standard errors of estimators of 
covariates in the GEE model are slightly higher than for the Fine-Gray model; this 
observation is consistent with the findings of Andersen and Perme (2010). 
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Table 1. Estimates of the GEE model for the CIF and for the Fine-Gray model, 
both for the risk of default. 

GEE model for CIF Fine-Gray model 

Time point  SE() p-value Cov.  SE() p-value Cov  SE() p-value 

Int. -20.11 0.24 0.000 . . . . . . . . 

t2 -4.67 0.40 0.000 X1_2 -0.34 0.11 0.0027 X1_2 -0.30 0.10 0.0036 

t3 17.27 0.40 0.000 X2_2 -0.19 0.13 0.1434 X2_2 -0.17 0.11 0.1300 

t4 17.79 0.39 0.000 X2_3 -0.19 0.17 0.2651 X2_3 -0.31 0.15 0.0330 

t5 18.18 0.39 0.000 X3_2 -0.30 0.12 0.0098 X3_2 -0.40 0.10 0.0001 

t6 18.40 0.39 0.000 X4_2 0.28 0.12 0.0168 X4_2 0.21 0.10 0.0330 

t7 18.57 0.39 0.000 X5_2 0.41 0.13 0.0013 X5_2 0.44 0.11 0.0000 

t8 18.71 0.39 0.000 X6_2 -0.46 0.15 0.0016 X6_2 -0.61 0.13 0.0000 

t9 18.78 0.39 0.000 X6_3 -1.51 0.16 0.0000 X6_3 -1.59 0.15 0.0000 

t10 18.87 0.39 0.000 X7_1 -0.49 0.12 0.0000 X7_1 -0.52 0.10 0.0000 

t11 18.98 0.39 0.000 X7_2 1.33 0.63 0.0355 X7_2 1.21 0.48 0.0120 

t12 19.05 0.39 0.000 X8_1 -0.15 0.28 0.5859 X8_1 -0.31 0.22 0.1700 

t13 19.19 0.39 0.000 X8_2 -0.55 0.26 0.0308 X8_2 -0.55 0.22 0.0110 

t14 19.33 0.39 0.000 X9_1 0.22 0.15 0.1385 X9_1 0.27 0.13 0.0400 

t15 19.58 0.39 0.000 X9_2 0.13 0.13 0.3032 X9_2 0.23 0.11 0.0350 

Cov – covariate, Int. – intercept, t – dummy variable for a time point. 

 
The purpose of a credit-risk assessment is not to find the size of the effect of 

a particular predictor on the risk of default, but to create a model which has the 
highest discriminatory ability and which allows prediction of the probability of 
default over the credit’s life. To compare the performance of the above models, 
the following discrimination measures were used: area under the ROC curve 
(AUC), Kolmogorov-Smirnov test (KS), and Hand measure (H) (Hand, 2009). 
Additionally, significance tests of the differences between AUCs of both models 
were calculated (DeLong et al. 1988). Table 2 presents each model’s 
performance at each of the event times. Both models have good and comparable 
discriminatory power through the whole credit-life. However, the best 
discrimination was achieved for the first months of credit-life; the slight advantage 
for the Fine-Gray model according to AUC is significant only for the last six 
months (see last column of Table 2). 
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Table 2. Measures of the performance of models for the CIF. 

Month 

H  

95% CI 

K-S  

95% CI 

AUC  

95% CI 

GEE F-G GEE F-G GEE F-G p-value 

3 0.215 

0.142-0.318 

0.221 

0.155-0.322 

0.422 

0.320-0.526 

0.406 

0.340-0.530 

0.751 

0.688-0.804 

0.754 

0.699-0.806 

0.457 

4 0.236 

0.183-0.315 

0.236 

0.184-0.320 

0.458 

0.381-0.532 

0.456 

0.390-0.540 

0.775 

0.729-0.812 

0.778 

0.739-0.815 

0.357 

5 0.219 

0.176-0.289 

0.216 

0.178-0.29 

0.419 

0.358-0.494 

0.424 

0.360-0.500 

0.764 

0.726-0.797 

0.765 

0.731-0.800 

0.750 

6 0.206 

0.169-0.272 

0.205 

0.172-0.271 

0.399 

0.345-0.470 

0.407 

0.350-0.470 

0.754 

0.718-0.788 

0.756 

0.728-0.792 

0.316 

7 0.205 

0.173-0.264 

0.207 

0.175-0.267 

0.400 

0.352-0.463 

0.407 

0.360-0.470 

0.756 

0.724-0.785 

0.759 

0.733-0.790 

0.128 

8 0.200 

0.167-0.254 

0.201 

0.173-0.258 

0.389 

0.345-0.446 

0.394 

0.360-0.460 

0.753 

0.722-0.779 

0.757 

0.733-0.784 

0.073 

9 0.189 

0.161-0.241 

0.191 

0.167-0.246 

0.375 

0.340-0.433 

0.384 

0.350-0.440 

0.747 

0.718-0.773 

0.75 

0.728-0.778 

0.069 

10 0.182 

0.157-0.234 

0.183 

0.162-0.238 

0.366 

0.329-0.423 

0.372 

0.340-0.440 

0.741 

0.714-0.767 

0.745 

0.723-0.773 

0.046 

11 0.176 

0.151-0.225 

0.177 

0.158-0.228 

0.355 

0.320-0.410 

0.359 

0.330-0.420 

0.735 

0.708-0.760 

0.739 

0.718-0.765 

0.019 

12 0.171 

0.147-0.22 

0.173 

0.154-0.224 

0.350 

0.315-0.404 

0.357 

0.33-0.41 

0.731 

0.705-0.756 

0.736 

0.715-0.762 

0.014 

13 0.174 

0.152-0.222 

0.176 

0.157-0.227 

0.355 

0.320-0.408 

0.362 

0.330-0.420 

0.733 

0.708-0.757 

0.737 

0.717-0.764 

0.023 

14 0.174 

0.150-0.220 

0.175 

0.155-0.226 

0.35 

0.319-0.403 

0.359 

0.330-0.410 

0.73 

0.706-0.754 

0.734 

0.715-0.761 

0.013 

15 0.174 

0.150-0.219 

0.174 

0.155-0.224 

0.351 

0.321-0.404 

0.36 

0.330-0.410 

0.73 

0.707-0.754 

0.733 

0.715-0.759 

0.037 

GEE- generalized estimating equations, F-G – Fine-Gray model, 95% CI – 95% confidence 
intervals as percentiles form 1000 bootstrapped samples 

 

The application of the competing-risks methodology to credit-risk assessment 
is quite a recent idea (c.f. Watkins et al., 2014); it is more common to use single-
event models (see Dirick et al., 2017). In the single-event approach, only time to 
default is considered, whereas credits that do not default until data-gathering are 
censored observations. However, in a credit-risk context, as a loan reaches 
maturity, default can no longer occur. Moreover, a very large proportion of the 
population will not go into default; hence, the basic principle in the survival 
analysis of one event type, that 𝑆(𝑡) → 0, does not hold. Therefore, in our study, 
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we should expect worse performance of single-event models than competing-
events models for default. To verify this hypothesis, pseudo-observations for the 
survival functions were calculated with formula 5. Variable selection for the single-
event model was performed using the AIC selection criterion for the Cox PH 
model. Estimates of the parameters of the Cox PH model and the GEE model for 
the survival function were calculated (see Table 3). 

Table 3. Estimates of the GEE model for the survival function and estimates of 
the Cox PH model, both for the risk of default. 

GEE model for the survival function Cox model 

Time point  SE() p-value Cov  SE() p-value Cov  SE() p-value 

Int -2.42 0.29 0.000 X1_2 -0.48 0.15 0.001 X1_2 -0.34 0.10 0.001 

t4 0.57 0.11 0.000 X2_2 -0.20 0.16 0.188 X2_2 -0.21 0.11 0.058 

t5 1.03 0.14 0.000 X2_3 -0.11 0.25 0.653 X2_3 -0.35 0.15 0.020 

t6 1.32 0.15 0.000 X3_2 -0.24 0.16 0.138 X3_2 -0.38 0.10 0.000 

t7 1.55 0.15 0.000 X4_4 -0.21 0.29 0.460 X4_4 -0.37 0.15 0.010 

t8 1.78 0.16 0.000 X5_2 0.28 0.16 0.074 X5_2 0.27 0.11 0.015 

t9 1.89 0.16 0.000 X6_2 -0.70 0.23 0.003 X6_2 -0.59 0.13 0.000 

t10 2.08 0.17 0.000 X6_3 -1.85 0.28 0.000 X6_3 -1.65 0.15 0.000 

t11 2.32 0.17 0.000 X7_1 -0.44 0.16 0.006 X7_1 -0.48 0.11 0.000 

t12 2.48 0.18 0.000 X7_2 1.68 0.79 0.033 X7_2 1.83 0.52 0.000 

t13 2.82 0.19 0.000 X8_1 -0.04 0.41 0.931 X8_1 -0.35 0.23 0.123 

t14 3.12 0.21 0.000 X8_2 -0.64 0.33 0.053 X8_2 -0.53 0.22 0.015 

t15 3.68 0.29 0.000 X9_1 0.16 0.21 0.454 X9_1 0.26 0.13 0.055 

. . . . X9_2 0.19 0.17 0.273 X9_2 0.33 0.11 0.004 

Cov – covariate, Int. – intercept, t – dummy variable for a time point. 

 

Dummy variables in a single-event approach were evaluated only for time 
points from 4 to 15. Time point 3 was omitted as the reference group, while time 
points 1 and 2 were not event times. The Akaike selection criterion applied to the 
Fine-Gray and Cox PH models gave almost the same set of covariates for both. 
The only difference was that variable X4_4 was applied to the single-event 
models instead of X4_2, which was used in the competing-events models. As 
a result, estimations of the parameters for all covariates in the models can be 
directly compared. As in the case of competing events, the GEE model for both 
the survival function and for the Cox PH model gave close estimations of 
parameters. The fit of the models also does not differ (see Table 4). 

For both approaches, an interesting regularity was observed. For most of the 
covariates, p-values are greater for the GEE models for pseudo-observations 
than for Cox PH and Fine-Gray models; for some covariates, this resulted 
in a lack of significance, i.e. X2_3, X9_1, and X9_2 (compare Tables 1 and 3). 
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Table 4. Measures of the performance of models for the survival function. 

Month 

H 

95% CI 

K-S 

95% CI 

AUC 

95% CI 

GEE F-G GEE F-G GEE F-G p-value 

3 0.199 

0.130-0.302 

0.203 

0.148-0.317 

0.433 

0.314-0.526 

0.418 

0.329-0.528 

0.751 

0.680-0.800 

0.749 

0.694-0.805 

0.832 

4 0.229 

0.163-0.296 

0.226 

0.175-0.309 

0.454 

0.365-0.525 

0.449 

0.384-0.534 

0.773 

0.720-0.803 

0.773 

0.734-0.811 

0.923 

5 0.207 

0.157-0.267 

0.207 

0.171-0.277 

0.42 

0.346-0.484 

0.414 

0.359-0.492 

0.762 

0.718-0.788 

0.761 

0.728-0.797 

0.892 

6 0.199 

0.148-0.252 

0.195 

0.163-0.264 

0.406 

0.332-0.459 

0.401 

0.351-0.468 

0.751 

0.708-0.777 

0.752 

0.722-0.787 

0.778 

7 0.195 

0.152-0.244 

0.197 

0.166-0.259 

0.403 

0.339-0.456 

0.403 

0.360-0.469 

0.753 

0.714-0.777 

0.755 

0.729-0.785 

0.531 

8 0.193 

0.152-0.241 

0.193 

0.166-0.251 

0.391 

0.333-0.445 

0.390 

0.352-0.458 

0.751 

0.714-0.773 

0.753 

0.729-0.781 

0.489 

9 0.184 

0.147-0.23 

0.184 

0.161-0.24 

0.380 

0.327-0.433 

0.379 

0.347-0.447 

0.746 

0.711-0.769 

0.748 

0.725-0.775 

0.452 

10 0.179 

0.142-0.222 

0.180 

0.159-0.235 

0.370 

0.318-0.421 

0.369 

0.337-0.434 

0.74 

0.706-0.763 

0.744 

0.722-0.771 

0.226 

11 0.173 

0.138-0.218 

0.175 

0.155-0.225 

0.356 

0.306-0.405 

0.357 

0.325-0.420 

0.733 

0.698-0.755 

0.738 

0.717-0.764 

0.101 

12 0.169 

0.133-0.211 

0.171 

0.151-0.223 

0.35 

0.301-0.400 

0.353 

0.320-0.412 

0.729 

0.695-0.751 

0.734 

0.714-0.761 

0.056 

13 0.172 

0.139-0.215 

0.174 

0.154-0.225 

0.354 

0.305-0.403 

0.358 

0.325-0.415 

0.731 

0.700-0.753 

0.736 

0.715-0.762 

0.070 

14 0.17 

0.140-0.214 

0.172 

0.152-0.221 

0.35 

0.303-0.400 

0.354 

0.323-0.411 

0.727 

0.697-0.751 

0.732 

0.714-0.759 

0.064 

15 0.171 

0.141-0.215 

0.169 

0.149-0.218 

0.353 

0.307-0.401 

0.354 

0.321-0.408 

0.728 

0.700-0.751 

0.731 

0.713-0.757 

0.210 

GEE- generalized estimating equations, F-G – Fine-Gray model, 95% CI – 95% confidence 
intervals as percentiles form 1000 bootstrapped samples. 

 

For the single-event approach, we also applied the method based on 
a reduction of the CIF to the case of one type of event. This led to the use of the 

�̂�𝐶𝐼𝐹(𝑡) = 1 − �̂�𝐶𝐼𝐹(𝑡)) estimator of the survival function, instead of the �̂�𝐾𝑀(𝑡) 
estimator, in the calculation of the pseudo-observations. We observed that, for the 

pseudo-observations, the relation �̂�𝐾𝑀(𝑡) = 1 − �̂�𝐶𝐼𝐹(𝑡) does not hold. The 
differences between estimates were very low, but irregular. Figure 8 shows box-

plots for the differences �̂�𝐾𝑀(𝑡) − (1 − �̂�𝐶𝐼𝐹(𝑡)) for all the units at all time points. 
However, one should note that all the differences are very close to zero. 
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Figure 9. Distribution of differences between the KM estimator and the 
complement to CIF estimator for the survival function, both estimated 
by pseudo-observations 

 
The GEE models for survival functions built for pseudo-observations based on 

both estimators gave exactly the same results. Thus, in spite of the above 
differences, the methods are fully interchangeable. 

5. Conclusions 

Pseudo-observations are a method that can be considered competitive with 
other survival analysis techniques. As shown in section 2, the values of pseudo-
observations depend both on the type and time of event. Regression models for 
pseudo-observations correctly evaluate the whole survival curve, and the use of 
the log(-log) link function causes the GEE models for both single and competing 
approaches to simply mimic the results of the Cox PH and Fine-Gray models, 
respectively.  

This observation is consistent with the results of earlier studies by other 
authors and argues against the use of a more cumbersome pseudo-values 
approach instead of more classic methods. However, because the independence 
matrix happened to be the best choice for the GEE model in all of the studies, it is 
suggested that pseudo-observations could be used as dependent variables in 
other methods for complete, independent data, such as classification trees.  

In application to credit-risk assessment, competing-risks models had more 
discriminatory power than single-event models, which supports the use of 
competing-risks models in preference to models for single events. Further studies 
should focus on the variable-selection method that could be applied to the GEE 
models. 
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 on 3–5 July 2019 in Warsaw, Poland 

 

In the preliminary program of the conference a series of thematic sessions is 

being projected, dedicated to the following issues:   

 Mathematical Statistics 

 Survey Sampling and Small Area Estimation 

 Population Statistics 

 Social Statistics 

 Economic Statistics 

 Regional Statistics 

 Data Analysis and Classification 

 Statistical Data 

 National Statistics in the International Context 

 History of Polish Statistics, Statistical Research in Historical Perspective 

 Statistics Communication and Statistical Education 

 

Information on the conference venue and registration procedure is on the 

conference portal:  http://met2019.stat.gov.pl/en/  

Abstract can be sent by May 10 to:  

https://rejestracja.stat.gov.pl/Konferencja2019/en/Account/Register 

http://met2019.stat.gov.pl/en/
https://rejestracja.stat.gov.pl/Konferencja2019/en/Account/Register
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