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AN APPLICATION OF
FUNCTIONAL MULTIVARIATE REGRESSION
MODEL TO MULTICLASS CLASSIFICATION

Mirosław Krzyśko1, Łukasz Smaga2

ABSTRACT

In this paper, the scale response functional multivariate regression model is con-
sidered. By using the basis functions representation of functional predictors and
regression coefficients, this model is rewritten as a multivariate regression model.
This representation of the functional multivariate regression model is used for mul-
ticlass classification for multivariate functional data. Computational experiments
performed on real labelled data sets demonstrate the effectiveness of the proposed
method for classification for functional data.
Key words: functional data analysis, multi-label classification problem, multivari-
ate functional data, regression model.

1. Introduction

In recent decades, the analysis of data given as functions or curves has become a
very popular branch of statistics. In the literature, such data are called functional
data and have a broad perspective of applications, for example, in economics and
medicine. The aim of functional data analysis (FDA) is to develop methods for
analysing functional data. For instance, the books Ramsay and Silverman (2005),
Ferraty and Vieu (2006), Horváth and Kokoszka (2012) and Zhang (2013), and the
references therein, offer a broad perspective of such methods.

Methods for analysing multivariate functional data (e.g. vectors of functions)
are of particular interest. Some solutions of such problems as analysis of variance,
canonical correlation analysis, classification, cluster analysis, linear regression and
prediction, or principal component analysis are known in the literature. For exam-
ple, we refer to the following papers by Górecki and Smaga (2017), Górecki et al.
(2016), Górecki et al. (2015), Jacques and Preda (2014), Collazos et al. (2016) and
Berrendero et al. (2011), respectively, and the references therein.
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This paper discusses the multiclass classification problem for multivariate func-
tional data. The classifiers are constructed based on the scale response functional
multivariate regression model and basis functions representation of functional pre-
dictors and coefficients. The presented results may be seen as extensions of those
given in Górecki et al. (2015) from binary to multi-label case.

The rest of the paper is organized as follows. We first (Section 2) construct and
rewrite (using the basis functions representation of predictors and coefficients) the
scale response functional multivariate regression model. We consider two versions
of this model, i.e. with and without intercepts. In Section 3, we apply these results
to the multi-label classification problem for multivariate functional data. Section 4
contains the description of computational experiments for comparison of the pro-
posed classifiers and a discussion of their results. We conclude in Section 5 with
discussion of possible improvement of performance of the proposed method.

2. Functional multivariate regression model

In this Section, we consider the scalar response functional multivariate regression
model, which can be seen as an extension of the one-dimensional model studied, for
example, in Horváth and Kokoszka (2012).

Let L2(T ) denote the Hilbert space of square integrable functions over T = [a,b].
Assume that we have measured p (scalar) responses Y1, . . . ,Yp and the same set of
k (functional) predictors x1(t), . . . ,xk(t) belonging to L2(T ) on each sample unit.
Moreover, suppose that the responses follow the scalar regression models, i.e.

Yj =
k

∑
i=1

∫
T

xi(t)ξ ji(t)dt + e j, j = 1, . . . , p,

where ξ ji ∈ L2(T ) are the unknown functional coefficients and e j are the random
errors such that e> = [e1, . . . ,ep] has zero expectation and covariance matrix ΣΣΣ.
When we have a sample of N independent observations Y1, . . . ,YN of the vector
[Y1, . . . ,Yp]

>, the scalar response functional multivariate regression model is formu-
lated as follows:

Y =
∫

T
X(t)ΞΞΞ(t)dt +E, (1)

where

Y=

 Y>1
...

Y>N

 , X(t)=

 x>1 (t)
...

x>N (t)

 , ΞΞΞ(t)=
[
ξξξ 1(t), . . . ,ξξξ p(t)

]
, E=

 e>1
...

e>N

 , (2)



STATISTICS IN TRANSITION new series, September 2017 435

and x>i (t)= [xi1(t), . . . ,xik(t)], i= 1, . . . ,N, ξξξ
>
j (t)=

[
ξ j1(t), . . . ,ξ jk(t)

]
, j = 1, . . . , p.

To handle the model (1), we assume that the predictors and functional co-
efficients can be represented by a finite number of orthonormal basis functions
(ϕmn(t))∞

n=0, m = 1, . . . ,k in L2(T ), i.e. for i = 1, . . . ,N and j = 1, . . . , p

xim(t) =
Bm

∑
n=0

cimnϕmn(t), ξ jm(t) =
Bm

∑
n=0

d jmnϕmn(t), (3)

where cimn and d jmn are the unknown coefficients. More precisely, cimn are the ran-
dom variables with finite variance (see Ramsay and Silverman, 2005). To estimate
the coefficients cimn (for each predictor separately), the least squares method can be
used (see, for instance, Krzyśko and Waszak, 2013). The selection method of the
values Bm may depend on the aim of the research. For example, when we want to
obtain the best fit, the Bayesian information criterion should perhaps be used (see
Shmueli, 2010). Different bases can be used for different predictors.

For easier presentation of our results, we represent the equations (3) in matrix
notation. Let

ΦΦΦ(t) =


ϕϕϕ>1 (t) 0>B2+1 . . . 0>Bk+1
0>B1+1 ϕϕϕ>2 (t) . . . 0>Bk+1

...
...

. . .
...

0>B1+1 0>B2+1 . . . ϕϕϕ>k (t)

 ,
where ϕϕϕ>l (t) = [ϕl0(t), . . . ,ϕlBl (t)] for l = 1, . . . ,k and 0n is an n×1 vector of zeros.
Then, the equations given in (3) can be rewritten as follows:

xi(t) = ΦΦΦ(t)ci, ξξξ j(t) = ΦΦΦ(t)d j (4)

for i = 1, . . . ,N and j = 1, . . . , p, where c>i = [ci10, . . . ,ci1B1 , . . . ,cik0, . . . ,cikBk ] and
d>j = [d j10, . . . ,d j1B1 , . . . ,d jk0, . . . ,d jkBk ].

By (4), for i = 1, . . . ,N and j = 1, . . . , p, we have∫
T

x>i (t)ξξξ j(t)dt =
∫

T
c>i ΦΦΦ

>(t)ΦΦΦ(t)d jdt

= c>i
∫

T
ΦΦΦ
>(t)ΦΦΦ(t)dt d j (5)

= c>i d j,

since the bases (ϕmn(t))∞
n=0, m = 1, . . . ,k, are orthonormal, i.e.

∫
T ΦΦΦ

>(t)ΦΦΦ(t)dt is
the identity matrix of size ∑

k
l=1 Bl + k. From (2), it follows that
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∫
T

X(t)ΞΞΞ(t)dt =


∫

T x>1 (t)ξξξ 1(t)dt . . .
∫

T x>1 (t)ξξξ p(t)dt
...

. . .
...∫

T x>N (t)ξξξ 1(t)dt . . .
∫

T x>N (t)ξξξ p(t)dt

 .
Thus, by (5), we obtain

∫
T

X(t)ΞΞΞ(t)dt =

 c>1 d1 . . . c>1 dp
...

. . .
...

c>N d1 . . . c>N dp



=

 c>1
...

c>N

 [d1, . . . ,dp]

= CD.

Hence, the model (1) can be rewritten as

Y = CD+E, (6)

which is the multivariate regression model with the parameter matrix D. Therefore,
the problems connected with the functional multivariate regression model (1) (e.g.
estimation of ΞΞΞ(t)) can be replaced by the ones in the multivariate regression model
(6). In the next Section, this relation is used for multiclass classification for multi-
variate functional data. Other results of such type and their usage are presented, for
instance, in Kayano and Konishi (2009), Matsui and Konishi (2011), Matsui (2014),
Górecki et al. (2015) and Collazos et al. (2016).

In the model (1), the intercepts were not considered. However, adding them
to the model may improve the classification procedure based on it as we will see
in Section 4. Thus, we extend the above results to the functional multivariate re-
gression model with intercepts. Now, the scalar responses Yj are modelled by the
following regression models

Yj = ξ j0 +
k

∑
i=1

∫
T

xi(t)ξ ji(t)dt + e j, j = 1, . . . , p,

where ξ j0 are the (unknown) intercepts, and further the model (1) is replaced by

Y = ΞΞΞ0 +
∫

T
X(t)ΞΞΞ(t)dt +E, (7)
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where ΞΞΞ0 = [ξ101N , . . . ,ξp01N ] and 1N is the N×1 vector of ones. Using the basis
functions representation of predictors and functional coefficients given in (4), the
model (7) can be rewritten as

Y = [1N ,C]

[
ξξξ
>
0

D

]
+E = C∗D∗+E, (8)

where ξξξ
>
0 = [ξ10, . . . ,ξp0]. Thus, the parameter matrix has one row more than in the

earlier model.

3. Multiclass classification for functional data

In this Section, we investigate the multi-label classification problem for multivariate
functional data by using the functional multivariate regression model considered in
Section 2. More general information and results on classification problems based
on regression models can be found in Krzyśko et al. (2008).

Assume that there are K ≥ 2 populations and the objects are characterized by k
features, which are given as functions in the space L2(T ). Let

x>i (t) = [xi1(t), . . . ,xik(t)] , i = 1, . . . ,N

be a sample from these populations. Each vector of functions xi(t) is accompanied
by the group label given by the K×1 vector

Y>i = [0, . . . ,0,1,0, . . . ,0]

with 1 in the lth place when the ith observation belongs to lth population.

In a classification problem, one wants to determine a procedure by which a
given object can be assigned to one of K populations. For this purpose, the rela-
tion between vectors xi(t) and Yi, i = 1, . . . ,N is described by the scalar response
functional multivariate regression model (1) or (7). Here we use the rewritten form
(6) or (8) of it. The parameter matrices D and D∗ in the models (6) and (8) can be
estimated by the least squares method. The obtained estimators are of the form

D̂ = (C>C)+C>Y, D̂∗ = (C>∗ C∗)+C>∗ Y,

where M+ is the Moore-Penrose pseudoinverse of the matrix M. Then, the predicted



438 Krzyśko M., Smaga Ł.: An application of functional...

matrix is given by the formula

Ŷ =

{
CD̂ = C(C>C)+C>Y, for model (1),

C∗D̂∗ = C∗(C>∗ C∗)+C>∗ Y, for model (7).

To obtain the prediction for a new observation xnew(t), first its components have to
be represented by a finite number of orthonormal basis functions, as it was described
in Section 2, i.e.

xnew(t) = ΦΦΦ(t)cnew.

Hence, the predicted vector Ŷ(xnew) for the new observation is of the form

Ŷ(xnew)
> = [Ŷ1(xnew), . . . ,ŶK(xnew)] =

{
c>newD̂, for model (1),[

1,c>new
]

D̂∗, for model (7).

The lth component of the vector Ŷ(xnew) is the estimated value of the posterior
probability of belonging to the lth population. Unfortunately, the components of
this vector may not belong to the interval [0,1]. However, this may not matter if we
get good predictions. Moreover, it can be shown that the sum of the components
of Ŷ(xnew) is equal to one (see, for example, Krzyśko et al., 2008). Therefore, the
classifier is given by the following formula

d̂(xnew) = arg max
l=1,...,K

Ŷl(xnew). (9)

In practice, the performance of this simple classifier may be satisfactory, as indi-
cated by the real data examples of the next Section.

4. Computational experiments

In this Section, the accuracy of the proposed classifiers is examined using six real
labelled data sets. All computational experiments were performed with R envi-
ronment (R Development Core Team, 2015), and the codes are available from the
authors.

The experiments were carried out on the following data sets: Arabic digits, Aus-
tralian language, Character trajectories, Japanese vowels, ECG and Wafer. Table 1
shows the information on them. The first four data sets originate from Bache and
Lichman (2013), and the remaining ones from Olszewski (2001). The discrete func-
tional samples in each data set are of different lengths (see Table 1). For this reason,
all discrete functional variables in a given data set were extended to the same length
of the longest one by the method described and used, for example, in Górecki et al.
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(2015) (see also Rodriguez et al., 2005).

Table 1. Summary of data sets
Data sets k N K Max length Min length
Arabic digits 13 8800 10 93 4
Australian language 22 2565 95 136 45
Character trajectories 3 2858 20 205 109
ECG 2 200 2 152 39
Japanese vowels 12 640 9 29 7
Wafer 6 1194 2 198 104

To obtain the basis functions representation (3) of the observations, the or-
thonormal Fourier basis and the least squares method of estimating the coefficients
were used (see Krzyśko and Waszak, 2013). As we noted in Section 2, the quanti-
ties Bm, m = 1, . . . ,k in (3) can be chosen depending on the problem at hand. In our
classification problem, we choose these quantities which minimize the classification
error. In computational experiments, since we used the Fourier basis, we took into
account B1 = · · ·= Bk = B and B ∈ {3,5, . . . , I}, where I is the greatest odd number
less than or equal to the number of design time points of a given data set, i.e. points
on which functions are observed in practice.

The classifiers (9) based on models (1) and (7) were used for the classification
process. The classification error rates are calculated by 10-fold cross-validation
method. Figure 1 and Table 2 present the results. Observe that both classifiers give
very good classification results for the data sets Arabic digits, Character trajecto-
ries, Japanese vowels and Wafer. However, the classification error rates are not so
satisfactory for the data sets Australian language and ECG. This suggests that they
are difficult to recognize.

Table 2. The smallest 10-fold cross-validation error rates (as percentages) and B’s
for which they are achieved by using classifiers (9) based on models (1) and (7)

Model (1) Model (7)
Data sets 10CV error B 10CV error B
Arabic digits 4.35 15 4.01 27 or 33
Australian language 13.1 11 13.3 11
Character trajectories 1.23 175 1.19 127 or 171
ECG 11.5 31 11.5 31
Japanese vowels 1.88 5 1.41 5
Wafer 0.50 25 or 27 or 39 0.50 25 or 27 or 39

It seems that the classifier based on model (7) with intercepts performs at least
as good as or even better than that based on model (1) without intercepts in most
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Figure 1: 10-fold cross-validation error rates (as percentages) for different values of
B by using classifiers (9) based on models (1) and (7)

situations. However, for the data set Australian language, the smallest classification
error rate of the method based on model (1) is slightly smaller than these of the
second one (see Table 2). Therefore, for a given practical problem, both models
may be examined, and we choose the one which minimizes the classification error.

From Figure 1 and Table 2, we see that the 10-fold cross-validation error rates
behave differently for different values of B. In some cases, the best classification
results are obtained for small values of B (e.g. for Japanese vowels) while in others
for greater ones (e.g. for Character trajectories). Moreover, the values of B, for
which the smallest classification error rates were achieved, may not be the same for
classifiers based on models (1) and (7).

5. Conclusions

This paper discusses the construction of the scale response functional multivariate
regression model and its application to multiclass classification problem for multi-
variate functional data. The computational experiments based on real labelled data
sets suggest good performance of the proposed classification methods. From models
with and without intercepts, the first one seems to be preferable.

For simplicity, in our real data examples, we used the orthonormal Fourier basis
and equal lengths of basis functions representation of the observations, i.e. equal
Bm’s in (3). However, in practice, the performance of the considered classifiers may
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be improved by using more appropriate orthonormal bases to different features and
more varied values of Bm in (3).
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