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ABSTRACT 

The mean squared error reflects only the average prediction accuracy while the 
distribution of squared prediction error is positively skewed. Hence, assessing or 
comparing accuracy based on the MSE (which is the mean of squared errors) is 
insufficient and even inadequate because we should be interested not only in the 
average but in the whole distribution of prediction errors. This is the reason why 
we propose to use different than MSE measures of prediction accuracy in small 
area estimation. In the prediction accuracy comparisons we take into account our 
proposal for the empirical best predictor, which is a generalization of the 
predictor presented by Molina and Rao (2010). The generalization results from 
the assumption of a longitudinal model and possible changes of the population 
and subpopulations in time.  
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1. Introduction 

Nowadays, estimates of the population and large subpopulations 
characteristics are not sufficient for decision-makers. They require accurate 
estimates for subpopulations with small or even zero sample sizes. However, 
because of cost constraints, it is not possible to increase sample sizes continuously 
to make the estimation of smaller and smaller subpopulations possible using 
classical methods. The problem is solved using small area estimation methods 
"borrowing strength" from other subpopulations or time periods. There are three 
aims of our paper, with the first the main one and the second and the third the 
supplementary aims.  

Firstly, our observation that the distribution of squared prediction errors has 
strong positive asymmetry (values of the third standardized moments obtained in 
the simulation study based on real data are presented in Table 1) has become 
a focus of our attention. It implies that their mean (known as MSE – Mean 
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Squared Error) does not have to be a good measure of prediction accuracy in 
terms of the average and, what is in our opinion even more important, their whole 
distribution should be studied. Hence, the main purpose of the paper is our 
proposal for assessing the prediction accuracy using new univariate and 
multivariate prediction measures based on quantiles of the distribution of absolute 
prediction errors. It will be shown that even if the accuracies of two predictors in 
terms of the average are similar, the accuracy comparison based on right tails of 
distributions of absolute prediction errors can give different results (which will be 
presented in e.g. Figure 4). 

Secondly, in the accuracy comparisons resulting from the main aim we will 
include a generalization of the Empirical Best Predictor (EBP) proposed by 
Molina and Rao (2010). They proposed the predictor under a model assumed for 
data from surveys conducted in one period. We will propose a predictor assuming 
a longitudinal model. It means that in the case of longitudinal surveys we will be 
able to use information from previous periods to increase the prediction accuracy 
in the period of interest. 

Thirdly, in the proposed longitudinal model we will take into account that the 
population and subpopulations may change in time. It will cover many 
longitudinal models known from small area estimation (which are special cases of 
the general linear mixed models) including models studied by: 
 Saei and Chambers (2003), who assume mutually independent two random 

effects (domain-specific and time-specific) and random components (and the 
generalization, where AR(1) process is assumed for time-specific random 
effects), 

 Saei and Chambers (2003), where domain-and-time-specific random effects 
with independent distributions in domains and AR(1) model in time are taken 
into account, 

 Stukel and Rao (1999) and Nissinen (2009) p. 22 with mutually independent 
two random effects (domain-specific and element-specific) and random 
components, 

 Nissinen (2009) p. 60, who assumes independent domain-specific random 
effects and autocorrelated (assuming AR(1)) random components in time, 

 Molina, Morales, Pratesi, Tzavidis (2010) pp. 143-180 with independent 
domain-specific random effects, independent for domains and autoccorelated 
(assuming AR(1)) in time domain-and-time-specific random effects and 
heteroscedastic random components. 

In the simulation study the properties of the proposed predictor (in terms of 
MSE and the proposed accuracy measures) will be studied under the proposed 
model taking into account the model misspecification as well.  
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2. Alternative prediction accuracy measures 

In the case of positive asymmetry usually the mean is not the only measure 
used to describe the distribution. The MSE is the mean of squared errors (which 
have positive or even strong positive asymmetry) and it is usually used as the only 
accuracy measure. Moreover, a better predictor is usually defined as the one with 
smaller MSE. Żądło (2013) proposed a new measure of prediction accuracy 
Quantile of Absolute Prediction Error defined for the problem of prediction in the 
dth domain as follows: 

                                   ( ) inf : dQAPE p x P U x p   ,                          (1) 

where ˆ
d d dU     is the prediction error of d̂ , which is the predictor of d  in 

the dth domain. It means that (1) is the quantile of order p of dU . It means that at 

least p100% of realizations of absolute prediction errors in the dth domain are 
smaller or equal to ( )QAPE p . In Żądło (2013) it was used to measure prediction 
accuracy of the empirical best linear unbiased predictor. 

Żądło (2015) proposes multivariate versions of (1), which allow us to measure 
and compare accuracy in the case of simultaneous prediction in all of domains. It 
can be treated as the alternative to the average mean squared error studied, e.g. by 
Fabrizi and Trivisano (2010). Let prediction errors in  D  domains be denoted by 

ˆ
d d dU    , where 1,2,...,d D . Let us define the multivariate version of 

QAPE  as follows:  

                                  
1

( ) inf :
D

d
d

MQAPE p x P U x Dp


 
   

 
 .                     (2) 

It means that it is the quantile of order p of a distribution of a mixture of 
random variables 1 ,..., ,...,d DU U U  with equal weights. It means that at least 

p100% of realizations of absolute prediction errors in all domains are smaller or 
equal to ( )MQAPE p . 

Let relative prediction errors be denoted by 
ˆ

d d d
d

d d

U
W

 
 


  , where 

1,2,...,d D . Let us define relative MQAPE  as follows: 

                           
1

( ) inf :
D

d
d

rMQAPE p x P W x Dp


 
   

 
 .                         (3) 

It means that it is the quantile of order p of a distribution of a mixture of 
random variables 1 ,..., ,...,d DW W W  with equal weights. It means that at least 

p100% of realizations of moduli of relative prediction errors in all domains are 
smaller or equal to ( )rMQAPE p . 

The estimation of (1), (2) and (3) is possible using a well-known parametric 
bootstrap method studied, e.g. by González-Manteiga et al. (2007, 2008) and 
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Molina and Rao (2010). Using the method, the estimator of the MSE is given by 
the mean of squared bootstrap realizations of prediction errors. Similarly, by 
computing quantiles of bootstrap realizations of:  
 moduli of prediction errors in one of domains we can estimate (1),  
 moduli of prediction errors in all of domains we can estimate (2) and  
 moduli of relative prediction errors in all of domains we can estimate  (3).  

3. Model and predictor 

We consider longitudinal data in periods 1,2,...,t M , where the population 

of size tN  in the period t is denoted by t . The population is divided into D 

disjoint subpopulations (domains) dt  each of size dtN , where 1,2,...,d D . 

A sample in the period t of size tn  is denoted by ts . Let dt t dts s   and 

dt dts n . The d*th domain of interest in the period of interest t* will be denoted 

by * *d t . Let rdt dt dts   ,  rdt dt dtN N n  , 
1

M

t
t

  , N  , 
1

,
M

dt d
t

   

d dN  , 
1

M

rdt rd
t

  , rd rdN  , 
1

M

t
t

s s


 , s n , 
1

M

dt d
t

s s


 , d ds n .  

Let idM  be the number of periods when the ith population element belongs to 

the dth domain and idm  – the number of periods when the ith population element 

(which belongs to the dth domain) is observed. Let rid id idM M m  . It is 
assumed that the population may change in time and that one population element 
may change its domain affiliation in time. Hence, sets of population elements d  

(where 1,2,...,d D ) may overlap.  
The assumption that one population element may change its domain affiliation 

in time is very important in practice of longitudinal surveys. For example, let us 
consider the population of households and the division of the population into 
domains made according to the household size. In this case we should assume that 
some households can change their sizes in time, which causes the change of the 
domain affiliation. If a human population is under the study one may be interested 
in its characteristics for subpopulations defined according to some social or 
economic criteria. In the case of business surveys the population of firms may be 
divided into subpopulations according to some economic or financial criteria, 
what can imply even stronger changes of domains affiliations.   

Values of the variable of interest (or the variable of interest after 
a transformation) are realizations of idjY ’s for the ith population element, which 

belongs to the dth domain in the period ijt , where 1,2,...,i N ; 1,2,..., idj M ; 
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1,2,...,d D . The vector  
1id

idj M
Y


   idY  will be called the profile and the vector 

1id
idj m

Y


   sidY  will be called the sample profile. Let the vector 
1rid

idj M
Y


   ridY  

be the profile for non-observed realizations of random variables. 
Let us introduce assumptions of the following longitudinal model, which is 

a special case of the general linear mixed model (e.g. Datta and Lahiri, 2000). The 
difference is introduced in the sizes of matrices, which allows us to take into 
account longitudinal data and possible changes in population and subpopulations 
in time. We assume that 

2

2

( ) ( )

( ) ( )

( , )

D

D

Cov







  
 
 
 

Y Xβ Zv e

v G δ

e R δ

v e 0

,                         (4) 

where   is the superpopulation model, 1 1
( )

d
d D i N

col col   
 idY Y , 

1 1
( )

d
d D i N

col col   
 ide e , where ide  is the 1idM   vector of random components, 

1 1
( )

d
d D i N

col col   
 idX X , where idX  is the known matrix of size idM p , β  is 

the 1p  vector of unknown parameters, Z  is  the known matrix of size 

1 1

N D

id
i d

M h
 

 , v  is the vector of random effects of size 1h , δ  is the vector of 

q  unknown in practice parameters called variance components. 
Let us consider the following decomposition of the vector Y : 

      
TT T

s r   Y Y Y ,                     (5) 

where sY  is the vector of size 
1 1

1
N D

id
i d

m
 

  of random variables, whose 

realizations are known, and rY  is the vector of size 
1 1

1
N D

rid
i d

M
 

  of random 

variables, which are not observed in the longitudinal survey. Then, 

2 2 ( ) ( )
( ) ( )

( ) ( )
ss srs

rs rrr

D D 

   
     

  

V δ V δY
Y V δ

V δ V δY
,            (6) 

where under (4): 
 ( ) ( ) ( )T V δ ZG δ Z R δ .  (7) 

Let us consider the problem of predicting any given function of the random 
vector Y  denoted by ( ) Y  or shortly by  . Among predictors ̂  of  , the Best 
Predictor (BP) is defined as the one, which minimizes (e.g. Molina and Rao 
2010):  
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                                                2ˆ ˆ( ) ( )MSE E     .                                         (8) 

Hence, it is given by: 

                                                     ˆ ( | )BP sE  Y ,                                              (9) 

which means that it may be obtained as a conditional expected value of   
assuming that the conditional distribution of |r sY Y  is known.  

We assume that the conditional distribution of |r sY Y  can be derived 
(the example is presented in Remark 1 in this section). In practice, it depends on 
the vector of unknown parameters, which will be denoted by τ . If we replace the 
parameters by their estimators, we obtain the Empirical Best Predictor (EBP) 

denoted by ÊBP . Hence, the value of the EBP of ( ) Y  can be obtained through 
the Monte Carlo approximation algorithm presented below (for prediction in 
surveys conducted in one period see Molina and Rao 2010). 

(a) We estimate τ  based on the realization of sY  and we obtain the value of 

the estimator denoted by τ̂ . 
(b) Assuming that the distribution of |r sY Y  can be derived, we generate 

L vectors rY  (denoted by ( )l
rY , where 1,2,...,l L ) from the distribution 

of  | ,r sY Y  where the unknown vector τ  is replaced by τ̂ . 

(c) We make L  vectors denoted by ( )lY , where ( ) ( ) Tl T l T
s r   Y Y Y  and 

1,2,...,l L , what means that L vectors ( )lY  include the same realization 

of sY  and different realizations of rY .  

(d) The value of the EBP of ( ) Y  is obtained as follows: 

1 ( )

1

ˆ ( )
L

l
EBP

l

L 



  Y .  

Due to the estimation of an unknown in practice vector of model parameters 
denoted by τ , the resulting predictor generally is not unbiased and it does not 
minimize the MSE (as the BP) but its value should be very close to the BP. Its 
MSE estimator, which takes into account the uncertainty resulting from the 
estimation of τ , can be obtained using parametric bootstrap method as in Molina 
and Rao (2010), where their model is replaced by (4). 

Remark 1. If we additionally assume that the vector Y  (which may be the 
vector of the variable of interest after a transformation) is normally distributed, 
which can be written as follows ~ ( , ( ))NY Xβ V δ  (where under (4) ( )V δ  is 

given by (7)),  then 
TT T   τ β δ  and                         

     1 1| ~ ( ) ( ) , ( ) ( ) ( ) ( )r s r rs ss s s rr rs ss srN    Y Y X β V δ V δ Y X β V δ V δ V δ V δ . (10) 
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Hence, in the step (b) of the procedure presented above, vectors ( )l
rY , where 

1,2,...,l L  are generated based on (10), where parameters are replaced by their 
estimates. 

The idea of using EBPs was presented earlier by Molina and Rao (2010) but 
for studies conducted in one period. They study the general case assuming the 
general linear mixed model for studies conducted in one period. In the special 
case of their considerations Y  is the vector of the variable of interest after the 

following transformation: ( )TY Y , where Y  is the variable of interest, and 

                                                    ( ) ln( )T c Y Y  ,                                            (11) 

where c  is a constant. Then, they study the following model  

                                                   T
id id d idY v e  x β ,                                          (12)

where 1,2,...,d D ; 1,2,...,i N , 2~ (0, )
iid

d vv N  , 2~ (0, )
iid

id ee N  , ide  and dv  are 

independent, 2 2 T

e v    δ .  

4. Simulation study – real data 

We consider data on 378N   Polish poviats (NUTS-4 level) from years 
2010-2012 (M=3). We have excluded one observation because of the lack of the 
data and one outlying observation (Warsaw). The problem of prediction of totals 
of the sold production of industry in 16D   domains (voivodships – NUTS-2 
level) for companies with at least 10 employees is considered. The number of 
companies with at least 10 employees is the auxiliary variable. In the first period 
a sample of 38 poviats is drawn at random with probabilities proportional to the 
values of the auxiliary variable. Sample sizes in the domains are random and 
equal from 0 to 5 (with mean 2.375). The balanced panel survey is considered –
elements sampled in the first period are observed until the end of the longitudinal 
survey (which gives 114 observations in 3 periods).  

Because empirical best predictors are studied, the distribution of the variable 
of interest must be assumed. We consider the transformation of the variable of 
interest given by (11) and logarithmic transformation of the auxiliary variable. To 
test the distribution of the variable of interest, we use the transformation of 
residuals based on the Cholesky decomposition of the inverse of variance-
covariance matrix (see, e.g. Jacqmin-Gadda et al. 2007). For the model chosen 
based on the AIC and BIC criteria (more details will be presented in the next 
paragraph) p-values for Shapiro-Wilk, Jarque-Bera and adjusted Jarque-Bera tests 
obtained for the sample equal 0.2297; 0.6046 and 0.446 respectively. For the 
considered model but without the transformations of both variables, p-values for 
the tests of normality were smaller than 1210 . But if we test normality based on 
the whole population data (based on 3 378 1134M N     observations) in 
both cases (with and without transformations of variables) we should reject the 
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null hypothesis on normality. That is why the problem of model misspecification 
will be taken into account in the simulation study as well. 

To choose the appropriate model we consider different models: classic and 
mixed linear models with and without the auxiliary variable, with and without 
constant, nested-error models and models with random slopes. For mixed models 
with random slope we consider time-specific, domain-specific, time-and-domain-
specific and finally profile-specific random effects. In models with nested errors 
we consider one random effect (time-specific, domain-specific, time-and-domain-
specific and profile-specific) or two random effects (firstly: domain-specific and 
profile-specific; secondly: domain-specific and domain-and-time-specific). The 
model with the smallest both AIC and BIC criteria was the following model 
studied earlier by Stukel and Rao (1999) and Nissinen (2009) p. 22: 

1 0idt idt d id idtY x u v e      ,                                       (13) 

where idtY  is the variable of interest after transformation (11), idtx  is the auxiliary 

variable after logarithmic transformation, 1,2,...,i N , 1,2,...,d D , 
1,2,...,t M , du , idv  and idte   are mutually independent with zero expected 

values and variances given by 2
u , 2

v  and 2
e  respectively. Permutation test 

(with the test statistic given by the loglikelihood) was used to test the significance 
of the model parameters – at the significance level 0.05 tested parameters were 
significantly different from zero. Good properties of these tests are presented by 
Krzciuk and Żądło (2014a, 2014b).  

The model-based simulation study was prepared using R software (R Core 
Team 2016). To mimic the real data, values of the variable of interest after 
transformation (11) are generated based on the model (13) with one auxiliary 
variable and the constant, where the parameters of the model are replaced by 
REML estimates obtained based on all of the observations (sampled and 
unsampled) of the real data. Hence, both random effects and random components 
are generated with zero expected values and variances 2

u , 2
v  and 2

e  equal 
REML estimates based on (13) and the whole population data. Random effects 
and random components du , idv  and idte   are generated independently from: 
 normal distributions, 
 shifted exponential distributions (the third standardized moment is equal  

to 2),  
 shifted gamma distributions (with the value of third standardized moment 

equal to 4) and  
 shifted Pareto distributions (with the value of third standardized moment 

equal to 5).  
It means that in the case of the normal and the shifted exponential distributions, 
the assumed values of the mean and the variance give explicitly values of the 
parameters of the distributions used in the simulation study. The case of the 
shifted gamma and the shifted Poisson distributions is more interesting because it 
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is possible to set the values of the parameters of these distributions to obtain not 
only the assumed values of the mean and the variance but also the prespecified 
value of the third standardized moment (4 - for the shifted gamma and 5 - for the 
shifted Pareto distributions, as listed above). 

In each iteration of the simulation study model parameters are estimated using 
restricted maximum likelihood, which gives consistent estimates even if the 
normality assumption is not met (Jiang 1996). The number of iterations equals 
5000. 

We study properties of the following predictors: 
 the empirical best predictor based on the longitudinal model (13) under 

normality of random effects and random components (EBP), 
 the empirical best predictor studied earlier by Molina and Rao (2010) based 

on the model (12) assumed for transformed data (EBP-MR), 
 the empirical best linear unbiased predictor based on the Royall (1976) 

theorem for the longitudinal model with the smallest AIC and BIC criteria 
assumed for the untransformed data, i.e. for the mixed model with random 
regression coefficient with the profile-specific random effect (EBLUP),  

 the synthetic regression estimator given by (SYNT-REG) given by (e.g. 
Bracha 1996, p. 260):  

1

1 1

t t

dt ti ti ti
i s i s

N y 


 

 

 
  
 
 

1

1 1 1
*

dt t t

dt dt t i ti ti ti
i i s i s

N B N x x 


  

  

  
        

    ,  

for 1,2,...,d D , where 
1 1

1 1 1 1 1
*

21

1 1 1

t t t t t

t t t

ti t i ti ti ti ti ti ti ti
i s i s i s i s i s

ti ti ti ti ti
i s i s i s

x x y y

B

x x

    

  

 

    

    



  

  

     
                

  
       

    

  
, and ti  is 

the inclusion probability of the ith population element in the period t. 

Because of small sample sizes in the domains (in some domains: 0) we study 
only indirect predictors and estimators. In each out of 5000 Monte Carlo iterations 
values of both empirical best predictors are computed based on 200L   
generated population vectors. 

Relative prediction biases for the considered estimators and predictors are 
presented in Figure 1. Each boxplot presents 16D   values of biases of 
a predictor of 16D   domains totals. For example, the values presented in the 
top-left boxplot are from ca 0.3% to ca 2.1%. The value 2.1% means that for one 
of the domains the relative bias of EBP predictor equals 2.1% (in this domain the 
value of the predictor is larger than the domain total on average by 2.1%). If the 
distributions of the random components and random effects for the transformed 
variables are normal, the biases of all predictors and estimators are small. EBP in 
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this case is used under the correctly specified longitudinal model – the 
transformation of the variables, the assumed normal distribution and the assumed 
formula of the model (13) are correct. EBP-MR is used under the misspecified 
formula of the model (assumed for one period instead of the longitudinal data) but 
under the correct transformation of the variables and assuming correct (i.e. 
normal) distribution. Both EBLUP and SYNT-REG do not take into account the 
transformation of the variables. If the distribution is asymmetric, the biases are 
very large in many cases.  

 
Figure 1. Relative prediction biases (in %) for different predictors and different  

distributions of random effects and random components (each boxplot 
presents values for D=16 domains) 

Results of the comparisons of the accuracy between the proposed empirical 
best predictor EBP and other estimators and predictors based on the MSE are 
presented in Figure 2. Each boxplot presents 16D   values of ratios of the MSE 
of a predictor to the MSE of EBP for 16D   domains totals. For example, the 
values presented in the top-left boxplot are from ca 1.02 to ca 1.06. The value 
1.06 means that for one of the domains the ratio of the MSE of EBP-MR predictor 
to the MSE of EBP predictor equals 1.06 (in this domain the value of the MSE of 
EBP-MR is higher than the MSE of EBP by 6%). If we compare the MSE of 
EBP-MR to the MSE of the EBP for other distributions, we see that the values of 
ratios are also very close to 1. In all of the cases the maximum gain in accuracy 
due to the usage of the proposed predictor measured by the MSE is smaller than 
10%. The reasons of the results will be studied in the next section. 

What is interesting, in the results presented in Figure 2 is the lack of stability 
comparing results for different distributions of random effects and random 
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components. The reason of unstable results is strong positive asymmetry of the 
distribution of absolute prediction errors, especially if the distribution of random 
effects and random components is not normal (see values of the third standardized 
moments of absolute prediction errors presented in Table 1). Because the values 
of the prediction MSE (the values of the mean of squared errors) are strongly 
affected by outlying absolute prediction errors, results for alternative measures of 
prediction accuracy defined in section 2 will be presented as well. 

 
Figure 2.  Values of MSE(.)/MSE(EBP) for different predictors and different 

distributions of random effects and random components (each boxplot 
presents values for D=16 domains) 

Table 1.  Third standardized moments of absolute prediction errors for different 
predictors and different distributions of random effects and random 
components (minimum and maximum for D=16 domains) 

 
After transformation: 
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shifted 

exponential 
shifted 
gamma 

shifted  
Pareto 

SYN-REG 1.3-4.0 8.3-52.7 24.4-70.6 33.1-70.7 

EBLUP 1.2-3.6 12.4-55.4 28.7-70.6 34.3-70.7 

EBP-MR 1.6-4.4 13.8-61.6 17.5-70.7 44.7-70.7 

EBP 1.5-4.5 13.7-61.6 17.5-70.7 44.7-70.7 
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Firstly, we will compare the accuracy of the predictors based on the same real 
data. In this case we will use ( )QAPE p  for (0.5, 0.75, 0.9, 0.95)p   for each 
domain. It is worth mentioning that the results presented in Figure 3 (and Figures 
6-8 in Appendix) are more stable than the results presented in Figure 2. Each 
boxplot in Figure 3 presents 16D   values of ratios of the (0.5)QAPE  of 

a predictor to the (0.5)QAPE  of EBP for 16D  domains totals. As it was defined 

and discussed in the section 3, (0.5)QAPE  is the median of absolute prediction 
errors. For example, the values presented in the top-left boxplot are from ca 1 to 
ca 1.05. The value 1.05 means that for one of the domains the ratio of the 

(0.5)QAPE  of EBP-MR predictor to the (0.5)QAPE  of EBP predictor equals 

1.05 (in this domain the value of the (0.5)QAPE  of EBP-MR is higher than the 

(0.5)QAPE  of EBP by 5%).  

 

Figure 3.  Values of QAPE0.50(.)/QAPE0.50(EBP) for different predictors and 
different distributions of random effects and random components (each 
boxplot presents values for D=16 domains) 

 
Additionally, in Figure 4 the values of ( )rMQAPE p  for 
(0.5, 0.75, 0.9, 0.95)p   are presented. As an example, we will interpret the value 

presented by the point in the top-left part of Figure 7 (for EBP under normal 
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distribution of random effects and random components for the variable of interest 
after the transformation), which equals (0.5) 18.2%rMQAPE  . It means that at 
least 50% of moduli of relative prediction errors for all of the domains are smaller 
or equal to 18.2% and at least 50% of moduli of relative prediction errors for all 
of the domains are larger or equal to 18.2%. But (0.5)rMQAPE  informs only 
about the average (i.e. median) of absolute prediction errors. If we are interested 
in the right tail of the distribution of the absolute prediction errors, we can 
compute ( )rMQAPE p  for 0,5p  , e.g. (0.75) 32.8%rMQAPE  , 

(0.9) 51.2%rMQAPE   and finally (0.95) 67%rMQAPE   (see the top-left part of 
Figure 4 and top-left part of Figure 9 in Appendix).  

 

Figure 4.  Values of rMQAPE(p) for p=(0.5, 0.75, 0.9, 0.95), different predictors 
and different  distributions of random effects and random components - 
all results 

 
It should be stressed that although values of (0.5)rMQAPE  for each predictor 

are quite similar even in the case of model misspecification (see the first point for 
each predictor in Figure 4 or Figure 9 in Appendix), the difference in the accuracy 
measured in right tails of the distribution of absolute prediction errors by 

(0.95)rMQAPE  can differ substantially especially in the case of model 
misspecification (see the last point for each predictor in Figure 4). For example in 
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bottom-right panel in Figure 4, values of (0.5)rMQAPE  for EBP and SYNT-

REG equal 27% and 45%, respectively, which means that (0.5)rMQAPE  for 
SYNT-REG is 1.67 times higher than for EBP. However, values of 

(0.95)rMQAPE  for EBP and SYNT-REG equal 102% and 776%, respectively, 

which means that (0.95)rMQAPE  for SYNT-REG is 7.6 times higher than for 
EBP. To sum up, the prediction accuracy measures presented in section 2 give us 
more detailed information on prediction accuracy, which is not limited to the 
average values (as in the case of the MSE). What is more, using QAPE we obtain 
more stable results of accuracy comparisons, especially in the case of model 
misspecification. 

5. Simulation study – artificial data 

In the previous section two problems were considered – the comparison of the 
accuracy and the choice of the appropriate measures of accuracy. One of the 
conclusions was the small difference in the accuracy (less than 10% in terms of 
the MSE for all considered distributions) between the proposed empirical best 
predictor for longitudinal surveys and the empirical best predictor proposed by 
Molina and Rao (2012) for surveys conducted in one period. To identify the 
reasons, we compare some results from the previous section (the column “real 
data” in Table 2) with two additional simulation scenarios, all of them under 
normality of random effects and random components for data after transformation 
(11) and assuming model (13) or its special case. 

 

Table 2.  Maximum values of ratios of accuracy measures for different 
simulation scenarios over D=16 domains under normality of random 
effects and random components  

 Simulation scenario 

ratio of accuracy measures 
real 
data 

independent 
values of x 

without x 

MSE(EBP-MR)/MSE(EBP)  1.058  1.257 1.123 

QAPE0.50(EBP-MR)/QAPE0.50(EBP)  1.046  1.119 1.040  

QAPE0.75(EBP-MR)/QAPE0.75(EBP)  1.023  1.134 1.028 

QAPE0.90(EBP-MR)/QAPE0.90(EBP)  1.029 1.117   1.042  

QAPE0.95(EBP-MR)/QAPE0.95(EBP)  1.047 1.154 1.047 
 
In the first scenario (results in Table 2 in the column “independent values 

of x”), we generate values of the variable of interest based on model (13) with 
values of all model parameters obtained for the real data (as in the previous 



STATISTICS IN TRANSITION new series, September 2017 

 

427 

section), but where the real auxiliary variable is replaced by the artificial one. 
Values of the auxiliary variable were generated independently from shifted 
gamma distribution assuming real values of the mean, variance and the third 
standardized moment for each year. In this case the maximum gain in accuracy of 
our EBP measured by MSE is 25.7% and measured by QAPE  is higher than 
10%. It means that in the case of longitudinal surveys we should use auxiliary 
variable, which is weakly autocorrelated but even in this case the gain in accuracy 
will not be very large. 

In the second scenario (results in Table 2 in the column “without x”) we do 
not use the uxiliary variable both in the model and at the estimation stage. Hence, 
we compare prediction accuracy of empirical best predictors only under random 
parts of models (13) and (12). The accuracy measured by MSE of our EBP is 
higher by 12.3% compared with EBP-MR (by less than 5% in terms of QAPE ). 
The reason is that model (13) chosen based on AIC and BIC for real longitudinal 
data is quite similar to the model (12) assumed by Molina and Rao (2010). In both 
models we have domain-specific random effects, although in the case of (13) it 
additionally implies non-zero covariances between observations within domains 
in different periods. The main difference between the models is the profile 
(element)-specific random effect in model (13), but results in the last column of 
Table 2 show that it does not imply a large gain in prediction accuracy. It means 
that the larger gain in accuracy can be obtained when the longitudinal model 
explains the variability of the variable of interest considerably better than the 
model assumed for one period. 

To sum up, in this section based on the Monte Carlo analysis we have 
identified  two reasons of the relatively small gain in accuracy, which was 
presented in the previous section, comparing our predictor with the predictor 
proposed by Molina and Rao (2010). Firstly, it has been autocorrelation in time of 
the auxiliary variable. Secondly, we have presented similarity of the proposed 
longitudinal model and the model studied by Molina and Rao (2010). Moreover, 
we have shown that in the studied cases the maximum gain in accuracy 
comparing these two predictors can be even higher than 25% in terms of MSE. 

6. Real data application 

In this section we consider values of the same predictors and estimators, the 
same data and the same sample as discussed in section 4. However, in this case 
their values are computed once based on the real data (they are not generated as in 
the simulation studies presented in section 4). Because the whole population data 
are available, we are able to compare estimates with real values of D=16 domains 
totals (see Figure 5). The largest differences between estimates and real values for 
the considered sample are observed for SYNT-REG and EBLUP, whereas the 
values of EBP-MR and the proposed EBP are very similar. 
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Figure 5. Values of estimates and real domain totals  

7. Conclusions 

In the paper the problem of assessing and comparing the prediction accuracy 
is studied. Because of strong positive asymmetry of absolute prediction error, it is 
shown that prediction accuracy measures alternative to the MSE should be used. 
These measures allow us to assess the prediction accuracy not limited to the 
average values and to obtain more stable results of accuracy comparisons, 
especially in the case of the model misspecification. In the accuracy comparisons 
based on the Monte Carlo simulation studies our proposal for the empirical best 
predictor is taken into account. Although its prediction accuracy was only slightly 
better for the considered data compared with the empirical best predictor 
proposed by Molina and Rao (2012), we present how to obtain a substantial gain 
in accuracy. The considerations are also supported by real data application. 
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APPENDIX 
 

 

Figure 6.  Values of QAPE0.75(.)/QAPE0.75(EBP) for different predictors  
and different distributions of random effects and random components  
(each boxplot presents values for D=16 domains) 

 

Figure 7.  Values of QAPE0.90(.)/QAPE0.90(EBP) for different predictors and 
different distributions of random effects and random components (each 
boxplot presents values for D=16 domains) 
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Figure 8.  Values of QAPE0.95(.)/QAPE0.95(EBP) for different predictors and 
different distributions of random effects and random components (each 
boxplot presents values for D=16 domains) 

 

Figure 9.  Values of rMQAPE(p) for p=(0.5, 0.75, 0.9, 0.95), different predictors 
and different  distributions of random effects and random components – 
selected results 
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