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ABSTRACT

The main aim of the paper is to adapt the classical discriminant coordinates anal-
ysis to multivariate repeated measures data. The proposed solution is based on
the relationship between the discriminant coordinates and canonical variables. The
quality of these new discriminant coordinates is examined on some real data.
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1. Introduction

Let us consider a case where samples originate from K groups (classes). We
would often like to present them graphically, to see their configuration. However,
it may be difficult to produce such a presentation even only three variables are
observed. A different method must therefore be sought for presenting multidimen-
sional data originating from multiple groups. That is the role of the discriminant
coordinates (Seber (1984), p. 269). They are also sometimes called canonical
variates (Krzanowski (2000), p. 370; Srivastava (2002), p. 257), but this name
is misleading, because canonical variates with completely different properties oc-
cur in canonical correlation analysis. Another name used is discriminant functions
(Rencher (1998), p. 202; Fujikoshi et al. (2010), p. 255) - this is inappropriate be-
cause discriminant functions are surfaces that separate K groups from one another.

The aim of the classical discriminant coordinates technique is to replace the
input variables by a smaller number of independent coordinates in such a way that
the separation among groups (classes) is maximum in the reduced space. In the
case of two classes we obtain only one discriminant coordinate, coinciding with the
well-known Fisher’s linear discriminant function (Fisher (1936)). Generalization on
K > 2 classes was shown by Rao (1948). The space of discriminant coordinates
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is a space convenient for the use of various classification methods (methods of
discriminant analysis).

In the present paper, we adapt the classical discriminant coordinates analysis
to multivariate repeated measures data. Suppose that we have a sample of n ob-
jects characterized by p-variables measured in T different time points or physical
conditions. Such data are referred to in the statistical literature as multivariate re-
peated data or doubly multivariate data. Analysis of such data is complicated by
the existence of correlation among the measurements of different variables as well
as correlation among measurements taken at different time points.

The proposed methods are particularly useful when the number of time points is
small and the data sets are also small. Such situations concern, from example, the
observation of variables in groups of territorial units, the number of which is fixed.

In the case of a large number of variables, a large number of time points and
large data sets (e.g. in modern on-line economy), the alternative may be to use
discriminant coordinates for functional data (see e.g. Górecki et al. (2018)).

In practice, the use of classical discriminant coordinates described in Section 2
requires the fulfillment of the condition max{n1, . . . ,nK}> pT , where ni is the sample
size derived from the ith group, i = 1, . . . ,K. This condition is very restrictive and
requires large samples. If it is not satisfied, then our problem can be partially solved
using an existing relationship between the discriminant coordinates and canonical
variables (Krzyśko (1979)). The construction of the discriminant coordinates as
the canonical variables of the XXX-space is described in Section 3. In this case the
condition n > pT +K−1 is required, where n = n1 + · · ·+nK . Note that the condition
n > pT +K − 1 is a condition much weaker than the condition max{n1, . . . ,nK} >
pT , especially for a small number of groups K. If n ≤ pT +K − 1, then we can
construct the discriminant coordinates with the additional condition imposed on the
covariance matrix. This construction is presented in Section 4. Section 5 illustrates
the approaches presented in the paper on a real data set.

2. Classical discriminant coordinates: a review

Let us consider the multivariate discriminant problem with K groups. We observe
(XXX ,Y ), XXX = (XXX1, . . . ,XXX p), XXX i ∈ RT , where vecXXX ∈ RpT is a predictor vector, and Y ∈
{1, . . . ,K} is a categorical response variable representing the group membership.
We are interested in predicting the class membership Y based on the p variables
measured in T different time points or physical conditions. Suppose that group i has
group mean vector µµµ i ∈ RpT , a common (within-group) pT × pT covariance matrix
ΣΣΣ and associated group probability qi > 0, i = 1, . . . ,K. That is E(vec(XXX)|Y = i) =
µµµ i, Var(vec(XXX)|Y = i) = ΣΣΣ > 0, for i = 1, . . . ,K and P(Y = i) = qi > 0, q1 + · · ·+ qK =

1. Discriminant coordinates are then defined to be the linear combination U =

uuu′ vec(XXX), which maximizes the ratio of the between-group variance to the within-
group variance.
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Specifically, let ∆∆∆ be the between-group covariance matrix defined by

∆∆∆ =
K

∑
i=1

qi(µµµ i−µµµ)(µµµ i−µµµ)′,

for

µµµ =
K

∑
i=1

qiµµµ i.

The between-group covariance matrix ∆∆∆ is nonnegative definite matrix. Then, the
ratio of the between-group variance to the within-group variance is equal to

J(uuu) =
uuu′∆∆∆uuu
uuu′ΣΣΣuuu

, (1)

provided that uuu ∈ RpT 6= 000.
If uuu1 is the vector which maximizes (1), we call the corresponding linear com-

bination U1 = uuu′1 vec(XXX) the first discriminant coordinate. In particular, uuu1 can be
obtained by solving

max
uuu∈RpT

uuu′∆∆∆uuu

subject to

uuu′ΣΣΣuuu = 1.

Since ΣΣΣ is a nonsingular matrix, then uuu1 is the eigenvector of ΣΣΣ−1∆∆∆ corresponding
to its largest eigenvalue λ1.

The second discriminant coordinate maximizes the measure J(uuu) and satisfies
the conditions:

uuu′2ΣΣΣuuu2 = 1, uuu′1ΣΣΣuuu2 = 0.

Continuing this process, we can define the k-th discriminant coordinate as far as
maximizing the measure J(uuu), which must also comply with conditions:

uuu′kΣΣΣuuul =

{
1, k = l,
0, k 6= l,

k, l = 1, . . . ,s = rank∆∆∆.
This means that the discriminant coordinates are uncorrelated and have unit

variance.
The vectors uuuk, which maximize the measure J(uuu), fulfill the equality

(∆∆∆−λkΣΣΣ)uuuk = 000,

where λ1 ≥ ·· · ≥ λs > λs+1 = · · · = λpT = 0 are the eigenvalues of the matrix ΣΣΣ−1∆∆∆,
k = 1, . . . ,s = rank∆∆∆.
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Note that the construction of discriminant coordinates requires knowledge of
the vectors µµµ1, . . . ,µµµK , prior probabilities q1, . . . ,qK , and the matrices ΣΣΣ and ∆∆∆. In
practice these parameters are not known, and we need to use their estimates from
the sample.

Let xxxi1, . . . ,xxxini be a sample derived from the ith group, where i = 1, . . . ,K, and let
n = n1 + · · ·+nK . Then

q̂i =
ni

n
,

µ̂µµ i = x̄xxi =
1
ni

ni

∑
j=1

vec(xxxi j),

µ̂µµ = x̄xx =
1
n

K

∑
i=1

nix̄xxi,

Σ̂ΣΣ =
1

n−K
WWW , where WWW =

K

∑
i=1

AAAi, AAAi =
ni

∑
j=1

(vec(xxxi j)− x̄xxi)(vec(xxxi j)− x̄xxi)
′,

∆̂∆∆ =
1

K−1
BBB, where BBB =

K

∑
i=1

ni(x̄xxi− x̄xx)(x̄xxi− x̄xx)′, i = 1, . . . ,K.

Note that the matrix WWW is the sum of the matrices AAA1, . . . ,AAAK . The matrix AAAi is
positive definite with probability 1 if and only if ni > pT , i = 1, . . . ,K. Then WWW is also
positive definite if and only if max{n1, . . . ,nK} > pT (Banerjee and Roy (2004), p.
418; Giri (1996), p. 93). Therefore, if max{n1, . . . ,nK} > pT , then the estimate Σ̂ΣΣ of
the positive definite matrix ΣΣΣ is positive definite with probability 1, and we can use
the given estimates of unknown parameters. The condition max{n1, . . . ,nK} > pT
is very restrictive and requires large samples. If it is not satisfied, then the prob-
lem of correct estimation of the matrix WWW can be partially solved using an existing
relationship between the discriminant coordinates and canonical variables.

3. The relationship between the discriminant coordinates and
canonical variables

In the case where max{n1, . . . ,nK} ≤ pT estimates of the unknown parameters will
be calculated using the relationship between discriminant coordinates and canoni-
cal variables (Krzyśko (1979)).

Let the q-dimensional vector YYY be a vector of dummy variables defined as fol-
lows:

Yi =

{
1, if the matrix XXX is observed in the ith group,
0, in other cases,

i = 1, . . . ,q = K−1.
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Let

ZZZ =

[
vec(XXX)

YYY

]
and let

Var(ZZZ) =
[

Var(vec(XXX)) Cov(vec(XXX),YYY )
Cov(YYY ,vec(XXX)) Var(YYY )

]
=

[
ΩΩΩ11 ΩΩΩ12

ΩΩΩ21 ΩΩΩ22

]
=ΩΩΩ,

where ΩΩΩ21 =ΩΩΩ′12 and ΩΩΩ is positive definite.
The estimate Ω̂ΩΩ of the positive definite matrix ΩΩΩ is positive definite with proba-

bility 1 if and only if n > pT + q, where n = n1 + · · ·+ nK . If the matrix Ω̂ΩΩ is positive
definite, then the matrices Ω̂ΩΩ11 and Ω̂ΩΩ22 are non-singular.

Let
Γ̂ΓΓ = Ω̂ΩΩ

−1
11 Ω̂ΩΩ12Ω̂ΩΩ

−1
22 Ω̂ΩΩ21.

Consider the equation

(Γ̂ΓΓ− r2III)mmm = 000. (2)

Variables Vk =mmm′k vec(XXX), where mmmk ∈RpT are eigenvectors of the matrix Γ̂ΓΓ satisfying
equation (2), are called sample canonical variables of the XXX-space.

The following relationships are satisfied (Krzyśko (1979)):

WWW = nΩ̂ΩΩ11− (nΩ̂ΩΩ12)(nΩ̂ΩΩ22)
−1(nΩ̂ΩΩ21),

BBB = (nΩ̂ΩΩ12)(nΩ̂ΩΩ22)
−1(nΩ̂ΩΩ21).

Thus, equation (2) is equivalent to the equation

(BBB−λWWW )mmm = 000,

where λ = r2(1− r2)−1.
This means that the discriminant coordinates Uk = uuu′k vec(XXX) are proportional to

the canonical variables of the XXX-space Vk =mmm′k vec(XXX), where YYY is a vector of dummy
variables. Note that the condition n > pT + q is a condition much weaker than the
condition max{n1, . . . ,nK}> pT , especially for a small number of groups K = q+1.

4. The special structure of the matrix ΩΩΩ

If n≤ pT +q, then we can construct the discriminant coordinates with the additional
condition that assumes that

ΩΩΩ11 =UUU⊗VVV ,

where UUU > 0, VVV > 0.
The matrix UUU represents the covariance between all p-variables on a given ob-
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ject and for a given time point. Likewise, VVV represents the covariance between re-
peated measures on a given object and for a given variable. The above covariance
structure is subject to an implicit assumption that for all variables the correlation
structure between repeated measures remains the same, and that covariance be-
tween variables does not depend on time and remains constant for all time points.

Estimates of the matrices UUU and VVV , and thus the matrix ΩΩΩ11 can be obtained
using the method given by Srivastava et al. (2008).

Let

x̄xx? =
1
n

n

∑
j=1

xxx j,

xxx j,c = xxx j− x̄xx?, j = 1, . . . ,n.

Then, estimates of the matrices UUU and VVV are obtained iteratively with a system of
equations

ÛUU =
1

nT

n

∑
j=1

xxx′j,cV̂VV
−1

xxx j,c,

V̂VV =
1

np

n

∑
j=1

xxx j,cÛUU
−1

xxx′j,c.

In this case, the matrix Ω̂ΩΩ11 = ÛUU ⊗V̂VV is positive definite with probability 1 if and only
if n > max(p,T ).

Note that the fact that the matrix Ω̂ΩΩ11 is positive definite with probability 1 does
not always guarantee that the matrix Ω̂ΩΩ is positive definite with probability 1. How-
ever, the fact that the matrix Ω̂ΩΩ11 is positive definite with probability 1 allows us to
determine the discriminant coordinates on the basis of the matrix Γ̂ΓΓ because then
the matrix Ω̂ΩΩ

−1
11 exists.

5. Example

The described methods were employed here to build the discriminant coordinates
based on the annual data on the 38 European countries in the period 2009-2015.
These countries were divided into 4 regions purposes by the United Nations Statis-
tics Division: (1) Northern Europe, (2) Western Europe, (3) Eastern Europe, (4)
Southern Europe. The list of countries used in the discriminant coordinates analy-
sis is contained in Table 1.

We used the data published by the World Economic Forum (WEF) in its annual
reports (http://www.weforum.org). Those are comprehensive data, describing
exhaustively various socio-economic conditions or spheres of individual states. For
statistical analysis, we chose 2 of 12 pillars of variables: technological readiness
(consists of 4 variables) and higher education and training (consists of 6 variables).
Table 2 describes the pillars used in the analysis.
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Table 1: Countries included in analysis

Country Group Country Group
1 Albania (AL) 4 20 Lithuania(LT) 1
2 Austria (AT) 3 21 Luxembourg (LU) 3
3 Belgium (BE) 3 22 Macedonia FYR (MK) 4
4 Bosnia and Herzegovina (BA) 4 23 Malta (MT) 4
5 Bulgaria (BG) 2 24 Montenegro (ME) 4
6 Croatia (HR) 4 25 Netherlands (NL) 3
7 Cyprus (CY) 4 26 Norway (NO) 1
8 Czech Republic (CZ) 2 27 Poland (PL) 2
9 Denmark (DK) 1 28 Portugal (PT) 4
10 Estonia (EE) 1 29 Romania (RO) 2
11 Finland (FI) 1 30 Russian Federation (RU) 2
12 France (FR) 3 31 Serbia (XS) 4
13 Germany (DE) 3 32 Slovak Republic (SK) 2
14 Greece (GR) 4 33 Slovenia (SI) 4
15 Hungary (HU) 2 34 Spain (ES) 4
16 Iceland (IS) 1 35 Sweden (SE) 1
17 Ireland (IE) 1 36 Switzerland (CH) 3
18 Italy (IT) 4 37 Ukraine (UA) 2
19 Latvia (LV) 1 38 United Kingdom (GB) 1

Table 2: Variables used in analysis

Pillars Variables
Technological readiness Availability of latest technologies (X1)

Firm-level technology absorption (X2)
FDI and technology transfer (X3)
Internet users (X4)

Higher education and training Quality of the educational system (X1)
Quality of math and science education (X2)
Quality of management schools (X3)
Internet access in schools (X4)
Local availability of specialized research and training services (X5)
Extent of staff training (X6)
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In both cases max{n1, . . . ,nK} ≤ pT , and we could not use the classical discrim-
inant coordinates algorithm. The unknown parameters were calculated using the
relationship between discriminant coordinates and canonical variables described in
Section 3. The technological readiness pillar consists of 4 variables (p = 4). In this
case n > pT +q. The discriminant coordinates are uncorrelated. However, they are
not orthogonal. In practice, however, the usual procedure is to plot discriminant
coordinates on a rectangular coordinate system. The resulting distortion is gener-
ally not serious. Projection of the 38 European countries on the plane (Û1,Û2) is
presented in Figure 1.
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Figure 1: Technological readiness. Projection of the 38 European countries on
the plane (Û1,Û2). Regions used for statistical processing purposes by the United
Nations Statistics Division: – Northern Europe, – Western Europe, – Eastern
Europe, – Southern Europe

Figure 1 confirms that the European countries in terms of four characteristics of
forming the technological readiness pillar are divided into four groups. However, the
difference between the countries of Western Europe and the countries of Northern
Europe is small.

The contribution of each variable to the discriminant coordinate is not the same.
The correlation between each variable and a discriminant coordinate is widely rec-
ommended as a useful measure of variable importance in the discriminant coordi-
nate. These correlations, sometimes called structure coefficients, are provided in
many software packages. However, it turns out that these correlations do not show
the multivariate contribution of each variable, but rather provide only univariate in-
formation, showing how each variable by itself separates the groups, ignoring the
presence of the other variables. The better measure are the absolute values of
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standardized coefficients, because these coefficients show the contribution of the
variables in the presence of each other, that is, these coefficients provide a multi-
variate interpretation that allows for the correlations among the variables (Rencher
(1998), p. 214 ). If we denote the rth coefficient in the qth discriminant coordinate by
mqr then the standardized form is m?

qr = srmqr, where sr is the within-group standard
deviation of the rth variable obtained from the diagonal of (n−K)−1WWW .

The absolute values of the standardized coefficients can be used to rank the
variables in order of their contribution to separating the groups. Tables 3 and 4
show the standardized discriminant coordinate coefficients of the first and second
discriminant coordinate, respectively, for the technological readiness data.

Table 3: Technological readiness. The standardized coefficients of the first discrim-
inant coordinate Û1.

2009 2010 2011 2012 2013 2014 2015
X1 0.0864 -0.0537 -0.0963 -0.1803 0.1950 -0.1269 0.0924
X2 0.0133 0.1138 -0.2164 0.2248 -0.1485 0.0876 -0.0004
X3 0.0412 -0.1393 -0.0500 0.1100 0.0013 -0.0387 0.0841
X4 -0.0055 -0.0324 0.0696 0.0228 -0.0400 -0.0082 0.0397

Table 4: Technological readiness. The standardized coefficients of the second dis-
criminant coordinate Û2.

2009 2010 2011 2012 2013 2014 2015
X1 -0.0830 0.1067 -0.0487 -0.0289 -0.1082 0.3113 -0.0686
X2 -0.0618 0.0751 -0.0677 0.1204 -0.0575 0.0096 -0.0629
X3 -0.0829 0.1346 -0.1693 0.1705 -0.0329 -0.1491 0.1036
X4 -0.0358 0.0071 0.0471 -0.0439 -0.0060 -0.0108 0.0245

The higher education and training pillar consists of 6 variables (p = 6). In this
case n ≤ pT + q, and we made the calculation with the additional condition ΩΩΩ11 =

UUU⊗VVV . A projection of the 38 European countries on the plane (Û1,Û2) is presented
in Figure 2.

Figure 2 shows three clusters. The countries of Western Europe and Northern
Europe in fact form a single group. The outliers countries in this group are Lithuania
(LT) and Latvia (LV).

Tables 7 and 8 show the standardized discriminant coordinate coefficients of the
first and second discriminant coordinate, respectively, for the higher education and
training data.
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Figure 2: Higher education and training. Projection of the 38 European countries on
the plane (Û1,Û2). Regions used for statistical processing purposes by the United
Nations Statistics Division: – Northern Europe, – Western Europe, – Eastern
Europe, – Southern Europe

Table 5: Higher education and training. The standardized coefficients of the first
discriminant coordinate Û1.

2009 2010 2011 2012 2013 2014 2015
X1 0.1232 -0.2098 0.1197 -0.1592 0.2263 -0.1633 0.0831
X2 -0.0356 -0.0918 0.1149 0.1016 -0.0958 0.0126 -0.0290
X3 -0.0261 0.1900 -0.1579 0.0123 -0.0119 0.0524 -0.0450
X4 0.1023 -0.0006 0.0861 -0.0974 -0.0743 -0.0163 0.0537
X5 0.0128 -0.0820 0.0797 -0.0054 0.0534 -0.1114 0.1008
X6 0.0338 -0.0280 -0.0398 0.0350 0.0367 0.0169 -0.0320

Table 6: Higher education and training. The standardized coefficients of the second
discriminant coordinate Û2.

2009 2010 2011 2012 2013 2014 2015
X1 -0.0725 0.2119 -0.1886 0.1291 -0.1413 0.1061 -0.0254
X2 0.0638 -0.2120 0.1114 -0.1125 0.1617 -0.0979 0.0661
X3 -0.0615 0.0122 0.0464 0.0027 0.0159 0.0551 -0.0473
X4 -0.0810 0.1384 -0.0576 0.0334 -0.0219 0.0517 -0.0722
X5 0.1000 -0.1485 0.0805 -0.0799 0.0571 -0.0048 -0.0037
X6 0.0296 -0.0453 0.0292 0.0333 -0.1020 0.0755 -0.0132
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During the numerical calculation process we used R software (R Core Team
(2015)).
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