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ON THE PERFORMANCE OF SOME BIASED
ESTIMATORS IN A MISSPECIFIED MODEL WITH
CORRELATED REGRESSORS

Shalini Chandra?, Gargi Tyagi?

ABSTRACT

In this paper, the effect of misspecification due to omission of relevant variables
on the dominance of the r —(k, d) class estimator proposed by Ozkale (2012),
over the ordinary least squares (OLS) estimator and some other competing
estimators when some of the regressors in the linear regression model are
correlated, have been studied with respect to the mean squared error criterion.
A simulation study and numerical example have been demostrated to compare the
performance of the estimators for some selected values of the parameters
involved.

Key words: omission of relevant variables, multicollinearity, r — (k,d) class
estimator, mean squared error.

1. Introduction

In multiple linear regression, the presence of multicollinearity inflates
sampling variance of the ordinary least squares estimator and may also produce
wrong signs of the estimator. Many authors have witnessed the presence of
multicollinearity in the various fields of application, including Hamilton (1972),
Mahajan et al. (1977), Heikkila (1988), Graham (2003), among others. To cope
up with the problem of multicollinearity several alternative methods to the OLS
have been proposed, viz. ordinary ridge regression (ORR) by Hoerl and Kennard
(1970); principal component regression (PCR) by Massy (1965). In the hope that
combining two estimators will contain the properties of both gave rise to the
development of the r — k class, the two-parameter class and the r — (k, d) class
estimators (see Baye and Parker (1984); Kaciranlar and Sakallioglu (2001);
Ozkale and Kaciranlar (2007) and Ozkale (2012)).
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The performance of these estimators have been evaluated under various
comparison criteria like mean squared error (MSE), matrix MSE, Pitman’s
closeness criterion and the Mahalanobis loss function. Nomura and Ohkubo
(1985) derived the dominance conditions of the r — k class estimator over the
OLS and ORR estimators and Sarkar (1996) obtained conditions of the superiority
of the r — k class estimator over the other estimators under matrix MSE criterion.
Ozkale and Kaciranlar (2008) compared the r — k class estimator with the OLS
estimator under Pitman’s closeness criterion. Ozkale (2012) proposed the
r —(k,d) class estimator and compared this estimator with the other biased
estimators under the MSE criterion. Sarkar and Chandra (2015) studied the
performance of the r — (k,d) class estimator over the OLS, PCR and the two-
parameter class estimator under the Mahalanobis loss function and derived tests to
verify the conditions.

In these studies, it has been assumed inherently that the model is correctly
specified. However, in practice, some of the relevant regressors may get excluded
from the model, i.e. the model does not remain correctly specified, known as
misspecified model. The omission of relevant regressors causes biased and
inconsistent estimation. The effect of the omission of relevant regressors on the
performance of the estimators have been studied by several authors, for example,
Kadiyala (1986); Trenkler and Wijekoon (1989) and Wijekoon and Trenkler
(1989). Although not much work has been done when some of the regressors are
omitted and multicollinearity is also present, Sarkar (1989) studied the
performance of the r — k class estimator and compared it with the OLS, ORR and
PCR estimators under MSE criterion when the model is misspecified due to
omission of relevant regressors.

In this paper, misspecification due to omission of relevant regressors and
multicollinearity have been studied simultaneously and the effect of
misspecification on the dominance of the r —(k, d) class estimator over the other
biased estimators has been studied under the MSE criterion. The plan of this
paper is as follows: in Section 2, the model and the estimators under study are
given. Section 3 provides the comparison of the estimators and a Monte Carlo
simulation has been given in Section 4. A numerical example is given in Section 5
to see the effect of misspecification on the estimators, which in turn exhibits the
utility of the estimators. The paper is concluded in Section 6.

2. Model structure and the estimators

Let us consider the regression model as:
y=Xp+Zy +¢, (2.1)

where y is an n X 1 vector of dependent variable, X and Z are n X p and n X q
full column rank matrices of regressors respectively such that X'X and Z'Z are ill-
conditioned, p + g < n, § and y are the corresponding p x 1 and g x 1 vectors of
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parameters associated with X and Z, respectively. € is an n x 1 vector of
disturbance term, and it is assumed that e~N(0,0%I,). Suppose that an
investigator has unknowingly excluded regressors of Z matrix, thus the
misspecified model is given by:

y=Xp+u, (2.2)
where u = Zy + . Misspecification occurs when the investigator assumes the

disturbance vector u to be normally distributed with mean vector 0 and variance
2
o°l,.

Let us consider the following transformation for the model in (2.2):
y=XTT'B+u=X*"a+u, (2.3)

where X* = XT, T'f = a, T = (t,tp, ..., tp) is @ p X p orthogonal matrix with
T'X'XT = A and A = diag(Ay,43,...,4p) is a p X p diagonal matrix of eigen
values of X'X matrix such that 4, > 1, > -+ > 1,,. Now, let T,. = (ty, t3, ..., t;.)
be p x r orthogonal matrix after deleting last p —r columns from T matrix,
where r <p. Thus, T,'X'XT,=A, where A, =diag(14,1,,..,4,) and
Ty X'XTy_y = Ay, Where A,_, = diag(Ari1,Arsz, s Ap). Also, T'T =
T.'Tr +Ty_.'T,— and let N = {1,2,...,7;7 + 1,...,p} be a set of first p integers
such that N = {N,;N,_,} where N, =({1.2,..,7} and Np,_,.={r+1,r+
2,...,p}

Ozl}mle (2012) introduced an estimator by grafting the two-parameter class
estimator and the PCR estimator together, known as the r — (k, d) class estimator
to deal with the problem of multicollinearity. For the misspecified model in (2.2)
the r — (k, d) class estimator is given by:

B, (k,d) = T.(T,'X'XT, + kI)" (T,'X'y + kdT,,f,) k=0, 0<d<1
(2.4)
which can be rewritten as:

B (k,d) = T,S, (k)1 A71S, (kd)T,, X'yk = 0, 0 < d < 1, (2.5)

where S,.(k) = A, + kI, and S,.(kd) = A, + kdl,. This is a general estimator
which includes the OLS, ORR, PCR, r — k class and the two-parameter class
estimators as its special cases as:

1. $,(0,0) = f = (X'X)"1X"y, is the OLS estimator,

2. Bp(k,0) = (k) = (X'X + kI)~'X'y, is the ORR estimator,

3. £,(0,0) = B, = T, (T,,X'XT,)"'T,,X'y, is the PCR estimator,

4. B.(k,0) = B, (k) = T, (T,,X'XT, + k)~ T,, X'y, is the r — k class
estimator,

5. By(k,d) = p(k,d) = (X'X + kI)"*(X'y + kd ), is the two-parameter
class estimator.
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2.1. Properties of the estimator
From (2.5), the bias and the variance of 3, (k, d) can be obtained as:

Bias(.ér(k' d)) = (k(d - DLS-(k)7'T - Tp—er—r’).B +
TSy (k) A7 S, (k)T 6 (2.6)
where § = X'Zy, and
Var(B,(k, d)) = 0*T,.S, (k)2 A;'S, (kd)?T’ (2.7)
respectively.

It is clear from (2.6) and (2.7) that the bias of the r — (k, d) class estimator
increases due to omission of relevant regressors whereas the variance of the
estimator is not affected by the misspecification.

Further, the MSE for an estimator 3 of £ is defined as:

MSE() = E(B — B)'(B — B) = tr(Var(B)) + [Bias()] [Bias(F)] (2.8)

By substituting (2.6) and (2.7) in (2.8) and on simplification, we get:
MSE (B, (k, d)) = o*tr[S, (k) S, (kd) A7 S, (kd) S, (k)]
+.3’(k(1 - d)TrSr(k)_lTr, + Tp—er—r’)(k(l - d) TrSr(k)_lTr’
+ Tp—er—r,).B
—Zﬂ’(k(l - d)TrSr(k)_lTr’ + Tp—er—r,)TrSr(k)_lA;lSr(kd)Tr,(S
+8'T. S, (k) 1A:1S, (kd)S, (k) A;1S, (kd)T,, 5 (2.9

which can be rewritten as:

o?(A+kd)?+k?(d—-1)2A;af p 2
+ Zi r+1 @i

MSE(BT‘(kJ d)) = ?=1 /11_(/11._”{)2 =

(Ai+kd)?n?—2k(1-d)1;(Ai+kd)an;

T
+ 2= 22 (Ai+k)?

where T'§ = n = {n1,7y, ..., Np}. Following Ozkale(2012), the first under-bracket
is the MSE obtained when there is no misspecification and the second under-
bracket is the contribution of omission of relevant regressors.

The MSE of other estimators can be obtained by substituting the suitable
values of r, k and d in (2.10). From the risk expression in (2.10), it can be seen
that the effect of omission of relevant regressors on the MSE values will depend
on the sign of the second term. If a;n; is negative for all values of i € N,., the
second term in (2.10) will be negative and thus the MSE of the r — (k, d) class
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estimator will increase due to omission of relevant regressors. However, if a;n; is
non-negative for some values of i € N, no definite conclusion can be made
regarding the effect of misspecification.

2.2. Optimum values of k and d

The selection of the unknown biasing parameters k and d in the r — (k,d)
class estimator is an important problem. The optimum values of k and d in r —
(k,d) class estimator can be obtained by minimizing the MSE of the estimator
with respect to k and d. To find a pair (k, d) of optimum values of k and d, we
will use the technique of maxima and minima in calculus.

Let the two-dimensional function MSE (B, (k,d)) have its minimum value at
(ko,dy) and have a continuous partial derivative at this point, then

OMSE (Br(Ko,do)) OMSE (Br(ko,do)) _
— = =0 and — 0y =
follows:

On differentiating MSE (B,-(k,d)) in (2.10) with respect to d keeping r and
k fixed, we obtain

= 0. The points k, and d,, can be found as

OMSE(Br(kd)) _ 02(/11-+kd)—k(1—d)/'liai2+(/'li+2kd—k)ami+(/1i+kd)ni2 /A
ad = 2k % Ai(Ai+k)? (211)
and equating (2.11) to zero, we get:
T er —g2 r @A k)“mﬁm
dy = O M A2 (2.12)
0 -_ .

r k(a?+1;a8) r k@ami+n? /A’
=1 2;(A;+k)? =1 4,(A+k)?

Assuming that a;n; > 0 forall i € N,., if ka? —0? > 0and A; > k forall i €
N,., the upper bound of d,, is given by

Yieq (kaf-02)/(Ai+k)?
-1 k(o‘z +/1iai2)//1i(/1i+k)2

(2.13)

which is the optimum value of d when there is no misspecification due to
omission of relevant regressors. Thus, if ka;? — 62 > 0and A; > k forall i € N,.,
the optimum value of d in the misspecified model is less than that in the case of
no misspecification. Moreover, for d, to be a positive value A;(ka;? — o?) —
(A; — k)a;n; + n? should be positive for i € N,..

Further, differentiating (2.10) with respect to k keeping r and d fixed, we

obtain:

OMSE(Br(kd)) _ _ r 2Aitkd)—k(1-d)Aa?
ok - 2(1 d) Zi:l (Ai‘l‘k)?’

(Li—k+2kd)ain;+(Ai+kd)n? /A
—2(1 - d) 2‘{:1 (li+k)3 (214)
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From (2.14) and (2.12), we have:
OMSE(By(k,do)) _

=231, (@2 +ami+nf /A)/(Ai(Ai+K))

ok K[Zi_, (@2 + i +2ami+n? /A)/(Ai(Ai+K)?)]
(az+aia?+2ami+n?/ai>2r Ai(o?+ami+nf /A)—k(Aiaf +aimy)
i=1

2

(Ai+k)3

k(Aja?+am)—Ai(e?+ami+n?t /A o+t +2aimi+nt /A
+Z{:1 (A} ini)—Ai( ini+n;/ L)Z{:1 iXi ini+n;/ 1]. (215)

r
x[Zh
/1i(/1i+k)2
OMSE (Br(k,dg)) -
Clearly, W is zero, when
o = a?+ami+ni /A
0 = L

ai+ami/A;

, fori=12,..,r.

(A+k)3

(2.16)

Then (ko d,) is the expected point which minimizes MSE (B, (k,d)) where
ko, and d, are given as (2.16) and (2.12) respectively. However, when we
substitute k = k in (2.12) d, becomes zero. Therefore, a point (k,,d,) which
satisfies k > 0, 0 < d < 1 and minimizes MSE (B, (k,d)) cannot be found (see
Fig.1). In order to find an appropriate value of k and d, the behaviour of the MSE
of the estimator at boundary points can be studied. This conclusion has been
illustrated through the graph reported below:
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Figure 1. MSE of the r — (k,d) class estimator for the true and misspecified
model

From Figure 1 the effect of misspecification on the optimum values of k and
d for fixed values of d and k respectively can be observed, and, also the pair of
values of k and d may not be found out for which the r — (k, d) class estimator
has minimum MSE. Further, we note that for the fixed values of d, the MSE of
B, (k,d) takes the minimum value for smaller value of k in the misspecified
model when compared with the true model. However, for small value of k (see
Fig. (a) and Fig. (b)), no variations are observed in the MSE values of £, (k, d) for
both the models, whereas for k = 5, the MSE of f,.(k,d) takes the minimum
value for a smaller value of d in the misspecified model.

3. Comparison of the estimators under mse criterion

In this section, we compare the r — (k,d) class estimator with other biased
estimators when the model is misspecified due to omission of relevant regressors,
and also study the effect of misspecification on the dominance conditions.
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3.1. Comparison of the  — (k, d) class estimator with the OLS estimator

The MSE of the OLS estimator in the misspecified model can be obtained by
substituting r = p, k = 0 in (2.10), as:

MSE(B) = o X_ 17 +Zl 1

The difference of MSEs of the r — (k,d) class estimator and the OLS
estimator, say A, can be written as:

= MSE(/?) — MSE (B, (k,d))
r 02Ai+kd)2+k2(1-d)?Aa?

(3.1)

~,\,|~.\,

p
=0 Zl 1A i=1 (A +k)2 _Zi =r+1 &i

n? —2k(1-d)(Ai+kd)an;+(A; +kd)2n2//'l
+ Zl 1 ? - ?=1 s (l +k)2 - (32)

On further simplification, the difference can be rewritten as:

[22;(6? + a;n; + 12 /4) + k((0? — L@ + 0P /A) + d(0? + La? + 2a:m; + 12 /1))
A=k - d)z (A + k)2
2Nt +nt /A

1 (3.3)

+ Zl r+1

It is clear from the above expression that A; = 0 that is, the r — (k, d) class
estimator dominates the OLS estimator, for all k >0, 0 < d < 1 if 62 — A;a? +
n?/A; = 0, forall i € N. From (3.3), it can also be observed that when there is no
misspecification due to omission of relevant regressors (i.e. n; = 0 for all i € N)
the condition reduces to % — Aiaiz > 0 for all i € N, which is the same as that of
obtained by Ozkale (2012)). It is evident that due to addition of a positive term
n?/A; the odds for A; > 0 are higher in the misspecified model.

Further, if o2 —Xa? +1n?/1; <0, i€N, and o2 — Xa? +n?/A =
0,V i€N,_, then for a fixed k there exists a d in the range:

k(@?r—o?)-22;02 . 2A;am+@A+ONA;
Li=1 2i(Aj+k)2 Li=1 2;(Aj+k)2
. k(a:iz/li+zr2)l r kQami+n?/ap
=1 2,4 +k)2 A= 3 (4+k)2

<d<1 (3.4)

such that the r — (k, d) class estimator dominates the OLS estimator. If a;n; > 0
for all i € N,., then the lower limit of d decreases due to omission of relevant
regressors and thus the dominance range of the r — (k, d) class estimator over the
OLS estimator increases.

Furthermore, if 02 — A;a? +n?/2; <0, for some i =7+ 1,r + 2,...,p, N0
definite conclusion can be drawn regarding dominance of one over the other. The
results obtained are reported in the form of the following theorem.
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Theorem 3.1

(i) If o?—Xa?+n?/2;=0, for all i €N, the r — (k,d) class estimator
dominates the OLS estimator for all k > 0 and 0 < d < 1. The odds for
superiority of r — (k, d) class estimator over the OLS estimator increases in
the misspecified model.

(ii) If 02 —Nja? +1?/2; <0, i €N, and 0% — L;a? +1?/2; =0, for all i €
N,_r, the r — (k, d) class estimator dominates the OLS estimator for all k >
0 and d such that it satisfies (3.4). The range of dominance of r — (k, d)
class estimator increases in the misspecified model provided a;n; is positive
forall i € N,

2 ..
(iii) If o2 — La? + 7/71—1 <0, forsome i=r+1,r+2,..,p, no definite
L
conclusion can be drawn regarding their dominance.

3.2. Comparison of the r — (k, d) class estimator with the ORR estimator

The MSE of the ORR estimator can be obtained by substituting r = p and
d = 0in(2.10), given as:

MSE(B(I{))= p olA+kPa? p  nE-2ka;n;

i=1 (A;+k)? i=1 A+K)Z (3.5)

Using (2.10) and (3.5), the difference between the MSEs,; say A,, is given by:
A, = MSE(B(k)) — MSE (B, (k, d))

=3P PAtk?al o PAitkd)*+k2(1-d)?*Aiaf P o2
i=1 (Aj+k)? =1 Ai(Ai+k)? i=r+1 "t

+3P —2kami+ni s —2k(A-d)QAitkd)ami+(Aitkd)®ng /A (3.6)
=1 (Qu+k)? =1 Ai(A+Kk)? : '

On further simplification, we obtain:
_ r [k[/liaiz+2ami—d(/'liai2+2ami+02+77i2)]—2/1i(02+ami+77i2)]
Az = kd i1 L, MGt
p (0% =diai+ni/A)—2k(a] +ani/A;)
+Zi=7‘+1 (Ai+k)2 . (37)

From (3.7), it can be noticed that the r —(k, d) class estimator dominates the
ORR estimator if both summations are positive, that is:

k(2/1ial-2 + aini) - kd(O'Z + Aa? + am; + Ainiz) — 2/11-(02 +a;n; + Amiz) >
0 forall i €N, (3.8)

and

2 N
(02 — 1ia? + Z—) — 2k (a? + %) >0 forall i € Np_,. (3.9)
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If 62 — A;af +n7/2; > 0 forall i € N,,_, then (3.9) holds when:

O'Z—Aiaiz+1']i2/ﬂi

k<
2(a?+ami/Ay)

forall i € N,,_,. (3.10)

If 02 —Aaf +n7/2; <0 for all i € N,_,, then (3.9) does not hold true.
However, if 02 — A;af + n?/A; < 0 for some i € N,,_,, a positive k can be found
p (0P-Aaf+ni/A)-2k(af+ami/A)
i=r+1 (Ai+k)?

such that the second summation in A,, i.e. )
is positive.
Further, from (3.8) we obtain:

d < k(2Aaf +aimy)—22i (0 +aini+Am;)
k(02+Aiai2+ami+lmi2)

for all i € N,. (3.11)

For d to be a positive in (3.11) , k(2A;a? + a;n;) — 22;(0? + ayn; + Ain?)
should be a positive value for all i € N,., i.e.

2
ol +ami+An;
ai2+ami/2/1i

k> for all i € N,.. (3.12)

If upper bound of d in (3.11) is greater than 1, any value smaller than 1 can be
taken, which satisfies (3.11) and 0 < d < 1.

The conditions of dominance of the r — (k, d) class estimator over the ORR
estimator under MSE criterion is stated below in the form of the following
theorem:

Theorem 3.2
otramitAng ¢ o e

(i) Ifo?— a2 +n?/2; > 0foralli €N, and k > Fram/2ls
N, the r — (k, d) class estimator dominates the ORR estimator if k <

: o —diaf+n7 /i

min; ——t "t an
t€Np-T 2(a?+aimi/A) and0 <d <

k(2Aiaf +am)—22(0* +aini+Ain;)
k(o2+Aja? +ami+Aim?) )

min {1, min;ey,

a2 +ami+Aim}
a2 for all
i € N,, the r — (k, d) class estimator dominates the ORR estimator for a

p A(@P-Aaf+ni/A)—2k(ai +ami/A))
value of k such that 33, G2

. . kA a+am)=22;(c2+an;+1:n?
and 0 < d < min {1,m1n (240} 21771) . i( 17721 ing)
iEN, k(o2+A;af +aini+Ain;)

(ii) If 02 — L;af +nf/2; > 0 for some i € N,,_,. and k >

iS positive
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3.3. Comparison of ther — (k, d) class estimator with the PCR estimator

On substituting kK = 0 in (2.10), the MSE of the PCR estimator can be
obtained as:

0.2

5 2
MSE(By) = Tiea 37 + Zipss @F + Zica 35 (313)

From (2.10) and (3.13), the difference in MSEs, say As, is given by:
Bs = MSE(By) = MSE(Br(k,d)) o
_ o 0°(Aitkd)“+k“(d—1)°A;a;
- Z?:l /1_! + Z?:r+1 aiz - ‘{=1 ll‘(/li+k)2 -

14 2
Zi=r+1 a;

+yT n_gr  2k(A-DAQitkd)aini-(Aitkd)*n?
=1 32 =1 A2 (Ai+k)? '

On further simplifying it, we get:

2 2 2
[ni(az +aini+2—;>+k{<az -Aa? +Z—‘i>+d(az +1;0? +2aim+2—‘i>}]

— _ r
Ay = k(1-d)Xi, Ai(Ai+i)?

(3.14)

It can be observed from the above expression that if 2 — A;a? + n?/4; > 0
for all i € N,., the r — (k,d) class estimator dominates the PCR estimator for all
k >0 and 0 < d < 1. Evidently, the odds for superiority of the r — (k, d) class
estimator over the PCR estimator increases due to misspecification.

If 02 — ;@ + n?/A; <0 for all i € N,., then A; is positive when 21;(c? +
am; +ni/A4) + k(0% = Liaf + 07 /4;) + d(o? + Laf + 2am; +nf /M) is
positive for all i € N,., which can be rewritten as

24;(0% + am; +nf/A) — k((Aaf — 0 =07 /A) — d(0? + Aaf + 2am; +
n?/2;) > 0 forall i € N,
(3.15)

2 2
If (Aiaiz —0% - 7/71—‘) —d (02 + A + 2aim; + Z—t) <0, forall i € N, i.e.

i

2 2 2
(szﬁ‘;ﬁh‘;am”i; ;g o forallie N, (3.16)
then A5 is positive for all k > 0. It is noticeable that the lower limit of d
decreases due to misspecification, thus a wider range for the dominance of the
r — (k,d) class estimator over the PCR estimator is obtained as compared with
no misspecification.

d>
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Further, if
(Aiaf-a2-nf/A)
(02+Aiai2+2ami+ni2/li)
holds, then A5 is positive for k such that
k< 2i(0%+ami+n? /)
((Aja?-o2-n?/A)-d(o?+Aiat +2aim+n? /A7)

d< forall i € N, (3.17)

forall i € N,..
(3.18)

By rewriting (3.18), it is observed that the upper limit of k increases due to
misspecification. Additionally, the upper limit of d decreases. Thus, due to
misspecification a wider range of k for a shorter range of d in which the r —
(k, d) class estimator dominates the PCR estimator is obtained.

The comparisons can be concluded in the following theorem.

Theorem 3.3

(i) If 62 —Na?+n?/2; >0 for all i €N,, the r—(k,d) class estimator
dominates the PCR estimator for all k >0 and 0 <d < 1. The odds for
superiority of the r — (k, d) class estimator over the PCR estimator increases
due to misspecification.

(i) if o2 —Xaf+n7/2, <0 for all i€N, and maxey {(Aiaf — 0% —
n2JA) /At + 02 + 2am; +n?/4) <d <1, then the r— (k,d) class
estimator dominates the PCR estimator for all k > 0. The dominance range of
the r — (k,d) class estimator over the PCR estimator increases due to
misspecification.

(iii)if 02 — A;af + 07/, <O foralli € N, and 0 < d < miney {(4;af — 0% —
n2 /1) /(A + a? + 2am; +n?/2;), then the r — (k,d) class estimator
dominates the PCR estimator if k < min;ey {22;(c + a;n; +n7/A)/
(a2 — 0 —n?/2) —d(0? + Lja? + 2am; + 12 /4;))}. The range of k
increases while the range of d decreases due to misspecification, in which the
r — (k, d) class estimator dominates the PCR estimator.

3.4. Comparison of the r — (k,d) class estimator with the r — k class
estimator

The MSE of the r — k class estimator can be obtained by substituting d = 0
in (2.10), given as:
Aio?+k2a? p

MSE(B.(k)) = ST_, ACHal  op o2 gr mizZkami (3 4q)
r i=1 (li+k)2 i=r+1 “i i=1 (li+k)2 ' '
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From (2.10) and (3.19), the difference between the MSEs, say A,, is given by:
Ay = MSE (B, (k) — MSE (B, (k, d))

_vr  Aoi+kPal  op o?(Atkd)?+k*(d-1)2Aaf
- AL e =1 Ai(A+k)?
2 2,2
r Mi2kain;  r  (Litkd) ni —2k(A-d)Ai(Ai+kd)an;
+ Zl=1 ()].i+k)2 i=1 /1i2(/1i+k)2 . (320)

On further simplification, we get:

[k(2(Aiaf—aim)—d(o?+Aal +2am;—n? /1)) —2Ai (a2 +ani+n7 /)]

— T
By = kd Xiy Ai(A+k)?

. (3.21)

From (3.21), the r — (k,d) class estimator dominates the r —k class
estimator when

yh n?
k <2(/'liai2 —am;) —d (02 + Aa? + 2am; — A—l)) — 22 (02 +am; + A_L) S
0 forall i € N,. (3.22)

If Aiaiz —a;n; > 0 for all i€ Nr and Z(ALalz - ami) - d(O'Z + )liaiz +
Zami — T]lZ/AL) > (0foralli € Nr, that is:

2(Aiaf —aimy) .
d< CETT WP p—y forall i € N, (3.23)
then A, is positive when k is such that:
(g2+a:n:+n2/L:
k> 24y(c_+agm; 1y /4;) forall i € N,. (3.24)

af-am)-d(a?+Aaf+2ami—nF /)
If Aiaiz —a;n; > 0 for all i€ Nr and 2(/116112 - ami) - d(O'Z + )liaiz +
Zami — T]lz/ﬂ.l) < Oforalli e Nr, that is:

2(Aiaf —ainy)
(o2+2;af +2a;n;-n7 /1;)

d> forall i € N, (3.25)

then A, is negative for all k > 0.

If A;a? —a;n; <0 for all i €N, then A, is negative for all k >0 and
0<d<1.

The results obtained are given in the following theorem.

Theorem 3.4
i1t  AaF—am;>0  for all i €N, and 0<d<

. 2(\iaf—am;) _ .
mlnLENT{O'2+li0li2+20lmi—ni2 L then the r —(k,d) class estimator
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dominates the r — k class estimator for values of k such that
I 22;(0? + aim; + i /)

> max > > > .
ieN, ((2(La? — aym;) — d(o? + Aja? + 2am; —n?/4)

2(Miaf—amy)

02+/1iai2+2aim—17i2//1i
d <1, then the r — (k,d) class estimator dominates the r — k class
estimator for all values of k > 0.

(ii) If A;a? —a;n; >0 for all i € N, and maxieNr{

(iii)If 2;a? — a;m; < 0 for all i € N,., the r — k class estimator dominates the
r — (k,d) class estimator for all valuesof k > 0and 0 < d < 1.

3.5. Comparison of the r — (k, d) class estimator with the two-parameter
class estimator

The MSE of the two-parameter class estimator can be obtained by substituting
= p in (2.10), given as:

az(li+kd)2+k2(1—d)2/1iai2
2i(Ai+k)?
(Ai+kd)?n —2k(1 A (4 +kd)aml
A2 (Ai+k)?

MSE(B(k,d)) =X
+X

(3.26)

From (2.10) and (3.26), the difference in the MSEs, denoted as As, is given
by:

As = MSE(B(k,d)) — MSE (B, (k, d))
o?(Aitkd)*+k*(1-d)*Aia}  p  02(Aitkd)?+k2(d-1)2Xa] p

= Xi=1 2i(A+k)? i=1 2i(A+k)? ~ i o
+y Atkd)?nf —2k(1-dAAitkd)am;  «r  (itkd)®nf—2k(1-d)4 (4 +kd)alm
i=1 22 (A+k)? =1 2Z(Ai+k)?

which can be further simplified as:

A = 3P Ai+kd)[Ai (0?2 -2; (@2 +n? A +k(d(a?+ A a +2ami+n? JA;) -2 (X;a? +aml))]
5 i=r+1 i(Ai+k)2
(3.27)

From (3.27), it is evident that Az is positive if

Ailo ( - La? + ZL ) +k (d (0 + Aa? + 2a;m; + Z’) 2(Naf + aini)> >0 forall i € N,_,
i i
(3.28)
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If 02 —af +nf/2; >0 for all i € N,_,, A5 is positive when d(a? +
Aiaiz + 2al~r]i + 7’]12//11) — 2(/116112 + ami) > 0foralli € Np—TI i.e.

2(Aaf+amy)

d> (o2 +Aaf +2ami+n; /A;) forall ¢ € Ny (3.29)
for all values of k > 0.
However, when
.2 M
d < —2Aiairain) forall i € N,,_, (3.30)

(o2+diaf+2ami+nf/A)
Ag is positive for the values of k such that

Kk < Ai(o?-diaf+n} /)
2(ia?+am;)—d(o2+Ajaf +2am+n? /A)

forall i € N_, (3.31)

Furthermore, if 0% — A;af +17/4; <0 for all i € N,_, and d satisfies
(3.29), A5 is positive for the values of k, which satisfies

Ai(o?—Aiaf+n? /A) :
k> PG ram)—d(o? e 2am e A forall i € N,,_,. (3.32)

And, if d satisfies (3.30), A is negative for all valuesof k > 0and 0 < d < 1.
The comparisons can be concluded in the following theorem.

Theorem 3.5
@i If 0% — Aiaiz + nl-z/ﬂi >0 for all [ € Np_ and

2Nl +ainy)
crz+/1ial-2+2ami+n?//1i)} <d < 1,thenAs > 0forall k > 0.

maXien,,_, { 0

(i) if o?—Aaf+nf/3;>0 for al i€N,, and 0<d<
. 2(iaf +aimy)
MiNien, (02+2;a?+2aim;+n?/4;)
k< min Ai(o? = Laf + /)
ieNp—r (2(4af + ain;) — d(0? + Aaf + 2am; + 1} /A)
(iii) If 0% — a?+nt/A >0 for all i € Ny_y and

2(Aaf +aim;)
(o2+2;a2+2a;m;+n? /A7)

}, then A; > 0 when k is such that

maXiewp_r{ } <d <1, then A; > 0 when k is such

that

{ Ai(0? — Laf +nf/A) }

k > max
' 2(4af + any) —d(o? + Laf + 2am; + 17 /)

LENp_

(iv)If o*—-Xa?+ni/2;>0 for al ieN,, and 0<d<
2(af +aimy)

(02+2;a?+2aim;+n?/4;)

miney,_, { } then A; < 0 for all values of kK > 0.
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In this section, conditions for dominance of the r — (k, d) class estimator over
the OLS, ORR, PCR, r — k class estimator and the two-parameter class estimator
under the MSE criterion in the misspecified model have been obtained. However,
the range of dominance does not remain the same in the misspecified model as it
is in the model assumed to be correct. Moreover, the depletion or enlargement of
the dominance range for the r — (k, d) class estimator over the other competing
estimators depend on certain parametric conditions. For instance, if 62 — A;a? +
n?/A; = 0, for all i € N, the range of dominance of the r — (k, d) class estimator
over the OLS estimator increases in the misspecified model. Furthermore, a
Monte Carlo study has been conducted to understand the effect of
misspecification on the dominance of the r — (k, d) class estimator over the other
competing estimators.

4. Monte Carlo simulation

To compare the dominance of the estimators in true (when there is no
misspecification in the model) and misspecified model, the regressors have been
generated by the method given in McDonald and Galarneau (1975) and
Gibbons(1981), which is defined as:

1
X; =1 —p?aw; + pwpyr,  i=12,..,p,
Zj =(1- pZ)l/ZWj + PWa+1) j=12,..,q.

where w; and w; are nx 1 vectors of independent standard normal pseudo-
random numbers, p is specified so that the correlation between any two regressors
is given by p2. The dependent variable y has been generated as follows:

y=D{+u=XB+Zy+u; u~N(0,6%]) 4.1

where { = [By]. u is a vector of normal pseudo-random numbers with standard
deviation o. Following McDonald Galarneau (1975), Gibbons (1981), Kibria
(2003) and others, ¢ has been chosen as the normalized -eigenvector
corresponding to the largest eigenvalue of the D'D matrix. As this study is aimed
at studying the effect of the omission of relevant regressors on the performance of
some competing estimators of 3, the following is estimated for the model (4.1)
and the misspecified model: when there is no misspecification, both X and Z have
been used in estimation and when there is misspecification due to the omission of
relevant regressors, information in Z matrix has not been used to estimate . For
example, the OLS estimator for the misspecified model is obtained by:

By = X'X)" X'y

and the OLS estimate of 8 in the case of no misspecification is obtained by taking
first p components of the OLS estimate of ¢, given as:

{=@D)y"'D'y=1[Br 77l
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In this study, simulation is done for some selected values of n, p, q, p, 02,
k and d to compare the performance of the estimators. The values of the
parameters are taken as: n =50; p =5; ¢ =3; p =0.95,099; 0 =0.5,1; k =
0.1,0.5,0.9,1.5,5 and d = 0.1,0.5,0.9. The value of r is decided by a scree plot,
which is drawn between eigenvalues and components (see Johnson and Wichern
(2007)). For each parametric combination, the simulation process has been
repeated 2500 times and the estimated MSE (EMSE) is calculated by the
following formula

EMSE(B) = 72552222 (Bey — B) (B — B), (42)
where ﬁ(i) is the estimated value of S in it" iteration. The results of the
simulation are shown in Tables 1 to 4, where EMSE of estimators in true model
and in misspecified model are denoted by EMSE; and EMSE,,, respectively, and
B, B(k), By, B.(k), B(k,d) and B,(k,d) denote the OLS, ORR, PCR, r —k
class, two-parameter class and r — (k,d) class estimators respectively. The
following remarks are made from simulation results:

Table 1. Estimated MSE of the estimators for true and misspecified model when
p=095ando =0.5

d=0.1 d=0.5 d=0.9
k EMSE; EMSE, EMSE; EMSE, EMSE; EMSE,
01 0.2801295 0.4486118  0.2801295 0.4486118 0.2801295  0.4486118

B(k) 0.2640343 0.4350360 0.2640342 0.4350360 0.2640342  0.4350360
B(k,d) 0.2656187 0.4363773  0.2720124 0.4417786 0.2784949  0.4472379
B, 0.0003777 0.1855473  0.0003777 0.1855473 0.0003777  0.1855473
B-(k) 0.0003774 0.1851850  0.0003774 0.1851850 0.0003774  0.1851850

B, (k,d) 0.0003774 0.1852212  0.0003775 0.1853661 0.0003776  0.1855110
05 0.2801295 0.4486118 0.2801295 0.4486118 0.2801295  0.4486118
B(k) 0.2131531 0.3899955 0.2131531 0.3899955 0.2131531  0.3899955
B(k,d) 0.2193777 0.3955276  0.2453274 0.4183884 0.2729588  0.4424207
B, 0.0003777 0.1855473  0.0003777 0.1855473 0.0003777  0.1855473
B-(k) 0.0003768 0.1837417 0.0003768 0.1837417 0.0003768  0.1837417
B,(k,d)0.0003768 0.1839219  0.0003770 0.1846434 0.0003775  0.1853663
09 0.2801295 0.4486118 0.2801295 0.4486118 0.2801295  0.4486118
B(k) 0.1769369 0.3558756 0.1769369 0.3558756 0.1769369  0.3558756
B(k,d) 0.1860480 0.3642675 0.2251774 0.3997944 0.2686021  0.4384565
B 0.0003777 0.1855473  0.0003777 0.1855473 0.0003777  0.1855473
B-(k) 0.0003773 0.1823080 0.0003773 0.1823080 0.0003773  0.1823080

B, (k,d)0.0003771 0.1826306 0.0003768 0.1839241 0.0003774  0.1852221
158 0.2801295 0.4486118 0.2801295 0.4486118 0.2801295  0.4486118
B(k) 0.1388449 0.3179755 0.1388449 0.3179755 0.1388449  0.3179755
B(k,d) 0.1504966 0.3291388  0.2026073 0.3780150 0.2635243  0.4336479
B 0.0003777 0.1855473  0.0003777 0.1855473 0.0003777  0.1855473
B-(k) 0.0003799 0.1801752  0.0003799 0.1801752 0.0003799  0.1801752
B,(k,d) 0.0003790 0.1807089 0.0003770 0.1828514 0.0003772  0.1850065
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Table 1. Estimated MSE of the estimators for true and misspecified model when
p=0.95and o = 0.5 (cont.)

d=0.1 d=0.5 d=0.9
k EMSE, EMSE, EMSE; EMSE, EMSE; EMSEy
5 B 0.2801295 0.4486118  0.2801295 0.4486118 0.2801295  0.4486118
B(k) 0.0526366 0.2207759  0.0526366 0.2207759 0.0526366  0.2207759
B(k,d) 0.0666946 0.2360594  0.1422406 0.3138604 0.2486889  0.4183282
B. 0.0003777 0.1855473  0.0003777 0.1855473 0.0003777  0.1855473
B.(k) 0.0004400 0.1681494  0.0004400 0.1681494 0.0004400  0.1681494
B.(k,d) 0.0004267 0.1698506 0.0003892 0.1767411 0.0003768  0.1837689

Table 2. Estimated MSE of the estimators for true and misspecified model when

p=095ando =1

d=0.1 d=0.5 d=10.9

k EMSE, EMSE, EMSE; EMSE, EMSE; EMSE,
018 1.1205180 1.1783938 1.1205180 1.1783938 1.1205180 1.1783938
B(k) 10561408 1.1288003 1.0561408  1.1288003 1.0561408 1.1288003
B(k,d) 10624786 1.1336995 1.0880518  1.1534299 1.1139803 1.1733743
B. 0.0015107 0.1888630 0.0015107  0.1888630 0.0015107 0.1888630
B.(k) 00015098 0.1884980 0.0015098  0.1884980 0.0015098 0.1884980
B.(k,d) 0.0015099 0.1885345 0.0015103 0.1886804 0.0015106 0.1888264
05 B 1.1205180 1.1783938 1.1205180 1.1783938 1.1205180 1.1783938
B(k) 08526281 0.9646305 0.8526281  0.9646305 0.8526281 0.9646305
B(k,d) 08775255 0.9847905 0.9813187  1.0681334 1.0918374 1.1558011
B. 0.0015107 0.1888630 0.0015107  0.1888630 0.0015107 0.1888630
B.(k) 00015066 0.1870440 0.0015066 0.1870440 0.0015066 0.1870440
B.(k,d) 0.0015069 0.1872255 0.0015085 0.1879524 0.0015103 0.1886807
098 1.1205180 1.1783938 1.1205180 1.1783938 1.1205180 1.1783938
B(k)  0.7077687 0.8408833 0.7077687  0.8408833 0.7077687 0.8408833
B(k,d) 0.7442128 0.8713751 0.9007244  1.0005850 1.0744122 1.1413835
B. 0.0015107 0.1888630 0.0015107 0.1888630 0.0015107 0.1888630
B.(k) 00015044 0.1855997 0.0015044  0.1855997 0.0015044 0.1855997
B.(k,d) 0.0015048 0.1859248 0.0015069 0.1872278 0.0015099 0.1885353
15 B 1.1205180 1.1783938 1.1205180 1.1783938 1.1205180 1.1783938
B(k) 05554001 0.7045712 0.5554001  0.7045712 0.5554001 0.7045712
B(k,d) 06020087 0.7449187 0.8104502  0.9219414 1.0541030 1.1239768
B. 0.0015107 0.1888630 0.0015107 0.1888630 0.0015107 0.1888630
B.(k) 00015030 0.1834511 0.0015030 0.1834511 0.0015030 0.1834511
B.(k,d) 0.0015032 0.1839887 0.0015051 0.1861471 0.0015093 0.1883182

5 B 1.1205180 1.1783938 1.120518 1.1783938  1.120518 1.1783938
B(k) 02103956 0.3713567 0.2103956 0.3713567 0.2103956 0.3713567
B(k,d) 02666748 0.4242071 0.5689763  0.6975050 0.9947728 1.0698368
B, 00015108 0.1888630 0.0015108 0.1888630 0.0015108 0.1888630
B.(k) 00015404 0.1713349 0.0015404 0.1713349 0.0015404 0.1713349
B.(k,d) 00015303 0.1730490 0.0015059  0.1799914 0.0015066 0.1870714
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Table 3. Estimated MSE of the estimators for true and misspecified model when
p=099ando = 0.5

d=0.1 d=0.5 d=0.9

k EMSE, EMSE, EMSE; EMSE, EMSE; EMSEy
01 B 13733302 14155047 1.3733302 14155047 13733302 1.4155047
B(k) 1.0501954 1.1614661  1.0501954 11614661 1.0501954 1.1614661
B(k,d) 1.0802604 1.1854445 1.2055422 12845257  1.3387773 1.3886753
B 0.0003490 0.2090398  0.0003490 0.2090398  0.0003490 0.2090398
B.(k) 0.0003487 0.2086612  0.0003487 0.2086612  0.0003487 0.2086612
B.(k,d) 00003487 0.2086991 0.0003488 0.2088504  0.0003489 0.2090019
0.5 ﬂ 1.3733302 1.4155047 1.3733302 1.4155047 1.3733302 1.4155047
ﬂ(k) 0.4930231 0.6729832 0.4930231 0.6729832 0.4930231 0.6729832

B (k,d) 05592052 0.7310081 0.8724862 0.9991682 1.2634509 1.3250253
B 0.0003490 0.2090398 0.0003490 0.2090398 0.0003490 0.2090398
B.r(k) 00003482 0.207153 0.0003482 0.207153 0.0003482 0.207153
B .r (k,d) 00003482 02073413 0.0003484 0.2080953 0.0003488 0.2088507
0.9 E 1.3733302 1.4155047 1.3733302 1.4155047 1.3733302 1.4155047
Bk 02931221 0.4843209 0.2931221 0.4843209 0.2931221 0.4843209
B(k,d) 03626887 0.5471788 0.7264088 0.865856 1.2268551 1.2921258
B 0.0003490 0.2090398 0.0003490 0.2090398 0.0003490 0.2090398
B.(k) 0.0003486 0.2056542 0.0003486 0.2056542 0.0003486 0.2056542
B.(k,d) 00003484 02059915 0.0003482 0.2073435 0.0003487 0.2087000
1.5 E 1.3733302 1.4155047 1.3733302 1.4155047 1.3733302 1.4155047
Bk 0.1645441 0.3596925 0.1645441 0.3596925 0.1645441 0.3596925
B(k,d) 02297062 04196822 0.6141691 0.7609554 1.1967351 1.2643319
B 0.0003490 0.2090398 0.0003490 0.2090398 0.0003490 0.2090398

B (k) 0.0003509 0.2034235 0.0003509 0.2034235 0.0003509 0.2034235
B.(k,d) 00003501 0.2039817 0.0003483 0.2062221 0.0003486 0.2084747

5 E 1.3733302 1.4155047 1.3733302 1.4155047 1.3733302 1.4155047
E(k) 0.0280793 0.2169173 0.0280793 0.2169173 0.0280793 0.2169173
E(k,d) 0.0697681 0.2569569 0.4428262 0.5944911 1.1459688 1.2158268
B, 0.0003490 0.2090398 0.0003490 0.2090398 0.0003490 0.2090398
B.(k) 0.0004035 0.1908219 0.0004035 0.1908219 0.0004035 0.1908219
B.(k,d) 00003918 0.1926062 0.000359 0.1998268 0.0003482 0.2071805
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Table 4. Estimated MSE of the estimators for true and misspecified model when
p=099ando =1

d=0.1

d=0.5

d=0.9

EMSE; EMSEy

EMSE; EMSE,

EMSE; EMSE,

B.(k,d)

5.4933208 4.9729356
4.2007888 3.9736359
4.3210844 4.0679655
0.0013960 0.2122746
0.0013951 0.2118936
0.0013952 0.2119316

5.4933208 4.9729356
4.2007888 3.9736359
4.8221727 4.4577291
0.0013960 0.2122746
0.0013951 0.2118936
0.0013956 0.2120840

5.4933208 4.9729356
4.2007888 3.9736359
5.3551101 4.8674052
0.0013960 0.2122746
0.0013951 0.2118936
0.0013959 0.2122365

0.5

B
Bk
Bk, d)
B.

B, (k)

5.4933208 4.9729356
1.9721133 2.0517057
2.2368417 2.2799880
0.0013960 0.2122746
0.0013923 0.2103753
0.0013926 0.2105648

5.4933208 4.9729356
1.9721133 2.0517057
3.4899605 3.3349853
0.0013960 0.2122746
0.0013923 0.2103753
0.0013940 0.2113239

5.4933208 4.9729356
1.9721133 2.0517057
5.0538077 4.6169719
0.0013960 0.2122746
0.0013923 0.2103753
0.0013956 0.2120843

0.9

B, (k,d)
P
Bk)

Bk, @)
B
B, (k)

B.(k,d)

5.4933208 4.9729356
1.1725128 1.3109990
1.4507813 1.5580588
0.0013960 0.2122746
0.0013904 0.2088665
0.0013907 0.2092061

5.4933208 4.9729356
1.1725128 1.3109990
2.9056605 2.8110399
0.0013960 0.2122746
0.0013904 0.2088665
0.0013926 0.2105671

5.4933208 4.9729356
1.1725128 1.3109990
4.9074278 4.4876081
0.0013960 0.2122746
0.0013904 0.2088665
0.0013952 0.2119325

1.5

B

B(k)
Bk, d)
B,

B, (k)
B, (k,d)

5.4933208 4.9729356
0.6581957 0.8249431
0.9188519 1.0601478
0.0013960 0.2122746
0.0013891 0.2066210
0.0013893 0.2071829

5.4933208 4.9729356
0.6581957 0.8249431
2.4567130 2.4000657
0.0013960 0.2122746
0.0013891 0.2066210
0.0013910 0.2094382

5.4933208 4.9729356
0.6581957 0.8249431
4.7869520 4.3785418
0.0013960 0.2122746
0.0013891 0.2066210
0.0013947 0.2117058

B
Bk
Bk, d)
B.

B, (k)
B, (k. d)

5.4933208 4.9729356
0.1121679 0.2972680
0.2789891 0.4501910
0.0013960 0.2122746
0.0014216 0.1939342
0.0014128 0.1957307

5.4933208 4.9729356
0.1121679 0.2972680
1.7713719 1.7610914
0.0013960 0.2122746
0.0014216 0.1939342
0.0013915 0.2030001

5.4933208 4.9729356
0.1121679 0.2972680
4.5839115 4.1907251
0.0013960 0.2122746
0.0014216 0.1939342
0.0013923 0.2104030

Since p affects the structure of the design matrix, the estimated MSEs of §

and f3, are the same for all values of k and d for a fixed o in true and misspecified
models. As expected, for higher value of o, the estimated MSEs inflate for all the
estimators in true and misspecified model as well. Similarly, when the collinearity
among the regressors increases, the estimated MSEs of the estimators inflate in

both the models.
As the theoretical results suggest, the MSE of the estimator may increase due

to the omission of relevant regressors depending on the values of unknown
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parameters. When we compare the performances of the estimators in true and
misspecified model for all choices of the parameters involved almost all the
estimators have larger estimated MSE in the misspecified model than in the case
where there is no misspecification.

While examining the variations in the estimated MSE of the estimators with
respect to the variations in k and d from Tables 1-4, we observe that as the value
of k increases, the values of the estimated MSEs decrease for all the estimators
considered here where k is involved. However, g,.(k, d) in true model exhibits a
pattern of concave up function of k, that is the estimated MSE of S, (k, d) first
decreases and then increases after attaining a minimum value of the MSE with the
increase in the value of k. In our simulation, the minimum value of the MSE of
the r — (k, d) class estimator when d = 0.1,0.5 is attained for some value of k in
between 0.9to 1.5and 1.5t0 5 for ¢ = 0.5 and o = 1 respectively.

However, with the increase in the value of d, the estimated MSEs of §(k, d)
and B,.(k, d) increase for the selected values of p and o for both the models. The
values of the estimated MSEs show that the r — (k, d) class estimator performs
better than the OLS, ORR, PCR, two-parameter class estimator for all chosen
values of k, d, o and p, although the dominance of the r — (k, d) class estimator
over the r — k class estimator depends on the choices of k and d. In fact, the
difference in the estimated MSE values of the r — (k, d) class estimator and r —
k class estimator do not show much difference if seen up to the third or forth
decimal places for small o, however, if observed up to the sixth or seventh
decimal places, the MSE of the » — k class estimator is found to be less than that
of the r — (k,d) class estimator. For o = 1, the r — k class estimator shows
dominance over the r — (k,d) class estimator in the misspecified model, see
Table 2 and 4, the reason being the condition of dominance of the » — (k, d) class
estimator over the r — k class estimator (see Theorem 3.4) is not satisfied in this
simulation.

5. Numerical example

In order to illustrate our theoretical results, in this section we now consider the
data set on Total National Research and Development Expenditures as a Per cent
of Gross National Product originally due to Gruber (1998), also analysed by
Zhong and Yang (2007). It represents the relationship between the dependent
variable Y, the percent spent by the U.S., and the four other independent variables
X1, Xz, Xz and Xa. The variables Xi, X2, X3 and Xa, respectively represents the
percent spent by France, West Germany, Japan and the former Soviet Union. The
variables are standardized and the OLS estimator of 8 = (8; B2 Pz P4)' is
obtained as £ = (0.6455,0.0896,0.1436,0.1526)'. We obtain the eigenvalues of X'X
as A, = 302.9626, A, = 0.7283, .= 0.0446, and A, = 0.0345, and the condition

number is approximately 8,776.382. Hence, the design matrix is quite ill-
conditioned.
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Now, let us consider that the investigator has omitted Z = [X4] mistakenly,
which results in the misspecified model (2.2) with X matrix having 3 variables X,
Xz, and Xs. The eigenvalues of the X matrix in the misspecified model are
161.38584077, 0.10961836 and 0.04454088, and the condition number is
3623.32, which indicates an ill-conditioned design matrix in the misspecified
model. The OLS estimators of , y and o2 in the model (2.2) is obtained as g =
(0.80878236, 0.41402294, —0.09630492)', 7 = f,= 0.1526, §2=0.002745
respectively and we chose r=2. The values of k and d are chosen as: k, =
6% /a?.,=0.01178, where a,,,, is the maximum element of a=7"8, which was
suggested by Hoerl and Kennard (1970) and d=0.0557 is the positive solution of

%{;(R""i) = 0. The MSEs of the estimators are estimated by replacing 8 with

the PCR estimator, which is an unbiased estimator, and are presented in Table 5
along with the estimated values of regression coefficients for both true and
misspecified model. Figure 2 represents the estimated MSEs of the estimators in
the two models.

From Table 5, we can see the sign of f; has changed in the misspecified
model from positive to negative, which gives an evidence of the well-established
results that the omission affects the estimation of parameters. Further, the
estimated MSEs increase in the misspecified model as compared to the true
model. We observe that the r—(k,d) class estimator outperforms the OLS, ORR,
two-parameter class and PCR estimators in MSE sense. However, the MSEs of
the r-k class estimator and the r-(k,d) class estimator are almost equal and the
difference can be only noticed at sixth decimal place. The dominance of the
estimators can be easily seen in Figure 2.

On the other hand, from the results stated in Table 5 for the misspecified
model, we see that the r—(k, d) class estimator is superior to the OLS, ORR, two-
parameter class and PCR estimators, and does not perform better than the r —k
class estimator under the MSE criterion. Moreover, the theoretical findings
obtained in this study support the numerical results given in Table 5. Now, in
order to verify the conditions of the dominance under MSE criterion, let us take
Theorem 3.1, where we get o2 — A;a? +n?/A;= -57.0280, —0.0042, 0.0027,
clearly condition (ii) of the theorem will be applied and the lower limits of d are
—0.1592445-1.9733796, thus the r—(k, d) class estimator dominates the OLS
estimator for all values of d, which is the result obtained in the numerical
illustration. Next, let us take the condition of dominance of r—(k, d) class over the
r —k class given in Theorem 3.4; A;a? — a;n;= 46.2405, 0.0037 for i =1,2 and the
value of d is 0.0557, which satisfies the condition (i) in Theorem 3.4 as the values

2
of 2(Aa? —am)/(0? + A + 2am; —25) for =12 are 1.0856, 0.1421.

Further, the value of the lower bound of k in condition (i) of Theorem 3.4 comes
out to be 63.872591. Evidently the condition is not satisfied, hence the r—(k, d)
class estimator does not dominate the r —k class estimator in this numerical
illustration. Similarly, other conditions can also be verified.
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Table 5. Estimated values of regression coefficients and estimated MSEs for true

and misspecified model.

B Bk) Bk, d) B- B (k) B (k, d)
True Model
B4 0.645458  0.551069  0.556329  0.209956  0.209236  0.209276
B 0.089588  0.115598  0.114148  0.240076  0.23948 0.239514
Bs 0.143557  0.180012  0.17798 0.304667  0.302885  0.302984
B, 0152618 0.163265  0.162671  0.186063  0.187951  0.187845
MSE 0.086702  0.061178  0.062331  0.025063  0.022632  0.022639
Misspecified Model

B4 0.808782  0.71553 0.720727  0.409013  0.399393  0.399929
B2 0.414023  0.438716  0.437339  0.662707  0.635374  0.636897

Bs -0.0963 -0.04272 -0.0457 -0.01613 0.020682  0.01863
MSE 0276168  0.184595  0.189148  0.214464  0.146008  0.149414

OLS, 0.08670178

TWO, 0.06233093

ORR. 0.06117844

Estimated Mean Squared Error

PCR, 0.02506264

OLS ORR TWO

(@) In the case of no misspecification

Figure 2. Estimated MSE of the estimators

RKD, 0.02263929

RK.0.02263174

RK RKD
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OLS.0.27616818

PCR.0.21446438

ORR. 0.1845949 TWO, 0.1891475
RKD,0.14941422

RK.0.14600776

Estimated Mean Squared Error
[=]

0.05

OLS ORR ‘ TWO ‘ PCR RK RKD
b) When there is misspecification

Figure 2. Estimated MSE of the estimators (cont.)

6. Conclusion

In this paper the effect of misspecification due to omission of relevant
regressors in a linear regression model when the problem of multicollinearity
exists, on the dominance of the r-(k,d) class estimator over the other competing
estimators have been studied. The dominance conditions of the r-(k,d) class
estimator over the OLS, ORR, PCR, r-k class and the two-parameter class
estimators have been derived under scalar mean squared error criterion. It has
been observed that the MSE of the estimators may increase or decrease due to
misspecification depending on the values of the unknown parameters. Similarly,
the ranges of dominance of the r-(k,d) class estimator over the others may shrink
or widen in the misspecified model. To understand the effect of misspecification
on dominance of the r-(k,d) class estimator over the others a Monte Carlo
simulation and a numerical example have been given and it is observed that the
MSE of the estimators increases in the misspecified model as compared to the
model assumed to be true. The r-(k,d) class estimator performs better than the
OLS, ORR, two-parameter class estimator and the PCR estimator in the
misspecified model as well for all chosen values of the parameters. However, the
r-(k,d) class estimator and the r-k class estimator do equally well when observed
up to few decimal places in simulation, whereas in the numerical example the r-k
class estimator is found to be the most suited as an alternative to the OLS
estimator in the misspecified model with multicollinearity. Hence, the study
stuggests that the r-k class estimator or the r-(k,d) class estimators are a better
choice over the other estimators considered in this study in the case of the
misspecified model with multicollinearity.



STATISTICS IN TRANSITION new series, March 2017 51

Acknowledgement

The authors are grateful to the editor, the associate editor, and the anonymous
referees for their valuable comments and suggestions to improve this article.

REFERENCES

BAYE, M. R., PARKER, D. F., (1984). Combining ridge and principal
component regression: A money demand illustration. Communications in
Statistics- Theory and Methods, 13, pp. 197-205.

GIBBONS, D. G., (1981). A simulation study of some ridge estimators. Journal
of the American Statistical Association, 76, pp. 131-139.

GRAHAM, M. H., (2003). Confronting multicollinearity in ecological multiple
regression. Ecology, 84, pp. 2809-2815.

GRUBER, M., (1998). Improving efficiency by shrinkage: The James-Stein and
ridge regression estimator. Marcel Dekker, Inc., New York.

HAMILTON, J. L., (1972). The demand for cigarettes: Advertising, the health
scare, and the cigarette advertising ban. The Review of Economics and
Statistics, 54, pp. 401-411.

HEIKKILA, E., (1988). Multicollinearity in regression models with multiple
distance measures. Journal of Regional Science, 28, pp. 345-362.

HOERL, A. E., KENNARD, R. W., (1970). Ridge regression: Biased estimation
for non-orthogonal problems. Technometrics, 12, pp. 55-67.

JOHNSON, R. A., WICHERN, D. W., (2007). Applied multivariate statistical
analysis. Pearson-Prentice Hall, New Jersey.

KACIRANLAR, S., SAKALLIOGLU, S., (2001). Combining the Liu estimator
and the principal component regression estimator. Communications in
Statistics — Theory and Methods, 30, pp. 2699-2705.

KADIYALA, K., (1986). Mixed regression estimator under misspecification.
Economic Letters, 21, pp. 27-30.

KIBRIA, B., (2003). Performance of some new ridge regression estimators.
Communications in Statistics — Theory and Methods, 32, pp. 419-435.

MAHAJAN, V., JAIN, A. K., BERGIER, M., (1977). Parameter estimation in
marketing models in the presence of multicollinearity: An application of ridge
regression. Journal of Marketing Research, 14, pp. 586-591.



52 S. Chandra, G. Tyagi: On the performance of ...

MASSY, W. F., (1965). Principal components regression in exploratory statistical
research. Journal of the American Statistical Association, 60, pp. 234-256.

MCDONALD, G. C., GALARNEAU, D. 1., (1975). A Monte Carlo evaluation of
some ridge-type estimators. Journal of the American Statistical Association,
70, pp.407-416.

NOMURA, M., OHKUBO, T., (1985). A note on combining ridge and principal
component regression. Communications in Statistics-Theory and Methods, 14,
pp. 2489-2493.

OZKALE, M. R., KACIRANLAR, S., (2007). The restricted and unrestricted two
parameter estimators. Communications in Statistics- Theory and Methods, 36,
pp. 2707-2725.

OZKALE, M. R., (2012). Combining the unrestricted estimators into a single
estimator and a simulation study on the unrestricted estimators. Journal of
Statistical Computation and Simulation, 82, pp. 653-688.

OZKALE, M., KACIRANLAR, S., (2008). Comparison of the r—k class
estimator to the ordinary least squares estimator under the Pitman’s measure
of closeness criterion. Statistical Papers, 49, pp. 503-512.

SARKAR, N., CHANDRA, S., (2015). Comparison of the r-(k,d) class estimator
with some estimators for multicollinearity under the Mahalanobis loss
function. Forthcoming paper in International Econometric Review, Vol. 7,
issue 1, pp. 1-12.

SARKAR, N., (1989). Comparisons among some estimators in misspecified
linear models with multicollinearity. Annals of Institute of Statistical
Methods, 41, pp. 717-724.

SARKAR, N., (1996). Mean square error matrix comparison of some estimatorsin
linear regressions with multicollinearity. Statistics & Probability Letters, 30,
pp. 133-138.

TRENKLER, G., WIJEKOON, P., (1989). Mean squared error matrix superiority
of the mixed regression estimator under misspecification. Statistica, 44,
pp. 65-71.

WIJEKOON, P., TRENKLER, G., (1989). Mean squared error matrix superiority
of estimators under linear restrictions and misspecification. Economics
Letters, 30, pp. 141-149.

ZHONG, Z., YANG, H., (2007). Ridge estimation to the restricted linear model.
Communications in Statistics- Theory and Methods, 36, pp. 2099-2115.



