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AN ADDITIVE RISKS REGRESSION MODEL FOR
MIDDLE-CENSORED LIFETIME DATA
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Abstract

Middle-censoring refers to data arising in situations where the exact lifetime of
study subjects becomes unobservable if it happens to fall in a random censoring in-
terval. In the present paper we propose a semiparametric additive risks regression
model for analysing middle-censored lifetime data arising from an unknown pop-
ulation. We estimate the regression parameters and the unknown baseline survival
function by two different methods. The first method uses the martingale-based the-
ory and the second method is an iterative method. We report simulation studies to
assess the finite sample behaviour of the estimators. Then, we illustrate the utility
of the model with a real life data set. The paper ends with a conclusion.
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1. Introduction

Middle-censoring introduced by Jammalamadaka & Mangalam (2003) occurs in sit-
uations where a data point becomes unobservable if it falls inside a random censor-
ing interval. In such situations, the exact values are available for some individuals
and for others, random censoring intervals are observed. To be more precise, let T
be the random variable representing the lifetime of interest and let (U,V ) be a bivari-
ate random variable, representing the censoring interval, such that P(U < V ) = 1.
Under the middle-censored set-up, the exact lifetime T becomes unobservable if
T ∈ (U,V ), and in such instances we only observe the censoring interval (U,V ).
Otherwise we observe T . We may find several such situations in survival studies
and reliability applications. For example, in a prognostic study, the patients under
observation may be withdrawn from the study for a short period of time for some
unforeseen reasons and may return to the study with a changed status of event of
interest. In reliability applications, it may happen that a failure of equipment occurs
during a period of time when we accidentally fail to observe the study subjects. In
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such contexts we only observe a censorship indicator and the interval of censorship.
As was pointed out by Jammalamadaka & Mangalam (2003), one can observe

that the left censored data and right censored data are in fact special cases of this
more general censoring scheme, by suitable choices of the interval, and also that
such a censoring scheme is not complementary to the usual double censoring dis-
cussed in Klein & Moeschberger (2005) and Sun (2006).

Jammalamadaka & Mangalam (2003) pointed out various applications of middle-
censoring scheme and developed a nonparametric maximum likelihood estimator
(NPMLE) of the distribution function of the random variable. They proved that the
NPMLE is always a self-consistent estimator (SCE) (Tarpey & Flury, 1996). Some
rigorous treatments of this censoring scheme are found in Jammalamadaka & Iyer
(2004), Iyer et al. (2008), Mangalam et al. (2008), Jammalamadaka & Mangalam
(2009), Shen (2010, 2011), Davarzani & Parsian (2011) and Davarzani et al. (2015).

In survival studies, covariates or explanatory variables are usually used to rep-
resent heterogeneity in a population. The main objective in such situations is to
understand and exploit the relationship between the lifetime and covariates. To this
end we generally employ regression models. In the presence of covariates, Sankaran
& Prasad (2014) discussed a parametric proportional hazards regression model for
the analysis of middle-censored lifetime data. Jammalamadaka & Leong (2015)
analysed discrete middle-censored data in the presence of covariates with an ac-
celerated failure time regression model. Recently, Jammalamadaka et al. (2016)
developed an iterative algorithm for analysing a semiparametric proportional haz-
ards regression model under middle-censoring scheme, while Bennett et al. (2017)
considered a parametric accelerated failure time regression model under this cen-
soring scheme.

One extensively used semiparametric regression model is the well-known pro-
portional hazards (PH) model by Cox (1972). It is a multiplicative hazards model in
the sense that if T has a baseline hazard function h0(t) and if z is a p×1 vector of
the recorded covariates then the hazard function of T conditional on z is modelled
as

h(t|z) = h0(t)exp(z>θ),

where θ = (θ1,θ2, ...,θp)
> is the vector of regression coefficients and h0(t) is left

arbitrary. Here, a> represents the transpose of vector a . In this model the effect
of the covariates is acting multiplicatively on the baseline hazard function. But it is
well known that in many occasions the PH model does not fit a given lifetime data
well. One important alternative to the PH model is the additive risks (AR) model
introduced by Aalen (1989) and later studied by Lin & Ying (1994). The model
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associates the conditional hazard function with the covariates by

h(t|z) = h0(t)+ z>θ . (1)

In contrast to the PH model, the AR model given in (1) specifies that the hazard rate
associated with a given set of covariates is the sum of the baseline hazard function
and the regression function of covariates. This kind of model assumption is particu-
larly useful in tumorigenicity experiments that investigate the dose effect on tumor
risk, since the excess risk is often the quantity of interest (Breslow & Day, 1987).
For a comprehensive review on properties and inference procedures of model (1),
one may refer to Aranda-Ordaz (1983), Cox & Oakes (1984), Thomas (1986), Bres-
low & Day (1980), and Lin & Ying (1994). For a nonparametric treatment of model
(1) one may refer to Aalen (1980, 1989). Model (1) is further explored in the con-
text of left truncated current status data by Wang et al. (2015).

In the present work, we aim at estimating the unknown baseline survival func-
tion S0(t) of a continuous type lifetime variate T , which is subject to middle-
censoring, and estimation of the unknown regression coefficients under model (1).
We propose two different inference methods in Section 2. Simulation studies to
assess the performance of the estimators under both methods for practical sample
sizes are carried out and the results are compared in Section 3. The utility of the
methods are illustrated with the help of a real life example in Section 4. Finally,
some important conclusions are provided in Section 5.

2. Inference Procedure

Let the lifetime variate T admit an absolutely continuous cumulative distribution
function (cdf) F0(t). Assume that T is middle-censored by the random censoring
interval (U,V ) having bivariate cdf given by G(u,v) = P(U ≤ u,V ≤ v). Let us
further assume that under model (1), T is independent of (U,V ), given the covariate
z. Thus, one can observe the vector (X ,δ ,z), where

X =

{
T if δ = 1

(U,V ) if δ = 0,

and δ = I (X = T ) is the uncensoring indicator. Now, we state an important assump-
tion regarding the identifiability of the cdf F0(t). Let [a,b], a ≤ b be any arbitrary
interval in the support of T . Define, for r ∈ [a,b],

A0(r) = G(r−,∞)−G(r−,r) = P(U < r <V ). (2)
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Now, consider a situation where A0(r) = 1 for r ∈ [a,b] for which F0(b)> F0(a−).
i.e. censoring occurs with probability 1 on this interval where F0 has a positive
mass. Consequently, there will not be any exact observation in this interval, making
it impossible to distinguish two distributions which are identical outside [a,b] but
differ only on [a,b]. To overcome this issue we make the following assumption.
A1: The probability defined in (2) is strictly less than one.

In the following we describe two different estimation methods: one makes use
of the classic martingale theory and the other by using of an iterative method.

2.1. Martingale Method

Here we provide an inference procedure based on the martingale feature associated
with the observed data. First a partial likelihood function is developed under model
(1), similar to the one for the Cox PH model (Kalbfleisch & Prentice, 2011). Then,
the stochastic integral representation of the score function derived from the partial
likelihood function is used to infer about the unknown regression coefficient.

The observed data consists of n independent and identically distributed repli-
cates (Xi,zi, δi) of (X ,z,δ ), 1 ≤ i ≤ n. When the lifetime is subject to middle-
censoring, we shall define the counting process corresponding to the i’th individual
as Ni(t) = I(Xi ≤ t,δi = 1), t ≥ 0, which indicates whether the event occurred at
time t, for i = 1,2, ...,n. The at-risk process may be similarly defined as Ri(t) =
I(Xi ≥ t,δi = 1)+ I(Ui ≥ t,δi = 0) which is a 0-1 predictable process, where the
value 1 indicates whether the i’th individual is at risk at time t, for i = 1,2, ...,n,
i.e., whether it is uncensored and waiting for a possible event at the epoch t. De-
note the filtration σ{Ni(u),Ri(u+),zi : i = 1,2, ...,n; 0 ≤ u ≤ t} by Ft . Under
model (1) the conditional cumulative hazard rate for the i’th individual is given by
H(t|zi) = H0(t)+z>i θ t, where H0(t) =

∫ t
0 h0(a)da is the baseline cumulative hazard

function. Model (1) assumes that

E[Ni(t)|Ft−] = (h0(t)+θ
>zi)Ri(t)dt,

and the intensity function corresponding to the counting process Ni(t) can thus be
written as Ri(t)dH(t|zi) = Ri(t){dH0(t)+ z>i θdt}. With this, the counting process
can be uniquely decomposed so that for every i and t,

Ni(t) = Mi(t)+
∫ t

0
Ri(a)dH(a|zi), (3)
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where Mi(·) is a local square integrable martingale (Andersen & Gill, 1982). From
(3), we have

dNi(t) = dMi(t)+Ri(t)dH(t|zi), (4)

so that
n

∑
i=1

dMi(t) =
n

∑
i=1

[dNi(t)−Ri(t)(dH0(t)+θ
>zidt)] = 0. (5)

To estimate θ , let us now consider the partial likelihood function suggested by Cox
(1972) and further discussed in Cox (1975). It is defined as

L(θ) =
k

∏
i=1

h(t(i)|z(i))
∑

n
l=1 Rl(t(i))h(t(i)|zl)

, (6)

where t(1), t(2), ..., t(k) are the k observed exact lifetimes which are arranged in in-
creasing order of magnitude. The motivation for (6) is that when we have the in-
formation that an event occurs at time point t and that the at-risk set is R(t), the
right-hand side of (6) is precisely the probability that it is individual i ∈ R(t), who
registered the event. Since T is assumed to be of continuous type, the possibility of
ties is ruled out. However, (6) is not a usual likelihood, as it is not obtained from
the probability of some observable events. A detailed discussion on this is available
in Lawless (2011). Under the model assumption (1), we can rewrite (6) as

L(θ) =
k

∏
i=1

h0(t(i))+ z>(i)θ

∑
n
l=1 Rl(t(i))

(
(h0(t(i))+ z>l θ

) . (7)

The value of θ that maximizes (7) can be obtained by maximizing

l(θ) = log(L(θ)) =
k

∑
i=1

[
log
(

h0(t(i))+ z>(i)θ
)
−

log
( n

∑
l=1

Rl(t(i))
(
(h0(t(i))+ z>l θ

))]
. (8)

In terms of the counting process defined earlier, we can rewrite (8) as

C(θ) =
n

∑
i=1

∫
∞

0
log
(

h0(s)+ z>i θ

)
dNi(s)−∫

∞

0
log
( n

∑
l=1

Rl(s)
(
h0(s)+ z>l θ

))
dN̄(s), (9)
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where N̄(s) = ∑
n
i=1 Ni(s). The score function is simply the derivative of (9) with

respect to θ , and is given by

U(θ) =
n

∑
i=1

∫
∞

0

(
h0(s)+ z>i θ

)−1

zidNi(s)−

∫
∞

0

( n

∑
l=1

Rl(s)
(
(h0(s)+ z>l θ

))−1( n

∑
l=1

Rl(s)zl

)
dN̄(s). (10)

Using the idea of Lin & Ying (1994), we propose to estimate the true regression
coefficient θ 0 from the following estimating equation, which is obtained by an al-
gebraic simplification of (10).

U(θ) =
n

∑
i=1

∫
∞

0
zi{dNi(t)−Ri(t)dĤ0(θ , t)−Ri(t)z>i θdt},

which is equivalent to

U(θ) =
n

∑
i=1

∫
∞

0
{zi− z̄}{dNi(t)−Ri(t)z>i θdt}, (11)

where z̄ = ∑
n
i=1 ziRi(t)/∑

n
i=1 Ri(t), with the convention that 0/0 = 0. The identity

(11) is based on a simple fact that when θ 0 is the true parameter value, U(θ 0) is a
martingale integral and therefore has mean zero. Note that (11) is linear in θ and
the resulting estimator takes an explicit form given by

θ̂ =
[ n

∑
i=1

∫
∞

0
[zi− z̄]⊗2Ri(t)dt

]−1 n

∑
i=1

∫
∞

0
[zi− z̄]dNi(t), (12)

where a⊗2 = aa>. Since Mi(t) is a martingale, we have ∑
n
i=1 dMi(t) = 0. Thus,

from the representation given in (3), a Breslow type estimator (Breslow, 1972) for
the cumulative hazard function H0(t) can be obtained as

Ĥo(θ̂ , t) =
∫ t

0

∑
n
i=1{dNi(a)−Ri(a)z>i θ̂da}

∑
n
i=1 Ri(a)

. (13)

This naturally leads to the following estimator of conditional survival function S(t|z).

Ŝ(t|z) = exp{−Ĥ0(θ̂ , t)− z>θ̂ t}. (14)
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An algebraic manipulation of (4) yields

U(θ) =
n

∑
i=1

∫
∞

0
(zi− z̄)dMi(t), (15)

which is a martingale integral. It follows from standard counting process theory that
n−1/2U(θ 0) converges weakly to a p-variate normal with mean zero and a covari-
ance matrix that can be estimated consistently by

A =
1
n

n

∑
i=1

∫
∞

0
(zi− z̄)⊗2dNi(t). (16)

Also, the random vector n1/2(θ̂ −θ 0) converges weakly to a p-variate normal dis-
tribution with mean zero and a covariance matrix that can be consistently estimated
by B−1AB−1, where

B =
1
n

n

∑
i=1

∫
∞

0
Ri(t)(zi− z̄)⊗2dt. (17)

Specifically, (B−1AB−1)
− 1

2 (θ̂ − θ 0) converges in distribution to N(0, I). It can be
observed that neither A nor B involves the regression parameters. The estimator
(13) provides the basis for estimating survival probabilities. Using standard count-
ing process techniques, it follows that the process

√
n(Ĥ0(θ̂ , t)−H0(t)) converges

weakly to a zero mean Gaussian process, whose covariance function at (t,s), t ≥ s
can be estimated consistently by∫ s

0

n∑
n
i=1 dNi(a)

(∑n
1 Ri(a))2 +C′(t)B−1AB−1C(s)−C′(t)B−1D(s)−C′(s)B−1D(t),

where C(t) = z̄t and D(t) =
∫ t

0
∑

n
1(zi−z̄)dNi(a)

∑
n
1 Ri(a)

with k′(a) = dk(a)/da.
Using functional delta method (Andersen et al., 2012), it follows that the process√

n(Ŝ(t|z)−S(t|z)) converges weakly to a zero-mean Gaussian process, whose co-
variance function at (t,s), t ≥ s can be estimated consistently by

Ŝ(t|z)Ŝ(s|z)
(∫ s

0

n∑
n
i=1 dNi(a)

(∑n
1 Ri(a))2

+W ′(t,z)B−1AB−1W (s,z)+W ′(t,z)B−1D(s)+W ′(s,z)B−1D(t)
)
,

where W (t,z) = (z− z̄)t.
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2.2. The Iterative Method

In this section, an iterative method is proposed for estimating the unknown baseline
survival function S0(t) of the lifetime variate T and the regression coefficient vector
θ under model (1). Assume that T is middle-censored by the random censoring
interval (U,V ) such that, given the covariate z, T and (U,V ) are independently
distributed. Let the observed data be as before. For convenience let us assume
that the first n1 observations are exact lifetimes, and the remaining n2 are censored
intervals, with n1+n2 = n. Now, the likelihood corresponding to the observed data,
excluding the normalizing constant, can be written as

L(θ) =
n1

∏
i=1

f (ti|zi) ·
n1+n2

∏
i=n1+1

(S(ui|zi)−S(vi|zi)) . (18)

Under the model assumption given in (1), the conditional survival function is ob-
tained as

S(t|z) = S0(t)exp(−θ
>zt), (19)

where S0(t) = exp(−H0(t)). Thus, the density function of T given z is given by

f (t|z) = exp(−θ
>zt)

(
θ
>zS0(t)−S′0(t)

)
. (20)

Therefore, (18) becomes

L(θ) =
n1

∏
i=1

exp(−θ
>ziti)

(
θ
>ziS0(ti)−S′0(ti)

)
×

n1+n2

∏
i=n1+1

(
S0(ui)exp(−θ

>ziui)−S0(vi)exp(−θ
>zivi)

)
. (21)

The log-likelihood is given by

l(θ) = logL(θ) =
n1

∑
i=1

(
−θ

>ziti + log(θ>ziS0(ti)−S′0(ti))
)
+

n1+n2

∑
i=n1+1

log
(
S0(ui)exp(−θ

>ziui)−S0(vi)exp(−θ
>zivi)

)
, (22)

and its partial derivative with respect to θr, for r = 1,2, ..., p, is given by
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∂ l(θ)
∂θr

=
n1

∑
i=1

zir(ti +(θ>ziS0(ti)−S′0(ti))
−1S0(ti))+

n1+n2

∑
i=n1+1

zir

(
S0(ui)exp(−θ

>ziui)−

S0(vi)exp(−θ
>zivi)

)−1(
viS0(vi)exp(−θ

>zivi)−uiS0(ui)exp(−θ
>ziui)

)
,

(23)

where zir is the r’th component in the covariate vector corresponding to i’th in-
dividual. Note that (23) involves both unknown quantities θ and S0(t) and explicit
solution for θ cannot be obtained directly from it. We provide an iterative algorithm
to estimate the maximum likelihood estimates of these two quantities, where at each
iteration a better update is obtained. To begin with the algorithm we consider the
SCE of the baseline survival function as an initial approximation.

In the case of middle-censored data, Jammalamadaka & Mangalam (2003) showed
that the NPMLE of S0(t) is always an SCE, which takes the form

Ŝ0(t) = 1− 1
n

n

∑
i=1

{
δiI(Ti ≤ t)+(1−δi)I(Vi ≤ t)+(1−δi)I(t ∈ (Ui,Vi))

F̂0(t)− F̂0(Ui)

F̂0(Vi−)− F̂0(Ui)

}
. (24)

Now, we give the algorithm in the following few steps.
Step 1. Set the vector θ = 0.
Step 2. At the first iteration, find the SCE S(1)0 (t) of S0(t) using (24) and substitute
this in (23) and solve ∂ l(θ)/∂θr = 0,r = 1,2, ..., p to get the estimator θ

(1) of θ .
Step 3. Find t̃i(1) = S(1)

−1

0

(
S(1)0 (ti)exp(−θ

(1)>ziti)
)

and similarly find ũ(1)i and ṽ(1)i
as our updated observations at the first iteration.
Step 4. At the j’th iteration ( j > 1), use t̃i( j−1), i= 1,2, ...,n1 and (ũ( j−1)

i , ṽ( j−1)
i ), i=

n1 + 1, ...,n as our data points in (24) and obtain S( j)
0 (t). Substitute S( j)

0 (t) in (23)
and solve ∂ l(θ)/∂θr = 0,r = 1,2, ..., p to obtain the j’th iterated update θ

( j) of θ .
Step 5. Repeat Step 4 until convergence is met, say when ‖θ (k)−θ

(k+1)‖< 0.0001
and sup

t

{∣∣∣S(k)0 (t)−S(k+1)
0 (t)

∣∣∣}< 0.001, for some finite positive integer k.

Note that Step 3 in the algorithm is justified, because if ai = S(1)0 (ti)exp(−θ
(1)>ziti),

then the ai ’s have a uniform distribution over [0,1]. Therefore, to scale these back
to baseline distribution we need to find t̃i = inf{t : S(1)0 (t) ≤ ai}. Thus, the correct

choice is t̃i = S(1)
−1

0 (ai) = S(1)
−1

0

(
S(1)0 (ti)exp(−θ

(1)>ziti)
)

.
We now define our parameter space to be (Θ,Φ), where Θ⊆Rp contains θ and
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Φ= {φ(t) : [0,∞]→ [0,1] and φ(·) is absolutely continuous and nonincreasing} con-
tains S0(t). Let us name the estimator obtained for θ as θ̂ (n) and that for S0(t) as
Ŝ0(n)(t). Besides the identifiability condition A1, the following conditions are also
assumed to hold for establishing the consistency property.
A2: Conditional on z, T is independent of (U,V ).
A3: The joint distribution of (U,V,z) does not depend on the true parameter (θ 0,S0

0(t)).
A4: The covariate space is bounded. That is, there exist some finite M > 0 such that
P{‖z‖ ≤M}= 1, where ‖ · ‖ is the usual metric on Rp.
A5: Distribution of z is not concentrated on any proper affine subspace of Rp.

Theorem: Suppose that Θ ∈ Rp is bounded and assumptions (A1) to (A5) hold.
Then, the estimator (θ̂ (n), Ŝ0(n)(t)) is consistent for the true parameter (θ 0,S0

0(t)) in
the sense that if we define a metric d : Θ×Φ→ R by

d
(
(θ 1,S01(t)),(θ 2,S02(t))

)
= ‖θ 1−θ 2‖+

∫
|S01(t)−S02(t)|dF0(t)+[∫ (

(S01(u)−S02(u))2 +(S01(v)−S02(v))2)dG(u,v)
] 1

2

, (25)

where θ 1,θ 2 ∈ Θ and S01(t),S02(t) ∈ Φ, then d
(
(θ̂ (n), Ŝ0(n)(t)),(θ

0,S0
0(t))

)
→ 0

almost surely (a.s.).

Proof:
In the following discussion we denote Yi = (Xi,δi). Let the probability function of
Y = (X ,δ ) be given by

p(y;θ ,S0(t)) =
n

∏
i=1

f (ti|zi)
δi [S0(ui)exp(−θ

>ziui)−S0(vi)exp(−θ
>zivi)]

1−δi×

g(ui,vi|zi)q(zi), (26)

where g is the joint density of (U,V ), conditional on z and q is the density of z.
Using (A2) and (A3), the log-likelihood function scaled by 1/n for the sample
(yi,zi), i = 1,2, ...,n, up to terms not depending on (θ 0,S0

0(t)) is

l(θ ,S0(t)) =
1
n

n

∑
i=1

{
δi log f (ti|zi)+(1−δi) log [S0(ui)exp(−θ

>ziui)−

S0(vi)exp(−θ
>zivi)]

}
. (27)

We write pn(y)= p(y; θ̂ (n), Ŝ0(n)(t)) and p0(y)= p(y;θ
0,S0

0(t)) where (θ̂ (n), Ŝ0(n)(t))
is the MLE that maximizes the likelihood function over Θ×Φ and (θ 0,S0

0(t)) ∈
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Θ×Φ. Therefore,
n

∑
i=1

log pn(Yi)≥
n

∑
i=1

log p0(Yi)

and hence
n

∑
i=1

log
pn(Yi)

p0(Yi)
≥ 0.

By the concavity of the function x 7→ logx, for any 0 < α < 1,

1
n

n

∑
i=1

log
(
(1−α)+α

pn(Yi)

p0(Yi)

)
≥ 0. (28)

The left hand side can be written as∫
log
(
(1−α)+α

pn(Yi)

p0(Yi)

)
d(Pn−P)(Y )+

∫
log
(
(1−α)+α

pn(Yi)

p0(Yi)

)
dP(Y ),

(29)

where Pn is the empirical measure of Y and P is the joint probability measure of Y .
Let us assume that the sample space Ω consists of all infinite sequences Y1,Y2, ...,
along with the usual sigma field generated by the product topology on ∏

∞
1 (R3×

{0,1}) and the product measure P. For p defined in (26) let us define a class
of functions P =

{
p(y,θ ,S0(t)) : (θ ,S0(t)) ∈ (Θ×Φ)

}
and a class of functions

H =
{

log(1−α +α p/p0) : p ∈P
}

, where p0 = p(y,θ 0,S0
0(t)). Then, it follows

from Huang & Wellner (1995) that H is a Donsker class. With this and Glivenko-
Cantelli theorem, there exists a set Ω0 ∈ Ω with P(Ω0) = 1 such that for every
ω ∈ Ω0, the first term of (29) converges to zero. Now, fix a point ω ∈ Ω0 and
write θ̂ (n) = θ̂ (n)(ω) and Ŝ0(n)(·) = Ŝ0(n)(·,ω). By our assumption Θ is bounded,
and hence for any subsequence of θ̂(n), we can find a subsequence converging to
θ ∗ ∈Θ

C, the closure of Θ. Also, by Helly’s selection theorem, for any subsequence
of Ŝ0(n)(t), we can find a further subsequence converging to some nonincreasing
function S0∗(t). Choose the convergent subsequence of θ̂ (n) and the convergent
subsequence of Ŝ0(n)(t) so that they have the same indices, and without loss of gen-
erality, assume that θ̂ (n) converges to θ ∗ and that Ŝ0(n)(t) converges to S0∗(t). Let
p∗(y) = p(y,θ ∗,S0∗(t)). By the bounded convergence theorem, the second term of
(29) converges to ∫

log
(
(1−α)+α

p∗(y)
p0(y)

)
dP(y)

and by (28) this is nonnegative. But by Jensen’s inequality, it must be non-positive.
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Therefore, it must be zero and it follows that

p∗(y) = p0(y) P− almost surely.

This implies
S0∗(t) = S0

0(t) F0− almost surely.

Therefore, by bounded convergence theorem,∫
|Ŝ0(n)(t)−S0

0(t)|dF0(t)→ 0. (30)

Also,
S0∗(u)exp(−θ

>
∗ zu) = S0

0(u)exp(−θ
0>zu) P− almost surely

and
S0∗(v)exp(−θ

>
∗ zv) = S0

0(v)exp(−θ
0>zv) P− almost surely.

This together with (A5) imply that there exist z1 6= z2 such that for some c > 0,

S0∗(c)exp(−θ
>
∗ z1c) = S0

0(c)exp(−θ
0>z1c)

and
S0∗(c)exp(−θ

>
∗ z2c) = S0

0(c)exp(−θ
0>z2c).

Since S0∗(c) > 0 and S0
0(c) > 0, this implies (θ ∗− θ

0>)(z1− z2) = 0. Again, by
(A5), the collection of such z1 and z2 has positive probability and there exist at least
p such pairs that constitute a full rank p× p matrix. It follows that θ ∗ = θ

0. This in
turn implies that

S0∗(u) = S0
0(u) and S0∗(v) = S0

0(v) G− almost surely.

Therefore, by bounded convergence theorem,∫ (
(Ŝ0(n)(u)−S0

0(u))
2 +(Ŝ0(n)(v)−S0

0(v))
2)dG(u,v)→ 0. (31)

Equations (30) and (31) together with θ ∗ = θ
0 hold for all ω ∈Ω0 with P(Ω0) = 1.

This completes the proof.
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Table 1: Absolute bias, MSE and bootstrap coverage probability (BCP) of the estimator of
θ under Method-1 and Method-2 with mild (10%) censoring

n = 30 n = 50 n = 75
λ θ Method Bias MSE BCP Bias MSE BCP Bias MSE BCP

0.1 0.25 1 0.0033 0.0008 0.903 0.0061 0.0054 0.900 0.0091 0.0067 0.898
2 0.0347 0.0011 0.940 0.0380 0.0051 0.937 0.0396 0.0073 0.934

1.0 0.5 1 0.0104 0.0009 0.895 0.0134 0.0021 0.893 0.0163 0.0069 0.889
2 0.0373 0.0018 0.928 0.0405 0.0063 0.924 0.0454 0.0078 0.920

2.5 -0.50 1 0.0077 0.0019 0.921 0.0089 0.0037 0.916 0.0108 0.0073 0.915
2 0.0247 0.0012 0.926 0.0259 0.0049 0.925 0.0307 0.0067 0.921

4.0 -0.01 1 0.0336 0.0017 0.924 0.0366 0.0029 0.922 0.0410 0.0055 0.918
2 0.0448 0.0013 0.934 0.0484 0.0062 0.931 0.0507 0.0106 0.929

Table 2: Absolute bias, MSE and bootstrap coverage probability (BCP) of the estimator of
θ under Method-1 and Method-2 with moderate (20%) censoring

n = 30 n = 50 n = 75
λ θ Method Bias MSE BCP Bias MSE BCP Bias MSE BCP

0.1 0.25 1 0.0047 0.0024 0.901 0.0085 0.0095 0.897 0.0109 0.0114 0.893
2 0.0366 0.0021 0.938 0.0401 0.0063 0.936 0.0424 0.0111 0.930

1.0 0.5 1 0.0121 0.0027 0.894 0.0152 0.0075 0.891 0.0197 0.0088 0.886
2 0.0385 0.0028 0.927 0.0418 0.0102 0.922 0.0493 0.0126 0.918

2.5 -0.5 1 0.0091 0.0031 0.919 0.0101 0.0052 0.914 0.0139 0.0114 0.910
2 0.0265 0.0025 0.925 0.0278 0.0078 0.923 0.0344 0.0115 0.917

4.0 -0.01 1 0.0346 0.0036 0.923 0.0402 0.0061 0.918 0.0435 0.0077 0.916
2 0.0465 0.0032 0.932 0.0512 0.0083 0.927 0.053 0.0118 0.924

Table 3: Absolute bias, MSE and bootstrap coverage probability (BCP) of the estimator of
θ under Method-1 and Method-2 with heavy (30%) censoring

n = 30 n = 50 n = 75
λ θ Method Bias MSE BCP Bias MSE BCP Bias MSE BCP

0.1 0.25 1 0.0057 0.0042 0.900 0.0118 0.0107 0.894 0.0151 0.0129 0.889
2 0.0384 0.0031 0.937 0.0415 0.0079 0.934 0.0441 0.0147 0.925

1.0 0.5 1 0.0141 0.0041 0.892 0.0163 0.0121 0.889 0.0222 0.0143 0.882
2 0.0405 0.0044 0.925 0.0429 0.0139 0.919 0.0539 0.0174 0.916

2.5 -0.5 1 0.0104 0.0050 0.918 0.0143 0.0097 0.909 0.0170 0.0151 0.904
2 0.0283 0.0038 0.923 0.0296 0.0090 0.918 0.0372 0.0156 0.915

4.0 -0.01 1 0.0361 0.0056 0.921 0.0432 0.0088 0.916 0.0462 0.0101 0.913
2 0.0484 0.0044 0.931 0.0541 0.0096 0.925 0.0561 0.0131 0.921

Remark 2.1

The asymptotic distributions of the estimators θ̂ (n) and Ŝ0(n)(t) do not seem to be
easy to establish under the iterative method. We consider this as a problem for future
research.

Remark 2.2

A likelihood ratio test can be carried out to test the significance of regression coef-
ficients. The null hypothesis H0 : θ = 0 can be tested against H1 : θ 6= 0, where 0
is the null vector of the same order, with the test statistic −2log L(0)

L(θ̂)
, which follows

χ2
(p) distribution. The test results in rejecting the null hypothesis for small P-values.
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3. Simulation Studies

A simulation study is carried out to assess the finite sample properties of the esti-
mators. We consider the exponential distribution with mean λ−1 as the distribution
of lifetime variable T . Also, we choose independent exponential distributions with
fixed means λ

−1
1 and λ

−1
2 as the distributions for the censoring random variate U

and the interval of censorship V −U respectively, and these two distributions are
assumed to be independent of T . We consider a single covariate z in the present
study, which is generated from uniform distribution over [0,10] and let θ be the cor-
responding regression coefficient. Under the AR model in (1), the survival function
of T given z may be written as

S(t|z) = S0(t)exp(−θzt), (32)

where S0(t) = exp(−λ t). It can be observed that (32) is the survival function cor-
responding to an exponential variate with mean (λ + θz)−1. A large number of
observations are generated from (32) for fixed values of λ and θ . Now correspond-
ing to each observation on T , a random censoring interval is generated from (U,V ),
where the distribution parameters are fixed as λ

−1
1 = 20 and λ

−1
2 = 10. If we find

T /∈ (U,V ) then T is selected in the sample, otherwise we choose the interval as the
observation. As we generate large number of observations we can now choose a
sample of required size n. We consider three different censoring rates: 10% (mild),
20% (moderate) and 30% (heavy) for our inference. The martingale-based infer-
ence procedure, denoted as Method-1, and iterative inference procedure, denoted as
Method-2, which are described in Section 2, are employed to obtain the estimates
of S0(t) and θ and using 1000 iterations for various choices of λ and θ . The abso-
lute bias and mean squared error (MSE) are computed and are given in Table 1 to
Table 3. Also in each case, a 95% bootstrap confidence interval for regression pa-
rameter is computed. The proportion of times the true parameter value lies in such
intervals is called bootstrap coverage probabilities (BCP). They are also reported in
Table 1 to Table 3. It is evident that both bias and MSE are small in each case and
they decrease as the sample size increases. The bootstrap coverage probabilities are
found fairly large, close to one. Further, as the censoring rate increases the bias and
MSE increase, while the BCP decreases. Also, for each combination of parameter
values, and with sample size 75, we shall find out a cubic polynomial estimate of
the form S0(t) = c0+c1t+c2t2+c3t3 with each of its coefficients being the average
of corresponding coefficients obtained for all the iterations, for the baseline survival
function. These estimated survival curves corresponding to both methods are plot-
ted in Figure 1 to Figure 3, where continuous curve represents the true baseline
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Figure 1: Plots of baseline survival curve and its estimates under Method-1 (dashed curve)
and Method-2 (dotted curve) with mild (10%) censoring
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Figure 2: Plots of baseline survival curve and its estimates under Method-1 (dashed curve)
and Method-2 (dotted curve) with moderate (20%) censoring
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Figure 3: Plots of baseline survival curve and its estimates under Method-1 (dashed curve)
and Method-2 (dotted curve) with heavy (30%) censoring

survival function and dashed curve represents the corresponding the estimate under
Method-1 and dotted curve represents the corresponding estimate under Method-2.
We see that both the estimated curves are close to the true curve.

4. Illustrative Data Analysis

The proposed methods are applied to a real life data studied by Ichida et al. (1993).
The data deals with an evaluation of a protocol change in disinfectant practices in
a medical center where patients are suffering from burn wounds. The control of
infection is the major concern in burn management and the study aims at comparing
two different controlling methods: routine bathing care method and body cleans-
ing method. The time (in days) until a patient develops staphylococcus infection
is considered as the lifetime variable. Although the original study involves several
covariates, for the illustration purpose we consider two of them, namely treatment
(z1), which is coded as 1-for routine bathing and 2-for body cleansing, and per-
centage of total surface area burned (z2). Let θ1 and θ2 respectively be the unknown
regression coefficients. A random censoring interval (U,V ), where U and V −U are
independent exponential variates with means λ

−1
1 = 20 and λ

−1
2 = 10 is generated

first. Then, an individual from among all exact 48 lifetimes is selected at random
and if lifetime of the patient happens to fall in the generated censoring interval, that
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Table 4: Estimates of coefficients of survival curve and regression coefficients under
Method-1 and Method-2.

S0(t) θ

Method c0 c1 c2 c3 θ1 θ2

1 0.93665 -0.04872 0.000635 -9.223e-6 0.0112 0.1005
2 0.96574 -0.05991 0.00121 -9.256e-6 0.00895 0.1760

lifetime is assumed to have middle censored and that interval is considered as the
corresponding observation. Otherwise the lifetime is maintained. This process is re-
peated until around 25% of the observations are censored. The data resulted consists
of twelve censored observations. We apply the two methods of estimation given in
Section 2 and obtained the estimates of the baseline survival function of the form
S0 = c0 + c1t + c2t2 + c3t3 and the regression coefficient θ . The estimated values,
under both methods, of the coefficients of survival curves as well as regression coef-
ficients are listed in Table 4. To test the significance of the covariate effect under the
iterative method, we consider the null hypothesis H0 : θ = 0, where θ = (θ1,θ2) and
0 is null vector of the same order, and we use the likelihood ratio test described in
Remark 2.2. The P-value of 0.008 indicates that the covariate effects are significant.

Now, we check the overall fit of the model by using Cox-Snell residuals (Cox
& Snell, 1968). Suppose that the AR model given in (1) is fitted to the data. If the
model assumption is correct then the probability integral transform of the true death
time T assumes a uniform distribution over [0, 1] or equivalently the random vari-
able H(Tj|z j), which is the true cumulative hazard function corresponding to (1),
has an exponential distribution with hazard rate 1. Then, the Cox-Snell residuals
are defined to be the fitted cumulative hazard function values r̂ j = Ĥ0(t j)+ z>j θ̂ t j

with the estimated parameters. If the model is reasonable and the estimates of the
parameters are close to the true values, then these quantities should look like a cen-
sored sample from unit exponential distribution. To check whether the r j’s behave
as a sample from the unit exponential distribution we compute the Nelson-Aalen es-
timator of the cumulative hazard rate of r j’s. If the unit exponential distribution fits
the data, then this estimator should be approximately equal to the cumulative hazard
rate of the unit exponential distribution. Thus, a plot of r j’s versus their estimated
cumulative hazard rates should be a straight line through origin and with a slope of
1. Figure 2 shows the plots so obtained under both the models. The curves are close
to the straight line indicating AR assumption is reasonable.
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Figure 4: Plot of r j’s against estimated cumulative hazard rates under (a) Method-1
and (b) Method-2.

5. Conclusion

The present study discussed the semiparametric regression problem for the analysis
of middle-censored lifetime data. We considered two different methods of estimat-
ion, one making use of martingale-based theory and the other based on an iterative
method for which a maximization procedure for finding the NPMLE is developed.
Large sample properties including consistency and weak convergence of the estima-
tors were established under the martingale-based method. Consistency of estima-
tors was proved under the iterative method, whereas their weak convergence do not
appear to be easy to establish, although one can perhaps extend the ideas used in
(Huang & Wellner, 1995). Simulation studies showed that the inference procedures
were efficient. The model was applied to a real data set. Although we consid-
ered time-fixed covariates in this work, the procedure can easily be extended to the
case of time-varying covariates, as in the work of Lin & Ying (1994). The middle-
censored data has a connection with mixed interval-censored (MIC) data (Yu et al.,
2001). Although both sampling schemes differ in character, the observed data from
MIC will reduce to data from middle-censoring, when there are no left censored or
right censored observations. For a detailed discussion on this interrelationship one
may refer to Shen (2011).
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