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ABSTRACT 

Background and objective: In survival analysis, estimating the survival 

probability of a population is important, but on the other hand, investigators want 

to compare the survival experiences of different groups. In such cases, the 

differences can be illustrated by drawing survival curves, but this will only give a 

rough idea. Since the data obtained from survival studies contains frequently 

censored observations some specially designed tests are required in order to 

compare groups statistically in terms of survival. Methods: In this study, 

Logrank, Gehan-Wilcoxon, Tarone-Ware, Peto-Peto, Modified Peto-Peto tests 

and tests belonging to Fleming-Harrington test family with (p, q) values; (1, 0), 

(0.5, 0.5), (1, 1), (0, 1) ve (0.5, 2) are examined by means of Type I error rate 

obtained from a simulation study, which is conducted in the cases where the event 

takes place with equal probability along the follow-up time. Results: As a result 

of the simulation study, Type I error rate of Logrank test is equal or close to the 

nominal value. Conclusions: When survival data were generated from lognormal 

and inverse Gaussian distribution, Type I error rate of Gehan-Wilcoxon, Tarone-

Ware, Peto-Peto, Modified Peto-Peto and Fleming-Harrington (1,0) tests were 

close to the nominal value.  

Key words: survival analysis, survival curves, comparison of survival curves, 

right censored observations.    

1. Introduction 

In survival analysis, investigators frequently want to determine if individuals 

from one population live longer than individuals from a second population. When 

all individuals in the population are observed, it is easy to estimate and compare 

the survival functions of different populations. However, most clinical research is 

completed in a prespecified time period, and it is not always possible to observe 
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all individuals in this period until they experience the event. In such cases, 

censored data are encountered.      

Since time-to-event data often include censored observations, some 

specialized methods are needed to compare the survival experiences of two 

groups (Dawson and Trapp, 2001). Several methods for testing the equality of 

two survival curves in the presence of censored data have been proposed.  

First, Cox (1953) showed that an F test can be used to test the difference 

between two groups (whether or not the data include censored observations) when 

the survival data follow the exponential distribution. Then, the original 

(unweighted) log-rank test, which extended this test, was proposed by Mantel and 

Haenszel (1959) with Mantel (1966). Then, the generalized Wilcoxon tests, 

Gehan-Wilcoxon test (Gehan, 1965), the Peto-Peto test (Peto and Peto, 1972), and 

the Tarone-Ware test (Tarone and Ware, 1977) were proposed, respectively.  

Another useful subfamily within the class of weighted log-rank statistics is also 

proposed by Fleming and Harrington (1981) and Harrington and Fleming (1982). 

There are studies in the literature that compare the performances of survival 

comparison tests. Lee et al. (1975) compared the size and power of the tests using 

small samples from the exponential and Weibull distributions with and without 

censoring. They arranged their simulation study with censoring rates and sample 

sizes of the groups being the same. Latta (1981) extended the simulations to 

include log-normal distributions, unequal sample sizes and censoring of only one 

group. Fleming et al. (1987) examined the properties of the tests based on linear 

rank statistics. Beltangady and Frankowski (1989) focused on the effect of 

unequal censoring by using various combinations of censoring proportions. Leton 

and Zuluaga (2001; 2005) compared the performance of various versions of 

generalized Wilcoxon and log-rank tests under scenarios of early and late hazard 

differences. Akbar and Pasha (2009) compared the performances of the log-rank 

and generalized Wilcoxon tests with low and high censoring rates for small and 

large sample sizes. Jurkiewicz and Wycinka (2011) compared the log-rank, 

Gehan-Wilcoxon, Tarone-Ware, Peto-Peto and F-H tests when the sample size is 

small.        

Log-rank test is proposed in order to give equal weight to all failures among 

the follow-up (Lee and Wang, 2003). However, for the log-rank test there is an 

assumption that the hazard ratio of the groups should be proportional along the 

follow-up period (Fleming et al., 1987; Lee, 1996; Buyske et al., 2000). Only in 

this situation is the log-rank test powerful. When the hazard ratio is non-constant, 

the Gehan-Wilcoxon and Tarone-Ware tests can be more powerful than the log-

rank test (Tarone and Ware, 1977; Pepe and Fleming, 1989). The Peto-Peto test is 

also efficient when proportional hazard assumption is violated (Kleinbaum and 

Klein, 2005). F-H tests, which are the most flexible tests for choosing weights, are 

focused on crossing the hazard ratios of groups (Pepe and Fleming, 1989).    

The log-rank test, which compares outcomes over the whole time interval, 

may not adequately detect important differences between groups which occur 

either early or late in the interval (Klein et al., 2001). In some situations, a 
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treatment will decrease the hazard for some initial period, but its effect on the 

hazard becomes negligible later on (Pepe and Fleming, 1989). Therefore, the need 

to use tests that give more weight to early failures arises. In such cases, the 

Gehan-Wilcoxon and Tarone-Ware tests, which give more weight to the events 

that occur earlier, can be used. Likewise, the Peto-Peto and F-H (1,0) tests give 

more weight to early events as well.  

When survival comparison tests are examined in the literature in terms of 

censoring, the Gehan-Wilcoxon test is powerful if the censoring rate is low 

(Stevenson, 2009; Martinez and Naranjo, 2010). Nevertheless, if the censoring 

rate is high, the Gehan-Wilcoxon test has less power. In addition, both the Gehan-

Wilcoxon and the Peto-Peto tests have the assumption that censoring distributions 

of two groups should be same. When this assumption is violated, Efron stated that 

the Peto-Peto test has better performance than the Gehan-Wilcoxon test. For the 

log-rank test, it is more efficient when the censoring distribution of groups is 

different (Wang et al., 2010). This property is an advantage of the log-rank test 

over the others.  

In this study, type I error rates were considered in examining the tests. 

Weibull, log-normal, exponential and inverse Gaussian distributions with 

different shape and scale parameters were used in order to generate survival 

times. The aim of this study is to examine the survival comparison tests in regard 

to type I error rates with right-censored data in some defined particular cases with 

events spread equally during the follow-up time.  

2. Materials and Methods 

2.1. Survival Comparison Tests 

In survival analysis, estimating the survival probability of a population is 

important and investigators also want to compare the survival experiences of 

different groups. In such cases, the differences between groups can be illustrated 

by drawing survival curves obtained from the Kaplan-Meier (K-M) method, but 

this will only give a rough comparison and does not reveal whether the 

differences are statistically significant or not (Lee and Wang, 2003; Kim and 

Dailey, 2008).   

When there are no censored observations, standard independent sample tests 

can be used to compare two survival distributions. However, in practice, censored 

data are frequently encountered. In such cases, in order to analyze the difference 

between two groups statistically, specially designed tests are used (Lee and Wang, 

2003).    

In this study, survival comparison tests (log-rank, Gehan-Wilcoxon, Tarone-

Ware, Peto-Peto, Modified Peto-Peto, and Fleming-Harrington test family (with 

(p, q) values: (1, 0), (0.5, 0.5), (1, 1), (0, 1) and (0.5, 2), respectively), which are 

used to compare survival curves from two groups in cases of right-censored data, 

were compared in regard to type I error rates in the specific case that events 
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occurred at equal rates throughout the follow-up time and when the follow-up 

time fits some specific distributions. The nominal value was considered as 0.05 

for type I error rates. When type I error rates were close to the nominal value the 

false positivity was close to the desired value so that the probability of making a 

wrong decision when there was not a real difference was at the desired value.  

Suppose we have survival data as in Table 1. In order to obtain the general 

test statistic, which compares survival curves, Table 2 can be generated from 

Table 1.  

Table 1. Sample survival data set 

Individual 

(Patient) 
Survival Time (tj) 

Status Variable 

(1: Event occurred 

0: Censored observation) 

Group 

1 t1 1 1 

2 t2 1 1 

3 t3 0 2 

4 t4 1 2 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

29 t29 0 1 

30 t30 1 2 

 

Table 2. Summary of observations at tj time period 

Group 1 2 Total 

Number of events d1j d2j dj 

Number of individuals 

at risk  
r1j r2j rj 

 

Table 2 is generated repeatedly in all time periods in which the event of 

interest occurs (Bland and Altman, 2004; Kleinbaum and Klein, 2005). That is, by 

taking Table 1 as reference, at t1, t2, t4, ..., t30 time periods in which the event of 

interest occurred, 2 by 2 tables are obtained. The observed and expected events in 

each group are considered from these tables. The general test statistic is obtained 

as the sum of the squared differences of the observed and expected counts scaled 

by the expected counts (Fisher and Belle, 1993; Klein et al., 2001). The test 

statistic is as in Equation 1 (Altman, 1991; Stevenson, 2009).   
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𝑇𝑒𝑠𝑡 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐

=
(∑ 𝑤𝑗(𝑂𝑖𝑗 − 𝐸𝑖𝑗)𝑘

1 )
2

𝑣𝑎𝑟(∑ 𝑤𝑗(𝑂𝑖𝑗 − 𝐸𝑖𝑗)𝑘
1 )

                                                                                         (1) 

 

Here, 

 i, denotes the group; j denotes the time that the event occurred, 

Oij, number of observed events in the ith group at the jth time period, 

Eij, number of expected events in the ith group at the jth time period. 

Oij and Eij are computed as in Equation 2 and Equation 3, respectively   

     (Leton and Zuluaga, 2005): 

𝑂𝑖𝑗 = ∑ 𝑑𝑖𝑗

𝑘

𝑗=1

                                                                                                                 (2) 

𝐸𝑖𝑗 = ∑ 𝑑𝑗

𝑟𝑖𝑗

𝑟𝑗

𝑘

𝑗=1

                                                                                                              (3) 

When Equation 2 and Equation 3 are replaced in Equation 1, the general test 

statistic equals Equation 4 (Leton and Zuluaga, 2005): 

𝑇𝑒𝑠𝑡 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 =

(∑ 𝑤𝑗𝑗 (𝑑𝑖𝑗 − 𝑑𝑗
𝑟𝑖𝑗

𝑟𝑗
))

2

∑ 𝑤𝑗
2 𝑟1𝑗𝑟2𝑗𝑑𝑗(𝑟𝑗−𝑑𝑗)

𝑟𝑗
2(𝑟𝑗−1)

𝑘
𝑗=1

                                                             (4) 

 

In Equation 4;  

dij, number of individuals who experience the event in group i at time j    

dj, total number of individuals in both groups who experience the event  

rij, number of individuals at risk in group i at time j 

rj, total number of individuals at risk at time j 

r1j, number of individuals at risk in group 1 

r2j, number of individuals at risk in group 2. 

The test statistic is compared to a chi-square table with 1 degree of freedom 

(Altman, 1991; Dawson and Trapp, 2001; Stevenson, 2009). The survival 

comparison tests are designated according to weight wj, which is given in 

Equation 4.  
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Hypotheses for the survival comparison test are as below (Lee and Wang, 

2003; Kleinbaum and Klein, 2005).  

H0: S1(t) = S2(t) (survival probability of two groups is equal)  

H1: S1(t) ≠ S2(t) (survival probability of two groups is different) or 

H1: S1(t) < S2(t) (survival probability of the first group is less than the survival

         probability of second group) or 

H1: S1(t) > S2(t) (survival probability of the first group is greater than the   

         survival probability of the second group) 

2.1.1. Log-rank Test 

The log-rank test, which is also known as the Mantel Log-rank Test, is the 

most commonly used test for comparing survival curves. It gives equal weight to 

early and late failures (Stevenson, 2009; Allison, 2010). The test statistic is based 

on the ranks of the time period in which the event occurred (Lee and Wang, 

2003).    

It takes wj=1 as the weight in Equation 4. The test statistic turns into  

Equation 5: 

𝐿𝑜𝑔𝑟𝑎𝑛𝑘 𝑡𝑒𝑠𝑡 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 =
(∑ (𝑑𝑖𝑗 − 𝑑𝑗

𝑟𝑖𝑗

𝑟𝑗
)𝑗 )

2

∑
𝑟1𝑗𝑟2𝑗𝑑𝑗(𝑟𝑗−𝑑𝑗)

𝑟𝑗
2(𝑟𝑗−1)

𝑘
𝑗=1

                                                     (5) 

The log-rank test assumes that the hazard functions for the two groups are 

parallel meaning that the hazard ratios of two groups are constant among all time 

periods (Dawson and Trapp, 2001; Stevenson, 2009).  

Survival curves can be used to visualize whether the hazard functions of the 

two groups are parallel or not (Martinez and Naranjo, 2010).   

2.1.2. Gehan Generalized Wilcoxon Test 

The Gehan Generalized Wilcoxon Test is a distribution-free two-sample test 

and it is a generalization of the Wilcoxon test that samples right-censored 

observations (Gehan, 1965; Lee et al., 1975; Kim and Dailey, 2008).    

The Gehan-Wilcoxon test uses the number of individuals at risk at time period 

tj as the weight; thus, in Equation 4, wj=rj. 

Since the weight is the number of individuals at risk, the Gehan-Wilcoxon test 

places more emphasis on the information at the beginning of the survival curve, 

where the number at risk is larger, allowing early failures to receive more weight 

than later failures (Tarone and Ware, 1977; Fisher and Belle, 1993; Kleinbaum 

and Klein, 2005).   
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The test statistic is as in Equation 6. 

𝐺𝑒ℎ𝑎𝑛 − 𝑊𝑖𝑙𝑐𝑜𝑥𝑜𝑛 𝑡𝑒𝑠𝑡 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 =

(∑ 𝑟𝑗𝑗 (𝑑𝑖𝑗 − 𝑑𝑗
𝑟𝑖𝑗

𝑟𝑗
))

2

∑ 𝑟𝑗
2 𝑟1𝑗𝑟2𝑗𝑑𝑗(𝑟𝑗−𝑑𝑗)

𝑟𝑗
2(𝑟𝑗−1)

𝑘
𝑗=1

                             (6) 

 

In comparison with the log-rank test, the Gehan-Wilcoxon test does not have 

the assumption that the hazard functions of two groups are parallel making it a 

powerful test (Dawson and Trapp, 2001; Stevenson, 2009).    

2.1.3. Tarone-Ware Test 

The Tarone-Ware test places heavy weight on hazards in the early periods, 

just as the Gehan-Wilcoxon test does. It uses the square root of the number of 

individuals at risk as weight wj=√𝑟𝑗 (Tarone and Ware, 1977; Klein et al, 2001; 

Kleinbaum and Klein, 2005; Allison, 2010).  

The weight used in the Tarone-Ware test is greater than the weight used in the 

log-rank test but less than the weight used in the Gehan-Wilcoxon test.    

The Tarone-Ware test statistic is as in Equation 7.  

𝑇𝑎𝑟𝑜𝑛𝑒 − 𝑊𝑎𝑟𝑒 𝑡𝑒𝑠𝑡 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠 =

(∑ √𝑟𝑗𝑗 (𝑑𝑖𝑗 − 𝑑𝑗
𝑟𝑖𝑗

𝑟𝑗
))

2

∑ 𝑟𝑗
𝑟1𝑗𝑟2𝑗𝑑𝑗(𝑟𝑗−𝑑𝑗)

𝑟𝑗
2(𝑟𝑗−1)

𝑘
𝑗=1

                              (7) 

2.1.4. Peto-Peto Test 

The Peto-Peto test assigns weights that depend on the estimated percentile of 

the failure time distribution. Failures occurring early, when the estimated survivor 

function is large, receive larger weights, while those in the right tail of the failure 

time distribution receive smaller weights (Prentice and Marek, 1979). This test is 

used when the hazard ratio between groups is not constant (Stevenson, 2009).    

The Peto-Peto test uses the estimation of survival function as weight wj=𝑆̃(𝑡). 

The survival function here is a modified version of the K-M estimator (Allison, 

2010). The test statistic is given in Equation 8.  

 

𝑃𝑒𝑡𝑜 − 𝑃𝑒𝑡𝑜 𝑡𝑒𝑠𝑡 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 =

(∑ 𝑆̃(𝑡𝑗)𝑗 (𝑑𝑖𝑗 − 𝑑𝑗
𝑟𝑖𝑗

𝑟𝑗
))

2

∑ 𝑆̃(𝑡𝑗)
2 𝑟1𝑗𝑟2𝑗𝑑𝑗(𝑟𝑗−𝑑𝑗)

𝑟𝑗
2(𝑟𝑗−1)

𝑘
𝑗=1

                                   (8) 
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Here, 

𝑆̃(𝑡) = ∏ (1 −
𝑑𝑗

𝑟𝑗 + 1
)

𝑡𝑗<𝑡
                                                                                         (9) 

 

2.1.5. Modified Peto-Peto Test 

The Modified Peto-Peto test is an extension of the Peto-Peto test (Allison, 

2010). It provides even greater weight to the early events as the Peto-Peto test 

(Hintze, 2007).    

The modified Peto-Peto test uses survival function and the number of 

individuals at risk as weight wj=𝑆̃(𝑡𝑗)𝑟𝑗 (𝑟𝑗 + 1)⁄  (Hintze, 2007).      

The test statistic is given in Equation 10.  

𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑃𝑒𝑡𝑜 − 𝑃𝑒𝑡𝑜 𝑡𝑒𝑠𝑡 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐

=

(∑ 𝑆̃(𝑡𝑗)𝑟𝑗 (𝑟𝑗 + 1)⁄𝑗 (𝑑𝑖𝑗 − 𝑑𝑗
𝑟𝑖𝑗

𝑟𝑗
))

2

∑ [𝑆̃(𝑡𝑗)𝑟𝑗 (𝑟𝑗 + 1)⁄ ]
2 𝑟1𝑗𝑟2𝑗𝑑𝑗(𝑟𝑗−𝑑𝑗)

𝑟𝑗
2(𝑟𝑗−1)

𝑘
𝑗=1

                                    (10) 

 

2.1.6. Fleming-Harrington Test Family 

Fleming-Harrington (F-H) test family comprises weighted log-rank tests. This 

family was designed in order to test the hypothesis of whether the survival curves 

of groups are equal or not equal, just as log-rank and other survival comparison 

tests do (Logan et al., 2008).      

F-H tests use wj = 𝑆̂(𝑡𝑗−1)
𝑝

 [1 − 𝑆̂(𝑡𝑗−1)] 𝑞 equality as weight when p ≥ 0 

and q ≥ 0 (Oller and Gomez, 2010). Here, 𝑆̂(𝑡) is an estimation of the Kaplan-

Meier survival function. The test statistic is as below in Equation 11. 

𝐹 − 𝐻 𝑡𝑒𝑠𝑡 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 

=

(∑ 𝑆̂(𝑡𝑗−1)
𝑝

 [1 − 𝑆̂(𝑡𝑗−1)] 𝑞 𝑗 (𝑑𝑖𝑗 − 𝑑𝑗
𝑟𝑖𝑗

𝑟𝑗
))

2

∑ [𝑆̂(𝑡𝑗−1)
𝑝

 [1 − 𝑆̂(𝑡𝑗−1)] 𝑞 ]
2 𝑟1𝑗𝑟2𝑗𝑑𝑗(𝑟𝑗−𝑑𝑗)

𝑟𝑗
2(𝑟𝑗−1)

𝑘
𝑗=1

                   (11) 

Here, Kaplan-Meier survival function is obtained as follows:  

𝑆̂(𝑥) = ∏ (1 −
𝑑𝑗

𝑟𝑗
)

𝑡𝑗≤𝑡
                                                                                               (12) 

In F-H tests, the choice of p and q determines what weight is given to middle 

and late occurring events (Gomez et al., 2009; Oller and Gomez, 2012). For 

example, if it is accepted that a treatment has an impact in the earlier periods, then 
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q is chosen as 0 with increasing values of p to ensure weight is given to earlier 

events. When p and q are equal, it ensures weight is given to events occurring in 

the middle of the whole time period. When p equals 0, increasing values of q 

ensure that more weight is placed on late events (Lee, 1996; Gomez et al., 2009). 

When p and q are both 0, the test is equivalent to the log-rank test. If p=1 and 

q=0, the test will be approximately equal to the Peto-Peto test (Harrington and 

Fleming, 1982). The choice of the weight function in F-H test must be made 

before evaluating the data and based on clinical expectations for the outcome 

(Klein et al., 2001; Gomez et al., 2009).  

The summary of survival comparison tests and their weights are given in 

Table 3 (Kleinbaum and Klein, 2005; Jurkiewicz and Wycinka, 2011).   

Table 3. Survival comparison tests and their weights 

TEST WEIGHT (wj)  

LOGRANK 1 
Equal weights throughout the 

whole time period 

GEHAN-

WILCOXON 
rj 

Places very heavy weight on 

hazards at the beginning of the 

study 

TARONE-WARE √𝑟𝑗 

Places heavy weight on 

hazards at the beginning of the 

study 

PETO-PETO 𝑆̃(𝑡) = ∏ (1 −
𝑑𝑗

𝑟𝑗 + 1
)

𝑡𝑗<𝑡
 

Places slightly more weight on 

hazards at the beginning of the 

study 

MODIFIED PETO-

PETO 
S̃(t) = ∏ (1 −

dj

rj + 1
)

tj<t
 

Places slightly more weight on 

hazards at the beginning of the 

study 

F-H (1,0) 𝑆̂(𝑡𝑗−1)    

Places slightly more weight on 

hazards at the beginning of the 

study 

F-H (0.5,0.5) 𝑆̂(𝑡𝑗−1)
0.5

 [1 − 𝑆̂(𝑡𝑗−1)] 0.5     
Places weight on hazards in 

the middle of the study 

F-H (1,1)  𝑆̂(𝑡𝑗−1)[1 − 𝑆̂(𝑡𝑗−1)] 
Places weight on hazards in 

the middle of the study 

F-H (0,1) 1 − 𝑆̂(𝑡𝑗−1)     
Places weight on hazards at 

the end of the study 

F-H (0.5,2) 𝑆̂(𝑡𝑗−1)
0.5

 [1 − 𝑆̂(𝑡𝑗−1)] 2     
Places weight on hazards at 

the end of the study 

 



320                                                                P. G. Karadeniz, I. Ercan: Examınıng tests… 

 

 

3. Theory/calculation  

3.1. Simulation Study 

In this study, in order to examine survival comparison tests, a simulation 

study with 500 replicates was conducted, and type I error rates were obtained.  

Survival times for two groups with sample sizes of n=10, 30, 50, and 100 

were generated from the Weibull, log-normal, exponential and inverse Gaussian 

distributions with different shape and scale parameters. The status variable was 

generated from the binomial distribution with a probability of p=0.50. 

While generating the survival data, other simulation studies in the literature 

were reviewed and most frequently used distributions with their most frequently 

used parameters were considered for our simulation study. Additionally, various 

parameters of the distributions were included. The reason for this choice is that in 

survival analysis follow-up time data fit generally the aforementioned 

distributions.  

For the exponential distribution, the scale parameter was selected as β= 0.5, 1, 

1.5; for the Weibull distribution, the shape parameter was α= 1, 2, 3 and the scale 

parameter was β= 1.5, 2.5, 3.5; for the log-normal distribution, the shape 

parameter was σ= 1, 2, 3 and the scale parameter was m= 0; for the inverse 

Gaussian distribution, the location parameter was μ= 0.5 and the scale parameter 

was λ= 1, 2, 3. 

The data were generated using R software version 3.0.3 and the data were 

analyzed using NCSS package program with 500 replicates. Winautomation 

program is used for replicates.  

4. Results 

Type I error rates according to the simulation study for the sample sizes of 

n=10, 30, 50 and 100 are given in Table 4.  

Table 4. Type I error rates of tests  

Tests n=10 n=30 n=50 n=100 n=10 n=30 n=50 n=100 n=10 n=30 n=50 n=100 

 Exponential (0.5) Exponential (1) Exponential (1.5) 

Logrank 0.0420 0.0560 0.0560 0.0520 0.0760 0.0420 0.0520 0.0620 0.0600 0.0720 0.0480 0.0500 

Gehan-Wilcoxon 0.0360 0.0540 0.0620 0.0320 0.0600 0.0480 0.0460 0.0520 0.0560 0.0520 0.0500 0.0540 

Tarone-Ware 0.0440 0.0560 0.0600 0.0460 0.0620 0.0460 0.0460 0.0520 0.0540 0.0680 0.0500 0.0520 

Peto-Peto 0.0400 0.0560 0.0560 0.0440 0.0680 0.0440 0.0480 0.0520 0.0500 0.0620 0.0520 0.0520 

Mod. Peto-Peto 0.0420 0.0560 0.0580 0.0440 0.0660 0.0460 0.0460 0.0520 0.0500 0.0600 0.0520 0.0520 

F-H (1, 0) 0.0400 0.0540 0.0580 0.0440 0.0680 0.0440 0.0500 0.0520 0.0500 0.0640 0.0500 0.0520 

F-H (0.5, 0.5) 0.0480 0.0460 0.0520 0.0620 0.0860 0.0360 0.0600 0.0640 0.0440 0.0500 0.0500 0.0480 

F-H (1, 1) 0.0500 0.0480 0.0620 0.0560 0.0800 0.0420 0.0640 0.0620 0.0500 0.0480 0.0460 0.0420 

F-H (0, 1) 0.0580 0.0760 0.0640 0.0620 0.0860 0.0580 0.0700 0.0680 0.0580 0.0620 0.0420 0.0540 

F-H (0.5, 2) 0.0640 0.0860 0.0620 0.0680 0.0840 0.0620 0.0700 0.0640 0.0560 0.0800 0.0480 0.0500 



STATISTICS IN TRANSITION new series, June 2017 

 

321 

Table 4. Type I error rates of tests (cont.) 

Tests n=10 n=30 n=50 n=100 n=10 n=30 n=50 n=100 n=10 n=30 n=50 n=100 

 

Weibull (1, 1.5) Weibull (1, 2.5) Weibull (1, 3.5) 

Logrank 0.0440 0.0520 0.0440 0.0520 0.0620 0.0600 0.0520 0.0480 0.0620 0.0520 0.0620 0.0480 

Gehan-Wilcoxon 0.0320 0.0480 0.0340 0.0520 0.0520 0.0580 0.0440 0.0500 0.0480 0.0440 0.0680 0.0400 

Tarone-Ware 0.0340 0.0520 0.0280 0.0460 0.0540 0.0480 0.0420 0.0540 0.0560 0.0420 0.0760 0.0400 

Peto-Peto 0.0340 0.0520 0.0280 0.0460 0.0580 0.0500 0.0440 0.0500 0.0500 0.0400 0.0720 0.0440 

Mod. Peto-Peto 0.0340 0.0540 0.0260 0.0460 0.0580 0.0480 0.0440 0.0520 0.0520 0.0400 0.0760 0.0440 

F-H (1, 0) 0.0320 0.0460 0.0280 0.0460 0.0560 0.0480 0.0440 0.0500 0.0540 0.0380 0.0720 0.0440 

F-H (0.5, 0.5) 0.0560 0.0520 0.0560 0.0560 0.0800 0.0700 0.0540 0.0480 0.0640 0.0620 0.0480 0.0500 

F-H (1, 1) 0.0660 0.0420 0.0560 0.0620 0.0820 0.0580 0.0560 0.0480 0.0700 0.0560 0.0480 0.0580 

F-H (0, 1) 0.0740 0.0580 0.0580 0.0620 0.0860 0.0540 0.0660 0.0680 0.0760 0.0600 0.0400 0.0580 

F-H (0.5, 2) 0.0740 0.0700 0.0600 0.0560 0.0920 0.0540 0.0580 0.0640 0.0740 0.0580 0.0460 0.0560 

 

Weibull (2, 1.5) Weibull (2, 2.5) Weibull (2, 3.5) 

Logrank 0.0660 0.0600 0.0600 0.0480 0.0480 0.0560 0.0500 0.0400 0.0540 0.0560 0.0440 0.0500 

Gehan-Wilcoxon 0.0520 0.0500 0.0520 0.0420 0.0280 0.0520 0.0460 0.0400 0.0640 0.0700 0.0420 0.0580 

Tarone-Ware 0.0640 0.0620 0.0640 0.0480 0.0380 0.0560 0.0380 0.0400 0.0580 0.0640 0.0480 0.0560 

Peto-Peto 0.0640 0.0620 0.0620 0.0420 0.0400 0.0560 0.0400 0.0400 0.0580 0.0720 0.0480 0.0560 

Mod. Peto-Peto 0.0620 0.0580 0.0620 0.0420 0.0360 0.0560 0.0400 0.0400 0.0560 0.0720 0.0480 0.0540 

F-H (1, 0) 0.0620 0.0620 0.0620 0.0420 0.0380 0.0560 0.0400 0.0400 0.0580 0.0700 0.0480 0.0560 

F-H (0.5, 0.5) 0.0760 0.0740 0.0540 0.0560 0.0480 0.0560 0.0480 0.0520 0.0600 0.0620 0.0580 0.0620 

F-H (1, 1) 0.0880 0.0640 0.0580 0.0600 0.0460 0.0560 0.0520 0.0400 0.0660 0.0480 0.0580 0.0540 

F-H (0, 1) 0.0980 0.0700 0.0660 0.0540 0.0540 0.0660 0.0680 0.0460 0.0760 0.0560 0.0620 0.0540 

F-H (0.5, 2) 0.0920 0.0760 0.0620 0.0560 0.0560 0.0720 0.0680 0.0520 0.0820 0.0560 0.0580 0.0540 

 

Weibull (3, 1.5) Weibull (3, 2.5) Weibull (3, 3.5) 

Logrank 0.0540 0.0460 0.0540 0.0500 0.0500 0.0560 0.0600 0.0560 0.0480 0.0560 0.0440 0.0380 

Gehan-Wilcoxon 0.0600 0.0440 0.0540 0.0520 0.0440 0.0400 0.0500 0.0500 0.0480 0.0520 0.0340 0.0440 

Tarone-Ware 0.0580 0.0420 0.0500 0.0540 0.0380 0.0500 0.0360 0.0420 0.0500 0.0480 0.0280 0.0360 

Peto-Peto 0.0580 0.0440 0.0540 0.0520 0.0400 0.0480 0.0400 0.0420 0.0480 0.0460 0.0340 0.0360 

Mod. Peto-Peto 0.0580 0.0420 0.0500 0.0520 0.0420 0.0480 0.0400 0.0400 0.0480 0.0500 0.0340 0.0360 

F-H (1, 0) 0.0580 0.0420 0.0540 0.0500 0.0400 0.0500 0.0400 0.0420 0.0440 0.0460 0.0340 0.0360 

F-H (0.5, 0.5) 0.0540 0.0440 0.0580 0.0420 0.0580 0.0720 0.0600 0.0580 0.0580 0.0460 0.0520 0.0380 

F-H (1, 1) 0.0580 0.0420 0.0600 0.0400 0.0680 0.0680 0.0500 0.0600 0.0660 0.0460 0.0400 0.0480 

F-H (0, 1) 0.0640 0.0560 0.0580 0.0480 0.0820 0.0880 0.0580 0.0500 0.0800 0.0580 0.0580 0.0560 

F-H (0.5, 2) 0.0740 0.0580 0.0540 0.0520 0.0820 0.0800 0.0560 0.0460 0.0700 0.0580 0.0680 0.0520 
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Table 4. Type I error rates of tests (cont.) 

Tests n=10 n=30 n=50 n=100 n=10 n=30 n=50 n=100 n=10 n=30 n=50 n=100 

 

Lognormal (0, 1) Lognormal (0, 2) Lognormal (0, 3) 

Logrank 0.0580 0.0560 0.0540 0.0620 0.0700 0.0640 0.0640 0.0540 0.0520 0.0520 0.0440 0.0560 

Gehan-Wilcoxon 0.0420 0.0500 0.0480 0.0520 0.0640 0.0460 0.0560 0.0520 0.0520 0.0480 0.0540 0.0400 

Tarone-Ware 0.0500 0.0580 0.0540 0.0540 0.0700 0.0600 0.0620 0.0500 0.0460 0.0540 0.0480 0.0520 

Peto-Peto 0.0480 0.0500 0.0520 0.0540 0.0680 0.0600 0.0600 0.0500 0.0480 0.0540 0.0460 0.0500 

Mod. Peto-Peto 0.0500 0.0500 0.0500 0.0520 0.0700 0.0600 0.0620 0.0500 0.0480 0.0540 0.0440 0.0520 

F-H (1, 0) 0.0440 0.0520 0.0480 0.0560 0.0680 0.0600 0.0620 0.0500 0.0520 0.0540 0.0480 0.0500 

F-H (0.5, 0.5) 0.0600 0.0600 0.0540 0.0520 0.0540 0.0560 0.0600 0.0400 0.0520 0.0520 0.0480 0.0500 

F-H (1, 1) 0.0580 0.0580 0.0540 0.0520 0.0620 0.0600 0.0540 0.0380 0.0600 0.0540 0.0500 0.0520 

F-H (0, 1) 0.0640 0.0660 0.0720 0.0760 0.0720 0.0660 0.0480 0.0320 0.0700 0.0640 0.0500 0.0380 

F-H (0.5, 2) 0.0720 0.0680 0.0680 0.0740 0.0700 0.0600 0.0460 0.0420 0.0680 0.0780 0.0620 0.0320 

 
Inverse Gaussian (0.5, 1) Inverse Gaussian (0.5, 2) Inverse Gaussian (0.5, 3) 

Logrank 0.0400 0.0560 0.0600 0.0560 0.0600 0.0460 0.0520 0.0480 0.0540 0.0740 0.0360 0.0380 

Gehan-Wilcoxon 0.0420 0.0580 0.0500 0.0600 0.0440 0.0480 0.0360 0.0520 0.0580 0.0620 0.0400 0.0420 

Tarone-Ware 0.0360 0.0580 0.0520 0.0520 0.0540 0.0520 0.0520 0.0500 0.0580 0.0660 0.0340 0.0400 

Peto-Peto 0.0380 0.0540 0.0520 0.0560 0.0500 0.0500 0.0480 0.0500 0.0540 0.0680 0.0340 0.0400 

Mod. Peto-Peto 0.0400 0.0520 0.0500 0.0540 0.0500 0.0540 0.0480 0.0480 0.0540 0.0680 0.0360 0.0400 

F-H (1, 0) 0.0360 0.0520 0.0500 0.0560 0.0500 0.0500 0.0480 0.0480 0.0540 0.0680 0.0320 0.0400 

F-H (0.5, 0.5) 0.0460 0.0480 0.0600 0.0580 0.0640 0.0500 0.0460 0.0420 0.0620 0.0640 0.0380 0.0300 

F-H (1, 1) 0.0500 0.0560 0.0520 0.0600 0.0660 0.0500 0.0460 0.0400 0.0660 0.0560 0.0320 0.0320 

F-H (0, 1) 0.0600 0.0420 0.0560 0.0460 0.0700 0.0580 0.0520 0.0500 0.0720 0.0680 0.0420 0.0500 

F-H (0.5, 2) 0.0640 0.0480 0.0540 0.0460 0.0720 0.0640 0.0500 0.0520 0.0720 0.0680 0.0460 0.0460 

In the case that the event occurs with equal probability along the follow-up 

time, the type I error rate of the log-rank test is equal or too close to the nominal 

value (0.05) for all distributions.  

5. Discussion  

In this study, a simulation was conducted in order to examine the performance 

of survival comparison tests under various scenarios, and the type I error rates 

were evaluated.  

As a result, in the case that the event occurs with equal probability along the 

follow-up time, the type I error rate of the log-rank test is equal or too close to the 

nominal value. This result is in agreement with Lee and Wang (2003), who state 

that the “log-rank test gives equal weight to all failures.” In addition, when the 

sample size gets larger, the type I error rate approaches the nominal value for all 
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tests. For the exponential distributions, the best results for all tests were obtained 

when the scale parameter was 1.5. When the scale parameter was 0.5, the best 

result was obtained for log-rank test; and the results farthest from the nominal 

value were obtained for the F-H tests, which give more weight to middle and late 

events (F-H (0.5,0.5), (1,1), (0,1), (0.5,2)). When the scale parameter was 1 for 

the exponential distribution, the closest type I error rates to the nominal value 

were obtained for the tests that give more weight to early events, namely, the 

Gehan-Wilcoxon, Tarone-Ware, Peto-Peto, Modified Peto-Peto and F-H (1,0). 

For F-H tests, which give more weight to middle and late events (F-H (0.5,0.5), 

(1,1), (0,1), (0.5,2)), the type I error rate tended to be greater than the nominal 

value when the scale parameters of the exponential distribution were 0.5 and 1. 

When survival data were generated from the Weibull distribution for all 

parameters of the distribution, the type I error rate of the log-rank test was equal 

or close to the nominal value. When the shape parameter of the Weibull 

distribution is 1, the type I error rates obtained were very close to the type I error 

rates of the exponential distribution. This result supports information found in the 

literature that a Weibull distribution with a shape parameter of 1 is equivalent to 

the exponential distribution (Kalbfleisch and Prentice, 2002). When the shape 

parameter of a Weibull distribution was 2, for almost all tests, the type I error 

rates were close to the nominal value. When the shape parameter of the Weibull 

distribution was 3 (which means the distribution is close to a normal distribution), 

the type I error rate for all tests were found to be close to 0.05. The error rate 

tended to be smaller than 0.05 only for a Weibull distribution with a shape 

parameter of 3 and a scale parameter of 3.5. In their study, Lee et al. (1975) 

demonstrated that if it is known that the survival data fit the exponential or 

Weibull distributions, the log-rank test has the best result; our simulation results 

further support this result. 

When survival data were generated from the log-normal distribution, type I 

error rates of the Gehan-Wilcoxon and the Peto-Peto were equal or very close to 

the nominal value. In his study, Latta (1981) stated that the Gehan-Wilcoxon and 

the Peto-Peto tests best perform when the survival data fit log-normal distribution; 

therefore, our result agrees with Latta’s result. The type I error rates for the 

Tarone-Ware, Modified Peto-Peto and F-H (1,0) tests were also close to the 

nominal value. For the log-normal distribution, the type I error rate of the log-

rank test tended to be larger than the nominal value. The Gehan-Wilcoxon, 

Tarone-Ware and Peto-Peto tests showed suitable results in terms of type I error 

rate of an inverse Gaussian distribution that is similar to a log-normal distribution 

in its probability density function and hazard function.  

In addition to all these results, it is stated in the literature that while 

comparing survival curves of two different groups, the hazard ratio should be 

examined. There have been several graphical methods for assessing the 

proportional hazards assumption (Martinez and Naranjo, 2010). If hazard ratios 

are parallel, the log-rank test is more efficient; if the hazard ratio of one group 

tends to differ more than the other as time progresses, the Tarone-Ware, Peto-Peto 
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and Gehan-Wilcoxon tests are more efficient (Peto and Peto, 1972; Lee et al., 

1975; Harrington and Fleming, 1982). Furthermore, in the case that the hazard 

ratios of two groups cross, F-H tests are advantageous because the weight of the 

test may be specified accordingly.  

Limitation of this study is that we exceedingly stick to the literature with 

regards to choosing distributions and their parameters. Although various 

distributions with various parameters were included in this study, it would be 

better to evaluate more distributions with more parameters in order to evaluate 

more different situations that are encountered in practice.  

6. Conclusions 

As a consequence, when making a choice of methods to compare survival 

curves, one must pay particular attention to the proportional hazards assumption, 

the proportion of censoring, the size of the sample under consideration and/or the 

distribution of the survival data. Besides, as mentioned in the discussion section 

in detail, when we encountered specific circumstances (specified distribution with 

specified parameter) that we indicate the type I error rate is close to nominal 

value, it is suggested to use the stated survival comparison tests.  

Once these are taken into account, it is possible to make a more informed 

decision about the type of test that should be used to compare survival curves. 
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