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ABSTRACT 

In the paper selected nonparametric and semiparametric estimation methods of 

higher orders quantiles are considered. The construction of nonparametric 

confidence intervals is based on order statistics of appropriate ranks from random 

samples or from generated bootstrap samples. Semiparametric bootstrap methods 

are characterized by double bootstrap simulations. The values of bootstrap sample 

below the prearranged threshold are generated by the empirical distribution and 

the values above this threshold are generated by the distribution based on the 

asymptotic properties of the tail of the random variable distribution. The results 

of the study allow one to draw conclusions about the effectiveness of the 

considered procedures and to compare these methods.   

Key words: accuracy of estimation, order statistic, percentile bootstrap method, 

quantile, semiparametric bootstrap method, Value at Risk.  

1. Introduction 

Quantiles of a random variable distribution are used in different kinds of 

economic and financial research. They are applied in defining, for example, 

measures of poverty and wealth in the analysis of population income and Value at 

Risk measure in the studies of market risk. Value at Risk is defined as p-quantile 

of random variable being the value of losses from investments. 

Nonparametric and semiparametric quantile estimation methods are the 

subject of interest when the quantile order is greater than 0.9. In the group of 

nonparametric procedures, bootstrap and non-bootstrap methods are considered. 

One of them is the percentile bootstrap method (Efron, Tibshirani 1993), and the 

other is the best exact nonparametric method (Zieliński, Zieliński 2005). 

Bootstrap semiparametric methods are based on information about the tail 

distribution of the random variable (Pandey et al. 2003). The accuracy of the 
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estimation, defined as the length of the confidence interval, is analysed. The 

accuracy of quantile estimation for selected distributions, for the nonparametric 

non-bootstrap procedure of quantile estimation, known as the best exact method, 

is determined analytically. But for bootstrap methods the simulation study is  

used. In the paper Pareto and Student t-distribution are considered. The selection 

of distributions is associated with the possibility of choosing these parameters for 

which the distribution is characterized by a thin or fat tail. Simulation methods 

allow one to estimate the probability that the confidence interval includes the real 

value of the quantile, and  additionally they allow to investigate whether this 

probability is approximately equal to the prearranged confidence coefficient. The 

application of the semiparametric methods require estimating the generalized 

Pareto distribution parameters. This distribution is used in approximation of the 

tail of the random variable distribution. In the paper, two methods of estimating 

the generalized Pareto distribution parameters are considered. One of them is the 

probability weighted moments method based on the classical empirical 

distribution and the other is the probability weighted moments method based on 

the level crossing empirical distribution (Huang, Brill 1999).  

2. The best exact nonparametric estimation of quantile  

Let us assume that we investigate a population with regard to random variable 

X with unknown continuous distribution F. Let 
n
XXX ...,,,

21
 be a simple random 

sample drawn from this population and 1  be the fixed confidence coefficient.  

Nonparametric interval estimation of quantile 
p
Q  of order )1,0(p  is 

associated with a random variable K, which denotes the number of observations in 

the sample smaller than the quantile 
p
Q . Random variable K has binomial 

distribution with the probability function: 
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The values of order statistics are determined so that the right side of this 

formula is equal to the fixed confidence coefficient, i.e.   .11
1
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Sometimes it results in an unequivocal confidence interval, especially for small 

sample sizes, when choosing ranks of order statistics to obtain the confidence 

interval for the pth quantile at the confidence level 1  is impossible. In these 

cases it is necessary to randomize (Zieliński 2008):  
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We calculate   and we take  
 

 
  n
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XX ,  as the confidence interval for 

p
Q  

with probability   or  
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''
,  with probability 1 . The obtained interval is 

not always symmetric under the value of the quantile estimator.  

The accuracy of the interval estimation is given by the formula: 
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Then, for the random variable with known distribution F, it is possible to 

calculate the precision of quantile estimation. 

In Table 1 the minimum sample sizes for selected quantiles and different 

confidence coefficients are presented. In Table 2 are shown the ranks of order 

statistics allow one to obtain confidence interval for quantile on the confidence 

level approximately equals 0.95 for selected p-quantiles and selected sample. 

sizes. 

Table 1. The minimum sample sizes for nonparametric estimation of p-quantiles  

p 
1  

0.9 0.925 0.95 0.975 0.99 

0.80 11 12 14 15 21 

0.90 22 25 29 23 44 

0.95 45 51 59 72 90 

0.99 230 258 299 368 459 

Source: Own calculations. 



740                                                                       D. Pekasiewicz: Interval estimation of … 

 

 

Table 2. The ranks of order statistics in estimation of 
p
Q  

p 
Sample sizes 

300 600 1000 

0.80 227,   254 

(0.9491) 

228,   256 

(0.9515) 

459,   498 

(0.9495) 

460,   499 

(0.9527) 

773,   823 

(0.9479) 

774,   824 

(0.9506) 

0.90 261,   281 

(0.9451) 

261,   282 

(0.9524) 

528,   560 

(0.9499) 

528,   561 

(0.9509) 

884,   923 

(0.9494) 

884,   924 

(0.9514) 

0.95 277,   292 

(0.9491) 

278,   293 

(0.9548) 

561,   582 

(0.9467) 

561,   583 

(0.9512) 

938,   965 

(0.9474) 

937,   964 

(0.9504) 

0.99 291,   300 

(0.9499) 

290,   300 

(0.9507) 

590,   599 

(0.9412) 

590,   600 

(0.9558) 

985,   998 

(0.9495) 

985,   999 

(0.9517) 

Source: Own calculations. 

3. The percentile bootstrap method of quantile estimation 

The next analysed procedure of quantile estimation is the percentile bootstrap 

method (Domański, Pruska 2000).  

Based on the simple random sample 
n
XXX ...,,,

21
 we generate N bootstrap 

samples 
**

2

*

1
,...,,

n
XXX , from the bootstrap distribution: 
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where n
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21  are elements of the sample 
n
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. 

Next, for each bootstrap sample we compute the quantile *

,kp
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…, N. Therefore, after N replications we get the sequence of ordered quantiles 
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...,,
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XX , which allow one to approximate 

the distribution of quantile 
p
Q . Using this sequence we determine the percentiles 

of ranks 
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2


NN    

The confidence bootstrap interval for 
p
Q  has the following form:  
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where statistics *

2

X  and *

2
1



X  are the percentiles of ranks 

2


N  and ,

2


NN   

respectively. 

The number of repetitions N is selected so as 
2

N
 and 

2

N
N    are integers.  

4. Semiparametric bootstrap methods of quantile estimation  

Semiparametric bootstrap estimation methods are characterized by double 

bootstrap simulations, i.e. n–k values of bootstrap sample below the fixed 

threshold u are generated using empirical distribution ,
n
F  but k values above this 

threshold are generated using the distribution which takes into account asymptotic 

properties of tail distribution (Pandey et al. 2003). 

In this case the bootstrap distribution has the form:   
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where 
n
F  is the empirical distribution and 

0
F  is the generalized Pareto 

distribution.   

The generalized Pareto distribution ),( GPD  is expressed by the formula: 
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so the estimated distribution (8) has the following forms: 

for 0̂ : 
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where k is the number of elements of random sample greater than the fixed 

threshold and   ˆ,ˆ  are estimators of parameters .,   
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Thus, p-quantile has the form: 
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The values of parameters ̂  and   can be estimated by moments method, 

probability weighted moments method, or maximum likelihood method. The 

initial estimation of ̂  can be obtained by generalized Hill estimator, moment 

estimator, Peng estimator or W–estimator (see Pekasiewicz 2015).  

Two methods of estimation of parameters  ,  are considered. In the first 

method, called semiparametric method I, parameters are estimated by probability 

weighted moments method (Landwehr, et al. 1979) and in the second one, called 

semiparametric method II – by modified probability weighted moments method, 

which is proposed in Pekasiewicz (2015). 

In the method I, the estimators of parameters  ,  have the following forms: 
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where .uXY   

In the semiparametric procedure with modified probability weighted moments 

method of estimation of ̂  and  , the level crossing empirical distribution is 

used (Huang, Brill 1999): 
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The estimators of parameters  ,  are the following: 
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5. Analyses of  interval quantile estimation accuracy 

The aim of the study is to compare the length of the confidence interval 

obtained by considered nonparametric and semiparametric methods. The accuracy 

of the best exact  confidence interval is calculated by formula (4) and bootstrap 

procedures are analysed by simulation methods. The presented procedures are 

applied in the estimation of quantiles of orders higher than 0.9 for selected 

distributions.  

The following distributions with fat tails are considered: 

− Pareto  aPa , ,    where    ,0, a  

− Student t-distribution S(k), where k is degrees of freedom. 

Depending on parameters the distributions are characterized by the expected 

or non-expected value. 

Quantiles of higher orders are estimated by the best exact nonparametric 

method, the percentile bootstrap method and two semiparametric bootstrap 

procedures (method I, method II). In the case of semiparametric bootstrap 

methods it is necessary to use information about the values from the tail 

distribution and the tail estimation using generalized Pareto distribution. 

The construction of bootstrap nonparametric and semiparametric confidence 

intervals  means that these methods can be studied and compared only using 

simulation analysis. The mean length of the confidence interval, and probability 
  that the real value of the quantile is contained in the constructed interval are 

computed by repeating the estimation procedure 1000 times. This probability 

should be approximately equal to the predetermined confidence coefficient 1 . 

In the case of estimating higher order quantile, the changes in distribution 

parameters causes a significant change of the value of the quantile. The 

relationship between the values of selected quantiles and parameter a of Pareto 
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distribution is presented in Figure 1. In Figure 2 the relationship between selected 

quantile values and the degree of freedom of Student t-distribution is shown. 

The results of the analysis of 0.99-quantile estimation for Pareto and Student  

t-distribution are presented in Table 3 and Table 4. The random samples must be 

rather big (in the tables - 1000 elements), which allows one to estimate 

generalized Pareto distribution parameters with small mean squared errors (the 

number of elements above the threshold is equals 100).  

 

 

Figure 1. Relationship between higher order quantiles of Pareto distribution 

 aPa ,2  and parameter a 

Source: Own elaboration. 

 

 

Figure 2.  Relationship between higher order quantiles of Student t-distribution 

S(k) and degree of freedom  k 

Source: Own elaboration. 
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Table 3.  Accuracy d and probability   of 0.99-quantile Pareto distribution 

estimation  

Distribution 

Best exact 

nonparametric 

method  

Percentile 

method 

Semiparametric 

method (I)  

Semiparametric 

method (II) 

d d   d   d   

Pa(2, 1.25) 265.6520 86.7278 0.925 62.7672 0.921 61.8472 0.919 

Pa(2, 1.5) 101.3190 37.0402 0.924 29.6164 0.926 30.0481 0.928 

Pa(2, 1.75) 50.2623 20.0566 0.925 17.0014 0.946 16.9164 0.947 

Pa(2, 2) 29.3498 12.6772 0.919 10.8831 0.926 12.6491 0.944 

Pa(2, 2.25) 19.1083 8.7414 0.936  7.6362 0.943 7.6150 0.941 

Pa(2, 2.5) 13.4312 6.3572 0.928 5.6160 0.942 5.7064 0.954 

Pa(2, 2.75) 9.9807 4.8764 0.918 4.4066 0.956 4.4007 0.948 

Pa(2, 3) 7.7489 3.8876 0.937 3.4652 0.949 3.5462 0.957 

Pa(2, 3.25) 6.2154 3.1110 0.928 2.8326 0.954 2.9202 0.951 

Pa(2, 3.5) 5.1188 2.6086 0,923 2.3731 0.949 2.4622 0.950 

Pa(2, 3.75) 4.3070 2.2758 0.932 2,0576 0.945 2.0999 0.958 

Pa(2, 4) 3.6884 1.9676 0.925 1.8047 0.953 1.8310 0.964 

Source: Own calculation based on Mathematica 8. 

The relative precision (the ratio of confidence length and the real value of 

quantile) in percentages is shown in Figure 3 and Figure 4.  

 

Figure 3.  Relative precision of 0.99-quantile estimation for  aPa ,2  distribution  

for considered methods  

Source: Own calculation. 
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Table 4.  Accuracy d and probability   of 0.99-quantile Student t-distribution 

estimation  

Distribution 

Best exact 

nonparametric 

method  

Percentile 

 method 

Semiparametric 

method (I)  

Semiparametric 

method (II) 

d d   d   d   

S(1.25) 56.1500 18.8406 0.940 13.2522 0.916 13.0903 0.914 

S(1.5) 26.4871 9.8648 0.921 7.9817 0.935 8.0148 0.940 

S(1.75) 15.5615 6.3563 0.924 5.4952 0.940 5.5240 0.947 

S(2) 10.4578 4.5764 0.910 4.0748 0.960 4.0828 0.957 

S(2.25) 7.6799 3.4644 0.911 3.1792 0.945 3.2461 0.960 

S(2.5) 5.9998 2.9216 0.926 2.6388 0.951 2.6384 0.953 

S(2.75) 4.9027 2.4135 0.915 2.2014 0.950 2.2738 0.963 

S(3) 4.1436 2.1148 0.940 1.9098 0.955 1.9402 0.948 

S(3.25) 3.5942 1.8519 0.924 1.7452 0.959 1.7670 0.960 

S(3.5) 3.1820 1.6880 0.932 1.5552 0.958 1.5813 0.954 

S(3.75) 2.8635 1.5579 0.932 1.4434 0.963 1.4624 0.949 

S(4) 2.6113 1.4072 0.921 1.3266 0.956 1.3604 0.961 

Source: own calculation based on Mathematica 8. 

 

The results of analysis imply that the application of bootstrap methods in 

estimation of quantile of Pareto distribution and Student t-distribution is more 

effective.  

The choice of the quantile estimation method is important (see Figure 3 and 4) 

particularly for estimating the quantile heavy tailed distributions, i.e. Pa(2, 1.25) 

or S(1.25). It is associated with high values of distribution quantiles (see Figure 1 

and 2).  

In these cases the interval length obtained by the best exact nonparametric 

method (non-bootstrap procedure) is even three times longer than the bootstrap 

methods. 
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Figure 4. Relative precision of 0.99-quantile estimation for Student t-distribution  

for considered methods 

Source: Own calculation. 

5. Conclusions 

In the paper different estimation procedures of higher order quantiles, 

including nonparametric and semiparametric methods, are considered. The 

application of bootstrap methods leads to confidence intervals which have smaller 

lengths than intervals derived from nonparametric, non-bootstrap methods. The 

best exact nonparametric confidence interval lengths are greater than the lengths 

of confidence interval obtained from the percentile bootstrap method. 

Semiparametric estimation methods allow one to get even shorter confidence 

intervals. Moreover, the probability that the confidence interval contains the real 

value of the distribution quantile is usually closer to the predetermined confidence 

level for semiparametric methods. 

The generalized Pareto distribution parameters estimation method, which is 

used to approximate the tail distribution of the random variable, turns out to be 

less important in comparison with choosing the quantile estimation procedure. 

The results obtained indicate that the choice of the estimation method is of 

greater importance when heavy tailed distribution quantiles are estimated. 

The analysed procedures may be used to estimate measures based on higher 

order quantiles and may be applied in different economic and financial research. 
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