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AN APPLICATION OF FUNCTIONAL DATA ANALYSIS
TO LOCAL DAMAGE DETECTION
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ABSTRACT

Vibration signals sampled with a high frequency constitute a basic source of informa-
tion about machine behaviour. Few minutes of signal observations easily translate
into several millions of data points to be processed with the purpose of the damage
detection. Big dimensionality of data sets creates serious difficulties with detec-
tion of frequencies specific for a particular local damage. In view of that, traditional
spectral analysis tools like spectrograms should be improved to efficiently identify
the frequency bands where the impulsivity is most marked (the so-called informa-
tive frequency bands or IFB). We propose the functional approach known in modern
time series analysis to overcome these difficulties. We will process data sets as
collections of random functions to apply techniques of the functional data analysis.
As a result, we will be able to represent massive data sets through few real-valued
functions and corresponding parameters, which are the eigenfunctions and eigen-
values of the covariance operator describing the signal. We will also propose a new
technique based on the bootstrap resampling to choose the optimal dimension in
representing big data sets that we process. Using real data generated by a gearbox
and a wheel bearings we will show how these techniques work in practice.

Key words: damage detection, functional data, functional principal components,
informative frequency band.

1. Introduction

In recent years, extensive research has been focused on big data problems re-
lated to statistical signal processing. The big data problem arises when a structural
health monitoring system is supported by on-line sensors producing a signal ob-
served with e.g. 20 kHz frequency. After several hours of observations we have
millions of data points that can be used for processing. So far, many practical
applications have been based on selecting some segments of data and classical
analyses have then been conducted on selected segments. However, modern sta-
tistical inference can be based on the whole multi-million points sample when the
functional data analysis approach is used (see, for example Horváth and Kokoszka,
2012). This is especially suitable when we deal with time-varying systems and when
techniques related to time-frequency analysis are used. For example, in Yang and
Nagarajaiah (2014), results are presented on independent component analysis with
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wavelet transform. Interesting exploratory studies on frequency response function
(FRF) can be found in Staszewski and Wallace (2014).

In the case of big data and time varying systems, it is convenient to consider
data as curves. For example, for a rotating element the natural data curve would
be generated in the interval of the length of a cycle. For other signals, a natural
interval may be a second or a minute. From this perspective, the spectrogram
(see, e.g. Gryllias, et al., 2017 or Khadersab and Shivakumar, 2018) is a way of
converting a big signal into segments via Fourier analysis on sliding blocks creating
a time-frequency map. Such a map is exactly a collection of random curves. From
this point of view, a multimillion data points segment of a signal generated by a
sensor attached to some structure is seen as a collection of curves.

In recent years there is a significant research dedicated to wheel bearing diag-
nostics. Randall and Antoni (2011) presents a review of contemporary techniques.
Other publications like (Liu, et al., 2018) or (Jia, et al., 2016) present contemporary
artificial intelligence technique and their applications in the wheel bearing diagno-
sis. However, according to our knowledge, so far no one has implemented modern
statistical inference tools, based on functional data approach, to the diagnosis of
wheel bearings. In this context we would like to mention research in Spiridonakos
and Fassois (2014) dedicated to functional time series and their applications to non-
stationary random vibrations, where a functional approach is proposed in a different
context.

The main line of our article is to show how to use modern statistical tools like
functional data analysis or bootstrap to efficiently process big data sets and identify
significant frequencies. We propose a new perspective in looking at a very popular
tool in signal analysis such as the spectrogram. In Subsection 3.1. we explain
the difference between classical spectrogram and new functional one proposed by
us. Usually, the spectrogram is generated by a signal coming from an excavating
machine or by a signal generated by a wheel bearing (see, for example Cioch,
et al. 2013). Then, the proper functioning of the tested system is diagnosed by
identifying the frequency band where the signal impulsivity is most marked, called
in the sequel informative frequency bands (IFB) (see Randall and Antoni, 2011 or
Obuchowski, et al., 2014).

We propose to view the spectrogram as a collection of random curves. Us-
ing the functional data analysis approach, we are able to process such data and
quickly solve the problem of identifying the IFB. The main advantage of our method
is a possibility of using large data sets to generate few dimension of the diagnos-
tic analysis. Millions of data points are represented as random curves, then in the
appropriately defined infinitely dimensional Hilbert space the covariance operator
is considered and its empirical counterpart is studied. Finally, only few eigenvalues
and eigenfunctions of the empirical covariance operator are sufficient to efficiently
represent the signal at hand. We propose a novel technique of using bootstrap re-
sampling in deciding on dimensionality reduction. Another main advantage of our
method is that no matter what frequency of signal sampling might be, our method
provides a uniform result. On the diagram in Figure 1 we show the logic of our
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approach.

Figure 1: Flowchart of the main idea of our paper.

Our article is organized as follows. In Section 2, we present main elements
of the functional data analysis approach as applied to signals. Basic tools such
as functional principal components, Hilbert space valued random transformations,
variance and covariance operators are presented there. In Section 3, we apply
this approach to the problem of identifying the informative frequency bands for a
spectrogram. In that context we show that without discarding any data points we
are able to reduce the dimensionality of data to just a few eigenvalues and few
eigenfunctions and retain more than 80% of its energy. Finally, in Section 4 we
provide a short discussion of our results.

2. Functional data approach in statistical signal processing

Our starting point here is the new perspective on statistical signal processing
from the functional data analysis point of view. To start, assume that we observe
a signal {X(s) : s ∈ [0,T ]} and the collect time T is really huge, e.g. in the order of
several millions of individual data points. We will view such a signal as a collection
of random curves {Xn(s),s∈ [n,n+w]} each defined on the interval [n,n+w] with the
width w. These curves may be considered independent or correlated, depending
on the model and a context of study. For example, the spectrogram technique
Gryllias, et al., (2017), Khadersab and Shivakumar, (2018) transforms a long signal
{X(s) : s ∈ [0,T ]} into a collection {x1( f ), . . . ,xN( f )} of spectral densities defined
on a common frequency interval [0,Λ ], where f ∈ [0,Λ ]. In the Subsection 2.3, in
the last algorithm, we explain what our functional observations are and how they
were obtained from a discrete vibration signal. We assume those observations to
be independent. We are aware that the technic of the overlapping window may
introduce some dependence into our data structure. At this point we neglect this
dependence and we proceed as if the data were independent. However, in the



134 J. Leśkow, M. Skupień: An application of functional...

literature there is a number of cases in which methods of functional data analysis
have been adapted to series or signals by cutting them as if they were curves
observed independently (see Ramsay and Silverman (2002) and (2005)).

To simplify our notation and with no loss of generality, we will assume that Λ = 1
so all data curves are defined on the unit interval [0,1] . The observed curves will
be assumed to be square integrable. A natural choice of the realization space will
therefore be the Hilbert space H = L2[0,1]. This is a consequence of the expansion
methods (see Ramsay and Silverman (2002) and (2005)), where the functional form
of curves is obtained by a linear span of base functions. The relevant coefficients
are then estimated from discrete observation of curves at different time points by
least squares methods. This point of view allows us to introduce a Hilbert space
of squared integrable functions, where the theory of functional principal component
analysis (and many other functional methods) can be applied. From this perspective
our initial signal {X(s) : s ∈ [0,T ]} can be viewed as a collection of random curves
{Xn}, each in the space H. For such random curves, we will now introduce concepts
of mean, variance and covariance.

Note that each random curve X is as a random element acting from some prob-
ability space (Ω ,F ,P) onto L2[0,1]. If X is integrable, then there is a unique func-
tion µ ∈ L2 such that E〈y,X〉 = 〈y,µ〉 for each y ∈ L2. It follows that µ(t) = E[X(t)]
for all t ∈ [0,1]. Here 〈·, ·〉 is the scalar product in the Hilbert space H defined as

〈x,y〉=
∫ 1

0 x(s)y(s)ds with the norm defined as: ‖ f‖=
√∫ 1

0 f 2(t) dt for all f ∈ H. For
more mathematical details regarding statistics on Hilbert space the reader is re-
ferred to Horváth and Kokoszka (2012).

We recall here the notion of spectral decomposition for matrixes and functional
operator.

Theorem: 1. SupposeA is a symmetric, positive definited k×k matrix. Then, there
is an orthonormal matrix U = [u, . . . ,uk] whose columns are the eigenvectors of
A, i.e.

UTU = I and Auj = λ juj

Moreover, UTAU = Diag[λ1, . . . ,λk] The orthonormality of U is equivalent to the
assertion that the vectors u, . . . ,uk form an orthonormal basis in the Euclidean
space Rk. Theorem 1 implies that

A
(k×k)

=
k

∑
i=1

λi ui
(k×1)

ui
T

(1×k)
= U

(k×k)
Λ

(k×k)
UT

(k×k)
,

a representation known as a spectral decomposition of A.

The above ideas can be easily extended to a separable Hilbert space. Suppose
ΨΨΨ is a symmetric positive–definite Hilbert–Schmidt operator in L2. Covariance op-
erator (1) and its sample counterpart (2) are in this class, provided E‖X‖4 < ∞. The
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operator ΨΨΨ then admits the functional counterpart of spectral decomposition (1)

〈ΨΨΨ(x),x〉=
〈 ∞

∑
i= j

λ j〈x,v j〉v j,x
〉
=

∞

∑
i= j

λ j〈x,v j〉2

where scalars λ j are eigenvalues and v j corresponding eigenfunctions, satisfying
equation ΨΨΨ(v j) = λ jv j.

2.1. Theoretical and empirical covariance operators

Since we are adopting the Hilbert space approach, the usual covariance will be
an operator, that is a transformation from the Hilbert space to the Hilbert space.
This is analogous to the traditional concept of covariance, where a real-valued sig-
nal X generates a covariance function transforming real values to real values. Let
us have a closer look at the formal definition of the covariance operator.

For X integrable and EX = 0, the covariance operator of X is defined by

C(x) = E[〈X ,x〉X ], x ∈ L2, (1)

where

C(x)(t) =E[〈X ,x〉X(t)] = E
∫ 1

0
X(s)x(s)dsX(t) =

=
∫ 1

0
E[X(s)X(t)]︸ ︷︷ ︸

=c(s,t)

x(s)ds =
∫ 1

0
c(s, t)x(s)ds.

In the sequel, the covariance operator C will be our central point of a study as
it fully describes the energy generated by the random element X , which in turn
represents a signal under study. While studying the covariance operator, we will
focus on characterizing its eigenvalues. They will be important in reducing the
dimensionality of C to just a few of non-negative numbers. For more theoretical
properties of the covariance operators see Horváth and Kokoszka (2012).

The main task of statistical signal processing in the functional data analysis con-
text will be to introduce an empirical covariance operator Ĉ that is fully defined by
random curves x1, . . . ,xN and for sufficiently large sample size N approximates the
theoretical covariance operator C that describes the signal of interest. Therefore,
assume that a sample of random functions x1, . . . ,xN corresponds to the signal X .
Recall that the spectrogram can be viewed as a collection of random curves with
arguments in the frequency interval. In general, however, such random functions
can represent segments of signals from different time intervals or replica of signals
collected via some transformations.
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For x1, . . . ,xN we define the sample covariance operator as:

Ĉ(x) =
1
N

N

∑
i=1
〈xi,x〉xi, x ∈ H. (2)

It is important to note that in the formula (2) the symbol x corresponds to any
function x from the Hilbert space H while xi is the observed random function xi gen-
erated by the signal of interest. In such a way the estimator Ĉ given in (2) approxi-
mates the theoretical covariance operator C defined in (1). For more mathematical
theory related to this approximation the reader is refereed to (Bosq, 2000).

For covariance operators which are symmetric, positive defined and are defined
on a Hilbert space and are Hilbert-Schmidt operators we have a very interesting
property. Suppose ΨΨΨ is a symmetric, positive definite Hilbert–Schmidt operator
with eigenfunctions v j and eigenvalues λ j, satisfying λ1 > λ2 > · · · . Then,

sup
‖x‖=1

{〈ΨΨΨ(x),x〉 : 〈x,v j〉= 0, 1≤ j ≤ i−1, i < p}= λi

and the supremum is reached if x = vi. The maximizing function x is unique up to a
sign. The upper bound p for index i is defined in Subsection 2.2.

Of course, the empirical covariance operator Ĉ given in (2) satisfies the above
property. This in turn gives us the following facts fundamentally important in the
subsequent statistical considerations:

• the empirical covariance operator Ĉ defined in (2) is fully defined by its eigen-
functions and eigenvalues,

• the covariance and the total variance of the sample (thus the signal) will be
described by the estimated eigenvalues.

In what follows, we will show how to apply these facts. To start, recall that the
random functions x1, . . . ,xN correspond to the signal of interest. Now, fix the integer
number p� N. Next, choose the basis u1,u2, . . . in H such that:

Ŝ2 =
N
∑

i=1

∥∥∥xi−
p
∑

k=1
〈xi,uk〉uk

∥∥∥2
←min

Then, each curve xi can be approximated by
p
∑

k=1
〈xi,uk〉uk =

p
∑

k=1
ckuk. Hence, an

infinite dimensional curve xi is represented by a p variate vector (〈xi,u1〉, . . . ,〈xi,up〉).
Now we will use the fundamental fact that the basis elements u1, . . . ,up can be
chosen to correspond to the eigenfunctions of the sample covariance Ĉ. More
precisely, functions û1, û2, . . . , ûp minimizing Ŝ2 are equal (up to a sign) to normalized
eigenfunctions of the sample covariance operator Ĉ.

Note that scores 〈x, ûk〉=
∫ 1

0 x(t)ûk(t)dt measure the importance of the kth func-
tion ûk in the representation
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x≈
p

∑
k=1
〈x, ûk〉ûk. (3)

In the sequel, we will call ûk the k− th functional principal component. One of its
important properties is orthonormality.

The eigenvalues are extremely important in describing the total energy of the
signal. For a random element X with values in the Hilbert space H we have:

E‖X‖2 =
∞

∑
j=1

E〈X ,v j〉2 =
∞

∑
j=1
〈C(v j),v j〉=

∞

∑
j=1

λ j.

The quantity E‖X‖2 can be called theoretical total variance. Its empirical equiv-
alent, sample total variance, based on a sample of random functions x1, . . . ,xN is
defined as:

1
N

N

∑
i=1
‖xi‖2 =

1
N

N

∑
i=1
〈xi,xi〉=

1
N

N

∑
i=1

〈 N

∑
j=1
〈xi, û j〉û j,

N

∑
j=1
〈xi, û j〉û j

〉
=

=
N

∑
j=1

1
N

N

∑
i=1
〈xi, û j〉2 =

N

∑
j=1
〈Ĉ(û j), û j〉=

N

∑
j=1

∞

∑
k=1

λ̂k 〈û j, ûk〉2︸ ︷︷ ︸
=δ jk

=
N

∑
j=1

λ̂ j,

where δ jk is the Kronecker delta - a function of two variables, defined as follows:

δ jk = δ ( j,k) =

{
1, if k = j

0, if k 6= j
and λ̂ j is interpreted as variance in the direction

û j. In other words, the empirical functional principal component û j generated by
the empirical covariance operator Ĉ explains the fraction of the total sample vari-

ance equal to λ̂ j/
N
∑

k=1
λ̂k. The above approach will be referred to as the Functional

Principal Component Analysis or FPCA for short.

2.2. Reduction of dimensionality

While working with big data sets generated by signals, the crucial point is to
select the number p of eigenvalues that give a reasonable approximation of the
sample total variance. One of the methods of selecting p, for which function xi has

the best approximation given by the formula
p
∑
j=1
〈xi, û j〉û j is the CPV method. This

method is based on calculating the cumulative percentage of the total variance
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(CPV) explained by the first p empirical functional principal components

CPV (p) =

p
∑

i=1
λ̂i

N
∑

i=1
λ̂i

. (4)

We choose p for which CPV (p) exceeds a desired level. Ideally, one would like
to recover 100% of the total variance, however in practical situations we usually
settle with 80% or higher. Such approach has a dramatic effect on our ability to
process big data generated by the signals observed with high frequency over long
periods of time. First, we split the signal into a sequence of random functions and
then we follow the approach above to identify the first p eigenvalues. In the fol-
lowing section we will show that for vibration data coming from the gearbox of the
excavating machine choosing p as small as 8 retrieves a large percentage of the
total variance.
Below, we present our original method, based on bootstrap technique, which allows
us to precisely evaluate the percentage of variance explained with a confidence in-
terval.

CPV bootstrap algorithm.

Step 1. We start from the initial sample of random functions x1, . . . ,xN . We
sample with replacement the first bootstrap sample x∗11 , . . . ,x∗1N from the initial set
x1, . . . ,xN . It is important that the bootstrap sample is of the same size as the origi-
nal one. For such bootstrap sample we calculate the first bootstrap value CPV (p)∗1

of CPV (p) (see formula (4)).

Step 2. We repeat Step 1 B times. Usually, we take B = 1000. As a result, we
get B bootstrap replications {CPV (p)∗1, . . . ,CPV (p)∗B}.

Step 3. We produce a 95% confidence interval for CPV (p) using 2.5% and
97.5% empirical quantiles from the replications {CPV (p)∗1, . . . ,CPV (p)∗B}.

We illustrate the logic of our bootstrap procedure on the diagram in Figure 2.
The below procedure is admissible from the statistical point of view as it is recon-
structing the true unknown distribution of the CPV (p), which in turn is based on
the unknown distribution of eigenvalues. For a more detailed discussion related
to eigenvalues distribution in the functional approach see e.g. (Mas, 2002). We
would like to emphasize that our method allows us to analyse big data sets gener-
ated by signals observed over a long period of time using just 8 eigenvalues and 8
associated eigenfunctions. In general, one can start with even 2 eigenvalues, cal-
culate the CPV (3)/CPV (2) and bootstrap it to get its confidence intervals and then
see whether adding third eigenvalue significantly improves CPV(3) as compared to
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CPV(2). The reader can find an explanation of this improvement in Subsection 3.2
on the example of analysed data set. Additional argument is provided by studying
the convergence of the ratio CPV (p+1)/CPV (p) and identifying the proper p, where
it starts to stabilize (Figure 3).

Figure 2: Flowchart of finding the empirical distribution of CPV (p) via bootstrap
algorithm.

Figure 3: Visualization of the ratio CPV (p+1)/CPV (p) based on experimental data
set.

In the following subsection, we will show how to apply the dimensionality reduc-
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tion obtained from FPCA to the problem of identification of informative frequency
bands (IFB).

2.3. FPCA and informative frequency bands for spectrogram

Let us start with a definition. We define the Informative Frequency Band (IFB)
generated by a series of squared absolute of Short-Time Fourier Transforms
|ST FT (t, f )|2, t = 0, . . . ,T and f ∈ [0,Λ ] as such a subset A⊂ [0,Λ ] that

IE
E
(A)

de f
=

∑
f∈A

T
∑

t=0
|ST FT (t, f )|2

∑
f∈[0,Λ ]

T
∑

t=0
|ST FT (t, f )|2

≥ L, (5)

where E is the total energy of the signal and IE is the energy within the frequency
set A and ST FT (t, f ) defined in (6). The threshold value L, 0 ≤ L ≤ 1 is usually
selected to be bigger than 80%.

To simplify the search for the frequency set A defined in (5), we start from a
one-element subset that contains the most energy and we augment it successively
adding element by element in the order of the energy contribution. This is repre-
sented by the algorithm below.

Identification of IFB by STFT.

Step 1. Identify first f1 such that ∑
T
t=0 |ST FT (t, f1)|2 is the biggest.

Step 2. Obtain the ranking of frequencies fi via

T

∑
t=0
|ST FT (t, f1)|2 ≥ . . .

T

∑
t=0
|ST FT (t, fi)|2 ≥ . . .

T

∑
t=0
|ST FT (t, fI)|2 .

where I is the cardinality of a set of frequencies (discretizated interval of frequen-
cies).
Step 3. From the above ranking we identify the subset Aspectr = { f1, f2, . . . , fK} in-
duced by spectrogram such that

IE
E
(Aspectr)≥ L,

where IE
E (·) was defined in (5).

The above procedure does not involve FPCA, it simply ranks the frequencies in
the decreasing order of their influence on the total variability generated by STFT. We
will now show how FPCA and the reduction of dimensionality obtained via CPV (p)
helps identify the impulsive frequencies.
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IFB identification algorithm via FPCA.

Step 1. Represent the raw data produced by the spectrogram as random functions
x1, . . . ,xN . In the Subsection 3.1, we explain how to obtain curves {xi, . . . ,xN}. Us-
ing the functional approach, find the empirical covariance estimator Ĉ (see (2)), the
corresponding eigenvalues {λ̂i, i= 1, . . . ,N} and the functional principal components
{ûi( f ), i = 1, . . . ,N; f ∈ [0,Λ ]} (see (3)). Using the CPV (p) technique identify your
choice of p. We still use formula (5) with one modification - in place of |ST FT (t, f )|2

we insert FPC representation of the curve, i.e. |xt( f )|2 = |
p
∑
j=1
〈û j,xt〉û j( f )|2

Step 2. Identify first f1 such that ∑
T
t=0 |xt( f1)|2 is the biggest.

Step 3. Obtain the ranking of frequencies fi via

T

∑
t=0
|xt( f1)|2 ≥

T

∑
t=0
|xt( f2)|2 ≥ . . .≥

T

∑
t=0
|xt( fI)|2

Step 4. From the above ranking we identify the FPCA induced subset AFPCA =

{ f1, f2, . . . , fR} such that

IE
E
(AFPCA)≥ L,

where IE
E (·) was defined in (5).

In the next Section dedicated to applications we will show how close the sets
Aspectr and AFPCA are.

3. Application to gearbox and wheel bearing data

In this Section we will show the application of the functional data approach pre-
sented in the previous section to the spectrogram in the context of identifying the
informative frequency band (IFB). Recall that the spectrogram represents the signal
as a collection of short-time Fourier transforms (STFT). Using time-frequency plots
produced by sequences of STFTs one tries to identify the frequency bands where
the excitation (energy) of the signal of interest is the most significant. From our
perspective, however, the spectrogram is a collection of random curves. To make
our point more precise let X be a signal of interest. Recall that the STFT is defined
as:

STFT(t, f ) =
∞∫
−∞

w(t− τ)X(τ)e−2πi f τ dτ, (6)

where w(·) is the window function, t ∈ [0,T ] and the frequency f ∈ [0,Λ ]. The dis-
crete version of STFT is defined as follows:
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STFT(t, f ) =
M−1

∑
k=0

Xkw(t− k)e−2πi f k/M. (7)

3.1. Spectrogram and FPCA on data

A spectrogram is a visual representation of the spectrum of frequencies in a
signal as it varies with time or some other variable. A common format is a graph
with two geometric dimensions: the vertical axis represents frequency, the horizon-
tal axis is time; a third dimension indicating the amplitude of a particular frequency
at a particular time is represented by the intensity or colour of each point in the
image. Here we will analyse the spectrogram generated by the open-pit excavating
machine from a Polish brown coal mine. The signal is the acceleration signal gen-
erated in the gearbox of this machine. The raw signal that combines four signals
from four sensors has a length of 20480 data points. The impulses are convoluted
with the raw signal and then the spectrogram of the result is analysed. The resulting
signal {X(s) : s ∈ [0,T ]} is represented in Figure 4.

Figure 4: Acceleration signal with the impulses.

The spectrogram corresponding to the above signal is represented in Figure 5
on the left panel. The spectrogram of the signal obtained after the dimensionality
reduction done by FPCA method is shown on the right panel. Here, we clarify how
to create particular spectrograms.

Traditional data spectrogram: First, decompose the signal {X(s) : s ∈ [0,T ]} into
the set of overlap narrowband sub-signals {Xt(s) : s∈ [t, t+w]}N−1

t=0 . Next, use Fourier
transform (FFT) to calculate the magnitude of the frequency spectrum for each
sub-signal (FFT is a digital process). Vertical (or horizontal) line in the image cor-



STATISTICS IN TRANSITION new series, March 2019 143

responds to each sub-signals; a measurement of magnitude vs. frequency for a
specific moment in time. Finally, these spectrums or time plots are then ”laid side
by side” to form the image or a three-dimensional surface, or slightly overlapped
(windowing) in various ways. To sum up, a spectrogram is a frequency-time domain
map, representing an energy of signal (power spectrum). Its values are stored in a
huge matrix {|STFT(t, f )|2} f∈[0,Λ ]; t∈[0,T ] with entries defined in (7).

Spectrogram via FPCA method: We process a vibration signal similarly to tradi-
tional method with the difference that each sub-signal selected by windowing is con-
verted into function, hence we view a spectrogram as a collection of random curves.
According to our notation, for each t = 0, . . . ,N−1 we convert {|ST FT (t, f )|2}Λ

f=0 into
random curves {xt( f ) : f ∈ [0,Λ ]}t=0,...,N−1, where Λ is fixed maximum frequency,
and xt ∈ L2[0,Λ ]. Conversion of vectors (here, rows of the matrix {|ST FT (t, f )|2}Λ

f=0)
to curves is carried out with the use of basis expansion in L2[0,1] space. Here, we
used the program R and its package fda.usc with the function fdata2fd to pro-
duce functional object. The type of functional basis is Bspline by default, but of
course it is possible to change basis to any other, for example Fourier basis. Next,
we reduce dimensionality of those curves using FPCA. For curves, represented by
combination of several eigenfunctions and scores we calculate STFT defined in (6)
achieving again a matrix {|STFT(t, f )|2} f∈[0,Λ ]; t∈[0,T ] which has graph representation
in Figure 5 on right panel. From our perspective, the spectrogram is a collection of
random curves indexed by the parameter t (time). In other words, the spectrogram
is a set which define the energy of functions. Consequently, IFB is a subset of those
functions whose energy within this band is close to the total energy.

Figure 5: Traditional data spectrogram (left) and spectrogram via FPCA method
(right).

Our data set is a relatively big 513×1265 matrix with entries {|ST FT (t, f )|2}. The
second dimension (frequencies f ) range is 513 = 29 +1 and it refers to the sample
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frequency. The first dimension (time t) is 1265 and it refers to the number of win-
dows N covering a signal of length 20480 (16 ·N = 20480−256). Here, we have used
Hamming window (a function describing the way of sampling within a signal, given
by formula w(t− k) = 0.53836− 0.46164cos( 2π(t−k)

M−1 ); k = 1, . . . ,M) of length 256 = 28

and an overlap M = 240. Next, each row of {|ST FT (t, f )|2} is converted to func-
tion xt( f ), t = 0, . . . ,1−N , which forms our functional data set. The last step is to
approximate those curves with principal components expansion.

We will now show how the FPCA method works in practice. We choose p = 8
first functional principal components generated by the empirical covariance oper-
ator Ĉ induced by the random curves x1, . . . ,xN corresponding to the spectrogram.
How to obtain the empirical operator was explained in previous Section 2, i.e. in
formula (2). It is worth to notice, that x in (2) is any element of the Hilbert space H,
so the easiest way to choose this element is to take any basis element. Moreover,
Ĉ is fully described by its eigenfunction and eigenvalues, which are known from the
data. We illustrate our eight empirical principal components in Figure 6, which is
a fragment of a 8×8 matrix of small pictures. On the diagonal, first four from the
eight functional principal components ûi, i = 1, . . . ,8 are represented. Outside the
diagonal, we show the scatterplots of scores {(PCk

i ,PCk
j )}N

k=1 , i 6= j, i, j = 1, . . . ,8.
Recall that scores PCk

i = 〈ûi,xk〉, where ûi are the eigenfunctions of the empirical
covariance operator Ĉ and xk, k = 1, . . . ,N is a function from the sample {x1, . . . ,xN}.
In our case N = 1265. The more the scatterplots are irregular, the less correlation
between them. Ideally, one would like to have a zero correlation between them
since we want our functional principal components to be orthogonal. Our graphs
confirm the idea of the weak correlation between the scores, hence our empirical
FPC are indeed orthogonal.

In Table 1, we show the percentage of variance explained by each of the first
eight functional principal components FPC(i), i = 1, . . . ,8.

Table 1: Percentage of variability explained by each empirical functional compo-
nent.

FPC1 FPC2 FPC3 FPC4 FPC5 FPC6 FPC7 FPC8
52.62% 9.91% 5.48% 4.07% 3.36% 2.38% 2.10% 1.96%
Total explained: 81.88%

First four empirical functional components are quite informative, explaining as
much as 72.08% of variability so we show the corresponding 4×4 matrix of plots
of the scores, which are highly uncorrelated confirming orthogonality of empirical
FPC (see values of correlation in the top of the boxes outside the diagonal).
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Figure 6: First four FPC with scatterplots of scores.
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3.2. Cumulative percentage of variance (CPV) study

The previous subsection was devoted to illustrating how our FPCA method
works in practice. For the first eight empirical functional eigenvalues λ̂1, . . . , λ̂8 we
have obtained a quite reassuring result: they represent as much as 81.88% of
variance. From the statistical perspective, however, we would like to get more infor-
mation on the variability of the CPV (p) coefficient. In other words, we would like to
be able to measure the variability of our estimate with the point value of 81.88%. To
answer this question, we will apply the CPV bootstrap algorithm introduced in the
previous Section 2.
The statistical features of the bootstap distribution of CPV(8) are shown in Figure 7.

Descriptive statistics
of CPV(8) Values

Minimum 80.43000
2.5% quantile 81.02000
Median 81.78000
Mean 81.79348
97.5% quantile 82.54025
Maximum 82.98000
Variance 0.14648
Skewness −0.00285
Kurtosis 3.07514

Figure 7: Descriptive statistics for CPV (8) based on bootstrap samples.

The most important message from the above calculations is that the 95% confi-
dence interval for CPV(8) is from 81.02% (the 2.5% quantile) to 82.54% (the 97.5%
quantile). This means that CPV as a random variable is quite concentrated around
its point value 81.88% and that our results are quite reliable and have only a small
spread.

To analyse the speed of convergence CPV (p+ 1)/CPV (p)
p→∞−→ 1 we have per-

formed the bootstrap distribution study of this ratio and have obtained the results
presented in Figure 8.
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Descriptive statistics
of CPV(9)/CPV(8) Values

Minimum 1.01612
2.5% quantile 1.01719
Median 1.01859
Mean 1.01864
97.5% quantile 1.02023
Maximum 1.02113
Variance 6.56e−07
Skewness 0.19956
Kurtosis 2.95591

Figure 8: Normality of CPV (9)/CPV (8) based on bootstrap samples.

Again, we see the usefulness of the bootstrap method. From the bootstrap
method we get the 95% confidence interval for the proportion CPV (9)/CPV (8) is
[1.017;1.020] which means that increasing p from 8 to 9 we will get only 2% more of
the variance explained. This is sufficient argument to stop at p = 8. Adding more
FPC’s dose not improve significantly total variance explained.

3.3. Application to informative frequency bands

In our experiment, we set the threshold L defined in (5) as 80%. Therefore, for
our vibration data coming from the gearbox we will be looking for two sets: Aspectr

and AFPCA such that IE
E (Aspectr)≥ 80% and IE

E (AFPCA)≥ 80%. We will see how close
those two sets are on real applications using vibration signals.

Searching for Aspectr that satisfies (5) may be quite time consuming as we have
to consider all possible subsets of frequencies from the set [0,Λ ]. For example, for
the vibration gearbox data one would have to deal with 2513 combinations! As de-
scribed in the previous Section, we start the search by identifying the frequency f1

that maximizes ∑
T
t=0 |ST FT (t, f )|2, then select the second in the order of the energy

contribution and so on.

The analysis based on CPV (p) presented in the previous subsection has shown
that p= 8 first functional principal components reproduce as much as 81.88% of the
total variability in the data. Therefore, the FPCA method induced by the spectro-
gram of gearbox signal creates the eight-dimensional vector of scores, taken from
the functional expansion. This means reducing the dimensionality of our problem
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from 1265 windows with 513 frequencies in each to 8× 513 considering spectro-
gram data as a functions of frequencies. This means, that finding AFPCA is much
faster than Aspectr, especially for large data sets.

Below, we provide a listing of all frequencies pertaining to Aspectr and AFPCA.

Aspectr ={447.13,455.11,439.14,463.1,431.16,471.08,423.17,479.06,415.19,

542.94,550.92,534.96,487.05,526.97,558.91,518.99,566.89,407.2,

495.03,511,574.88,503.02,335.35,343.33,327.36,399.22,351.31,

319.38,359.3,391.24}.

Aspectr has 30 elements.

AFPCA ={447.13,455.11,439.14,463.1,431.16,471.08,423.17,479.06,415.19,

542.94,534.96,550.92,487.05,526.97,558.91,407.2,518.99,566.89}.

AFPCA has 18 elements.
Note that the first 10 frequencies coincide, up to the second decimal point (in

Hz). If we consider frequencies from the intersection B = Aspectr ∩AFPCA , then the
percentage of signal energy describing IFB is already at the level of 74,03%, not
very far from the threshold of 80%.

We have applied the above analysis to the data set generated by a wheel bear-
ing and described in Cioch et al. (2013). The sets Aspectr and AFPCA are shown
below for these data

Aspectr = {1272.51,1291.23,1253.8,1309.94,3106.43,3125.15,3087.72,1235.09,1328.65

3143.86,3069.01,1347.37,3162.57,3050.29,1216.37,1366.08,3031.58,3181.29

1197.66,1384.8,}

AFPCA = {1272.51,1291.23,1253.8,1309.94,3106.43,1235.09,3125.15,1328.65,3087.72

3143.86,3069.01,1347.373162.57,1216.37,3050.29,1366.08,3181.29,3031.58

1384.8,1197.66}.

A careful examination of the above listings for both data sets shows that both
sets contain the same frequencies. They are shown in the order of their importance
in energy explained in Section 2. Therefore, the only change we have using the
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FPCA is the change of the order of the energy importance of the frequency. Ob-
serve, however, that such a change is not dramatic. FPCA preserves the order of
the first five frequencies and then makes only small changes, never bigger than two
places in the order of energy.

4. Conclusions

Our article is devoted to introducing the functional data approach to analyse big
data generated by signals available for structural health monitoring. We show that
applying the FPCA - the functional principal component approach - we can reduce
the dimensionality of the data from several millions to several thousands. Using
such an approach we show the importance of the eigenfunctions and eigenvalues
calculated for functions generated by observing the signal. It turns out that the
popular coefficient - the cumulative percentage of the variance explained (CPV)
exceeds 80 per cent for the initial few functional components. We show that this
approach applied to the signal generated by the excavating machine can be helpful
in identifying informative frequency bands. Moreover, applying the bootstrap ap-
proach we can show that the CPV has a relatively small dispersion, which proves
the numerical stability of our results.
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