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ABSTRACT 

In this paper we present a novel perspective dedicated for sparse high-
dimensional data sets, i.e. data which contain many zeros among coordinates of 
observations. Using jointly, selected sparse methods recently proposed in 
multivariate statistics, and kernel density framework for discrete data, we outline 
a general perspective for bringing out useful information from big economic 
databases. As a framework for our considerations we take the so-called functional 
data analysis, which originates from Ramsay and Silverman works. In particular 
we use functional principal components analysis within 2D density estimation 
procedure proposed by Simonoff. 

Key words: sparse data, sparse methods, robust methods, categorical data, big 
data.  

1. Introduction  

In recent years several authors have investigated the use of smoothing 
methods for sparse multinomial data. In his excellent paper Simonoff (1983) 
considered probabilities in a large one-dimensional sparse contingency table 
estimated by maximizing the likelihood modified by a roughness penalty. It was 
shown in his paper that if certain smoothness criteria on the underlying 
probability vector are fulfilled, the maximum penalty estimator is consistent in a 
one-dimensional table under a sparse asymptotic framework. However, a proof of 
sparse asymptotic consistency for multidimensional tables was not found. It was 
shown that the bias of kernel estimates of probabilities for cells near the 
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boundaries of the multinomial vector often dominates the mean sum of the 
squared error of the estimator. However, boundary kernels contrived to correct 
boundary effects for kernel regression estimators can achieve the same result for 
these estimators. Dong and Simonoff (1994) investigated the properties of 
estimators based on boundary kernels and compared them to unmodified kernel 
estimates and maximum penalized kernel likelihood estimates. They showed that 
the boundary-corrected estimates usually outperform uncorrected kernel estimates 
and are quite competitive with penalized likelihood estimates. Shane and 
Simonoff (2001) considered categorical data analysis using maximum likelihood. 
The problem with maximum likelihood estimates is their sensitivity to outlier 
cells. For this reason robust alternatives to maximum likelihood estimation were 
proposed in Shane and Simonoff (2001). The methods include the least median of 
chi-squared residuals, the least median of weighted squared residuals, and 
methods using the least trimmed functions. They also considered equivariance 
and breakdown properties of the estimators. They showed that the maximum 
likelihood estimates break down in the presence of outlying cells, while robust 
estimators do not as long as the contamination point does not exceed the 
breakdown point. Simonoff (1998) focused on nonparametric estimation of 
smooth functions. He considered categorical data smoothing and constructed 
effective categorical likelihood smoothing estimates. He also used an appropriate 
likelihood function yielding cell probability estimates with many desirable 
properties. Such estimates can be used to construct well-behaved density 
estimates using local or penalized likelihood estimation. Simonoff (1998) showed 
advantage of the local polynomial likelihood density estimate over the penalized 
likelihood density estimate. Namely, it is the structure which can be manipulated 
to allow local variation in the amount of smoothing. 

In this paper we consider the estimator of the bivariate density function 
proposed in Simonoff (1988) and its modifications in the context of data mining 
in huge economic databases which may contain outliers.  

2. Estimator of two-dimensional density function 

Models using categorical data usually assume that there is no relation between 
adjacent cells. This is not the case for continuous distributions, where many 
estimation procedures are based on the fact that observations falling near the 
approximation site do give some information about the function we are trying to 
estimate, whether this is a density or a regression function. This information by 
proximity is at the base of the modifications that have been proposed to the 
histogram. The classical kernel or local polynomial estimators are, in fact, clever 
ways to use this idea to improve upon rough estimates. This idea has been used to 
smooth over discrete distributions, with increased interest when few observations 
are available when compared with the number of cells of the underlying 
distribution, or when the observations tend to concentrate too much in a few cells 
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of the support, indicating that the underlying distribution is quite peaked.  
Smoothing over adjacent cells does contribute to improve estimators in the similar 
cases. For one-dimensional distributions Simonoff (1983), Hall and Titterington 
(1987) smoothed the histogram with a uniform-like distribution, and Burman 
(1987) discretized the kernel estimator. More recently Simonoff (1995, 1996), 
Dong and Simonoff (1995) or Aerts et al. (1997) studied discrete versions of local 
polynomial estimators for higher dimensional data. Jacob and Oliveira (2011) 
used the local polynomial approach but with respect to a relativized L2 - error, 
showing good performance for one-dimensional data. The extension of these 
methods to higher dimensional data introduces some difficulties.  

Assume we consider objects with respect to (w.r.t.) two variables 1X  and 2X , 

and our aim is to estimate their joint probability density function. Our starting 
point is the estimator proposed in  Simonoff (1995), which is based on binning the 
data and dedicated to sparse continuous data. Simonoff proposes to divide the 
range of 1X  into 1n  bins, the i-th bin being called 1iI  , and to divide the range of 

2X  into 2n  , the j-th bin being called 2 jI  .  

Table 1. Illustration for binning 2D continuous data 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. 2D kernel density estimates for binned data, unemployment vs. mean  
                 salary in Polish subregions in 2006  
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Next, let us consider 2|1 2 1 1( | )if x x I , the conditional density of 2x  given 

1 1ix I , 1|2 1 2 2( | )jf x x I , the conditional density of 1x  given 2 2 jx I , the 

marginal densities of 1x  and 2x  to be 1 1( )f x  and 2 2( )f x . Integrating the 

conditional densities over the appropriate bins gives conditional probabilities: 

    
1

1 1 2 2 1|2 2 2( | ) ( | )
i

i j jI
P x I x I f u x I du    ,                            (2.1) 

      
2

2 2 1 1 2|1 1 1( | ) ( | )
j

j i iI
P x I x I f v x I dv    .                              (2.2) 

Simonoff proposes to estimate the conditional probabilities by treating each 
row and each column as one-dimensional multinomial vector, and then smooth 
them using the penalized likelihood method proposed by Simonoff (1983). The 
marginal probabilities were estimated using the marginal frequency estimates. He 
shows that when the number of rows 1n  , and the number of columns 

2n  , then his estimator is a sparse asymptotic consistent one. For estimating 

the continuous density 1 2( , )f x x  we use an analogous technique.  

Substituting into  

     
1/2

1 2 2|1 2 1 1 1 1|2 1 2 2 2( , ) ( | ) ( ) ( | ) ( )f x x f x x f x f x x f x    ,                         (2.3) 

the kernel estimates  of  the conditional and marginal densities we obtain the 2D 
density estimate. 

It is possible to generalize the estimator proposed by Simonoff for the 
multidimensional case. The main advantages of this estimator are relative 
computational simplicity in comparison to direct estimation of the 
multidimensional density, the effect of avoiding outlying cell propagation on the 
whole density estimate and its elasticity related to marginal and conditional 
density estimation method. 

Further, we use a kernel density estimator for discrete data. Let us revise some 
basic notions related to this idea. Consider the estimation of a probability function 
defined for { }iX 0,1,...,c -1 S  .  

The kernel estimator of ( )p x   

                        
1

1
ˆ ( ) ( , )

n

i
i

p x l X x
n 

   ,                                            (2.4) 

where ( )l   is a kernel function defined by, say, 

              
1

( , )
/ ( 1)

i
i

X x
l X x

c otherwise




 
  

 ,                                 (2.5) 
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and where [0, ( 1) / ]c c   is a “smoothing parameter” or “bandwidth”. It is 
easy to show 

1 ( )
ˆ ( ) ( )

1

cp x
Ep x p x

c
      

 , 

2
( )(1 ( ))

ˆvar ( ) 1
( 1)

p x p x c
p x

n c
 

   
. 

This estimator was proposed by Aitchinson and Aitken (1976). 
Theoretical results related to the Simonoff estimator (2.3) applied to binned 

data can be found in Simonoff (1995). Further, we use the estimator of (2.3) of 
the form  

       1/2

1 2 2|1 2 1 1 1 1 1|2 1 2 2 2 2
ˆ ˆ ˆ ˆ ˆ( , ) ( | ) ( ) ( | ) ( ) .i jf x x f x x I f x f x x I f x          (2.6) 

The rate of the Mean Squared Error for this estimator equals to 4/7( )O n , and 

is worse than the rate of the common univariate kernel estimator 2/3( )O n . This 
inferiority has been called the quantitative effectiveness of smoothing.  
However, it is balanced by the adaptive nature of the proposed estimator in the 
sense of mode determination. 

It is worth noting how important is the correct choice of bins for 
multimodality detection of the underlying distribution. Figure 1 presents the 
effects of kernel density estimation of the unemployment rate and the average 
salary in Polish subregions in 2006 for various number of bins. Obviously, the 
number of bins should increase as the sample size increases. As it has been 

shown, it should increase with a rate 2/7n , the best rate with respect to squared 
error. 

3. Robustness in the case of sparse contingency table 

Effective analysis of high-dimensional discrete sparse data requires a special 
attention especially in the context of robustness of the procedure and its 
computational complexity. Issues related to robustness of the procedure dedicated 
to analysis of discrete data are not so highly developed as in the case of 
continuous data analysis. In the predominant part, good multivariate robust 
procedures are computationally very intensive. This in particular affects methods 
of nonparametric estimation of probability density function for high-dimensional 
data. As a starting point for our considerations and proposals we take pioneering 
works of J. Simonoff related to automatic and adaptive estimation of bivariate 
density function (see Simonoff, 1985, 1988, 1995), developed now by Jacob and 
Oliveira (see Jacob & Oliveira,2011). 

Categorical data analysis is typically performed by fitting models to the 
observed counts in a contingency table using maximum likelihood. An inherent 
problem with maximum likelihood fits is their sensitivity to outlier cells, the ones 
whose counts are not consistent with the assumed model. Maximum likelihood 
estimates break down in the presence of outlying cells. It is worth noting that in 
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categorical data analysis an outlier is a cell, i.e. a set of observations rather than a 
single observation, which deviates greatly from the expected count associated 
with the parametric model appropriate for the majority of cells. 

Following Shane and Simonoff (2001), let us consider a D  dimensional 
contingency table with d  cells written as 1d  vector 1( ,..., )dn n n  . Let 

1( ,..., )de ee  be the vector of expected cell counts under a hypothesized model. 

The expected counts are k ke N p   , where N  is the total sample size 

1

d

kk
N

  , where 1( ,..., )dp pp  are theoretical cell probabilities. Assuming 

multinomial model for the cells we can understand robustness of the estimator in 
terms of goodness-of-fit statistics: 

 
2 2

2 2

1 1 1

ˆ( ) ( )
ˆ( , )

ˆ

d d d
k k k k

k k k
k k kk k

n e n p N
X n e

e p N


  

 
                       (3.1) 

or equivalently the likelihood ratio goodness-of-fit statistics 

           2

1 1

ˆ2 log( / ) 2 log( / )
d d

k k k k k k
k k

G n n e n n N p
 

                       (3.2) 

Let 2
( )lX  denote the l   order statistics of 2

kX  . Shane and Simonoff (2001) 

define a robust Pearson estimate of a contingency table model as minimizing the 
criterion 

                                2
( )

1

( , )
d

k k k k
k

c X n e

  ,                                                         (3.3) 

where 1( ,..., )dc cc  is an appropriate vector of weights. 

The robust estimate according to Simonoff means a fit that is appropriate for 
the majority of cells and which is determined by the vectors of weights

1( ,..., )dc cc . For continuous data this idea depends on the binning, the vector 

of weights and the measure used to assess the overall goodness of fit.  
In the context of the analysis of sparse high-dimensional data for robustness 

of the procedure evaluation we propose to follow ideas presented in Mizera 
(2001). According to the ideas it is possible to define halfspace depth and 
maximum depth based estimators for the contingency tables. General 
halfspace depth can be defined as a measure data-analytic admissibility of a fit 
with respect to the data. Depth of p  can be expressed as the proportion of the 
data points whose omission causes p  to become a nonfit, a fit that can be 
uniformly dominated by another one. 

For a contingency table with bins    1 2i jI I  , 11,...,i k  , 21,...,j k  , we 

define the depth of a fit 1( ,..., )dp pp  as a minimal fraction of observations 

in the contingency table, whose replacement with other observations from 
the table will effect in taking the overall goodness-of-fit measure 
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unacceptable value. As the overall goodness-of-fit measure we take Pearson 
statistics calculated for nonzero cells (we can use many other criteria functions 
instead, however): 

                          
2

0

( )
k

k k
PEAR n

k

n Np
F

Np


  .                                 (3.4) 

As the robust estimator of the model we take the maximum depth 
estimator. 

In Mizera (2002) it is shown how to reformulate the general criteria (3.4) into 
the first order optimization. Mizera introduces the tangent depth -  the depth of the 
fit takes a form  

                  ( ) inf# : ( ) 0T
PEARd n F


  pu 0

p u p .                            (3.5) 

where p fŃ denotes gradient of   a function f  in a point p  . 

Attractive breakdown point robustness of the maximum depth estimator 
follows from Mizera (2002). 

4. Our proposals 

Sparse methods could be described as methods which make interpretation of 
the statistical analysis easier by forcing the statistical procedure to produce 
sparser output that is, for example, a sparser vector of regression coefficients. As 
a prototype for the sparse methods one can take the ridge regression, the LASSO 
regression, or the ELASTIC NET. Considering regression data  

  1
1 1( , ),..., ( , ) p

N Ny y x x  , in ridge and LASSO regression correspondingly, 

as regression parameters estimates we take vectors  
2

0
1 1

ˆ arg min
pN

ridge
i ij j

i j

y x


  
 

 
   

 
  , subject to 2

1

p

j
j

t


 ,     (4.1) 

2

0
1 1

ˆ arg min
pN

LASSO
i ij j

i j

y x


  
 

 
   

 
  , subject to 

1

p

j
j

t


  .      (4.2) 

In the case of sparse PCA, taking into account the fact that an interpretation of 
the PCA components is conducted by examining the direction vectors known as 
loadings – we force the estimation procedure to produce sparser set of the 
loadings. Constraints encourages some loadings to be zero (for further details see 
Hastie et al. (2009)).  The SCOTLASS procedure of Joliffe et al. (2003) focuses 
on maximum variance property of principal components by solving 

    max T Tv X X v  , subject to 
1

p

j
j

v t


  , 1T v v .                    (4.3) 
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Sparse and robust methods are relatively new and appeared during last 5 years 
(see Croux and Filzmoser, 2010). 

Below we propose a general idea of producing a sparse and robust estimator 
of 2D density appealing to functional data analysis. The Simonoff estimator 
enables us to decompose 2D density estimation procedure (computationally a 
more complicated problem) into blocks which are estimated using 1D marginal 
densities and 1D conditional densities (computationally a less complicated 
problem). 

Assuming a certain sample of contingency tables – for each of its cells we 
dispose of a certain number of marginal and conditional density estimates. We 
can successfully apply Functional Data Analysis (FDA) machinery to them. In 
particular we can use functional PCA of the estimated densities. Squared 
functional principal components fulfil density function postulates. We can 
decompose the overall density by means of them. 

Let us consider functional data 1( ),..., ( )sx t x t . Assuming we have chosen a 

basis 1,..., L   (we advocate here on using basis consisted of splines), we consider 

representations of the data 

                               
1

( ) ( )
L

r rj j
j

x t c t


  ,                                                  (4.4) 

where 1,...,r rLc c   are coefficients for r-th objects in this basis.  

Coefficients 1,...,r rLc c  are chosen separately for every function ( )rx t .  

Assume we fixed L  basis functions and then our data set consists of s  functions

1( ),..., ( )sx t x t . In the FDA we perform basic operations using L s  matrix 

containing object coefficients in the fixed basis (see Krzyśko et al., 2012). 
Introducing a quantity 

             ( ( )) ( ) ( )x t t x t dt    ,                                          (4.5) 

our aim is to find a function ( )t  which in a best way underlines a variability of 

the data, i.e. for which ( ( ))x t  takes the maximal value. 

FPCA GOAL: 2

1

max ( ( ))
s

i

x t
 



 
  

 
  , under the condition 2 ( ) 1t dt  .    

(4.6) 

It is common to use a restriction on weight function   , 2 ( ) 1t dt   . In a 

similar manner as in the case of classical PCA a non-decreasing sequence of 

eigenvalues 1 2 K      is developed recursively: ( ) ( ) 0j lt t dt    , 

1,..., 1j l   , 2 ( ) 1l t  . For further details see Ramsey et al. (2010) and 

Krzyśko et al. (2012). 
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5. Empirical examples 

In order to illustrate the presented approach we used the Central Statistical 
Office (CSO) data concerning traceability of crimes and unemployment in Polish 
subregions in 2004 – 2010. We have analysed eight 5x5 contingency tables, each 
consisting of 66 observations. Figures 2 – 6 present kernel density estimates for 
marginal, conditional and joint probability distribution of the unemployment rate 
and traceability of crimes in Polish subregions in 2004 – 2010. Estimates were 
obtained using binned data presented in Table 1. Figures 7 – 18 present results of 
the functional PCA performed on the basis of 8 contingency tables consisting of 
data on traceability of crimes and the unemployment rate in Polish subregions. 
For simplicity of the presentation we focused only on one cell placed on the 
crossing of the shaded row and column in Table 2. We have performed similar 
analysis for the rest of the cells. It is easy to see that we can estimate the joint 
density of the variables using the idea of the Simonoff estimator (2.3) and using 
only the first or the second weight function (Fig. 9, Fig. 12, Fig. 15, Fig. 18). The 
output obtained in this way is much easier to interpret – the joint density function 
is decomposed into more evident layers. Although it is well known that the 
classical PCAs are not robust for outliers, several simulation studies we have 
performed using mixtures of various 2D discrete distributions show that our 
proposal seems to be robust to replacement of a small fraction of observations in 
the contingency table and in the spirit of Mizera (2002) ideas. It is possible, 
however, to directly the use robust PCA (see Croux et al., 2012) instead of 
classical PCA calculations during functional PCA. Our approach is 
computationally less intensive.  

Table 2. A contingency table – traceability of crimes in Polish sub-regions 
                in 2010 

 
 
 
 
 
 
 
 
 
 

2010 
X11= 
50.4 

X12= 
58.4 

X13= 
66.4 

X14= 
74.4 

X15= 
82.4 

TOTAL 

X21=5.6 3 2 1 2 0 8 
X22=9.8 1 4 5 1 2 13 
X23=14.0 0 1 3 14 8 26 
X24=18.2 0 0 1 9 3 13 
X25=22.4 0 0 1 5 0 6 
TOTAL 4 7 11 31 13 66 
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Figure 2. Kernel estimate of marginal 
density – traceability of crimes in 
Polish sub-regions in 2010 
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Figure 3. 2D kernel density estimate 
of unemployment rate vs. traceability 
of crimes in Polish sub-regions in 2010  

Figure 4. Kernel estimate of 
marginal density – unemployment 
rate in Polish sub-regions in 2010 

Figure 5. Conditional density estimate of unemployment rate under the 
condition that traceability of crimes takes value i1,…, i5. Last graph represents 
the unconditional density estimate of unemployment  
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Figure 6. Conditional density estimate of traceability of crimes under the 
condition that unemployment rate takes value w1,…,w5. Last graph represents 
the unconditional density estimate of traceability 

Figure 7. Density estimates for traceability of crimes in Polish subregions 
in 2004–2010 

Figure 8. Functional mean (left) and functional SD (right) for density 
estimates for traceability of crimes in Polish subregions in 2004–2010  
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Figure 9. First and second weight functions (analogues of the eigenvectors) 
for density estimates for traceability of crimes in Polish subregions in 2004 – 
2010 

Figure 10. Density estimates for conditional traceability of crimes in Polish 
subregions in 2004–2010, condition unemployment rate = i1

Figure 11. Functional mean (left) and functional SD (right) for conditional 
density estimates for traceability of crimes in Polish subregions 
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Figure 12. First and second weight functions (analogues of the eigenvectors) for 
conditional density estimates for traceability of crimes in Polish subregions 
in 2004–2010 

Figure 13. Density estimates for unemployment rate in Polish subregions  
in 2004–2010

Figure 14. Functional mean (left) and functional SD (right) for density 
estimates for unemployment in Polish subregions in 2004–2010
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Figure 15. First and second weight functions (analogues of the eigenvectors) 
for density estimates for unemployment rate in Polish subregions in 2004–2010 

Figure 16. Density estimates for conditional traceability of crimes in Polish 
subregions in 2004–2010, condition unemployment rate = i1

Figure 17. Functional mean (left) and functional SD (right) for conditional 
density estimates for traceability of crimes in Polish subregions 
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6. The random matrix theory for detecting dependency between 
variables in a huge contingency table  

Consider now that a contingency table, i.e. a data frame of 1p  input factors 

and 2p  output factors is observed continuously at n  consecutive time moments. 

Let iaY  be the value of the i -th ( 11, ,i p  ) random variable at the a -th time 

moment ( 1, ,a n  ); together, they make up a rectangular 1p n  matrix Y . 

Analogously, let jbX  be the value of the j -th ( 21, ,j p  ) random variable at 

the b -th time moment ( 1, ,b n  ); together, they make up a rectangular 2p n  

matrix X . In general 1 2, ,p p n  can be very large. Further, we will assume that 

1 2, ,p p n   but 1 1/p n c  and 2 2/p n c  are fixed. Under null hypothesis, 

each iaY  and  jbX  is supposed to be drawn from a Gaussian probability 

distribution, and that they have mean values zero. Specifically, the aim is to test 
the hypothesis: 

           0H  : x and y are independent; against 1H  : x and y are not 

independent,  

where 
11( , , )p

Tx x x  and 
21( , , )T

py y y . Without loss of generality, 

suppose that 1 2p p . 

It is well known that the canonical correlation analysis (CCA) deals with the 
correlation structure between two random vectors. Draw n  independent and 
identically distributed (i.i.d.) observations from these two random vectors x  and 
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Figure 18. First and second weight functions (analogues of the eigenvectors) 
for density estimates for unemployment rate in Polish subregions in 2004–2010 
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y  respectively, and group them into 1p n  random matrix 

11( , , ) ( )n ij p nx x X   X  and 2p n  random matrix 

21( , , ) ( )n ij p ny y Y   Y  , respectively. The CCA seeks the linear combinations 

aT x and bT y that are most highly correlated, that is to maximize 

              ( , )
T

T T XY

T T
XX YY

a b
Corr a x b y

a a b b



 

 
                             (6.1) 

where XX  and YY  are the population covariance matrices for x  and y  

respectively, and XY is the population covariance matrix between x  and y .  

After finding the maximal correlation 1r  and associated vectors 1a  and 1b , 

CCA continues to seek a second linear combination 2
Ta x  and 2

Tb y  that has the 

maximal correlation among all linear combinations uncorrelated with 1
Ta x  and 

1
Tb y . This procedure can be iterated and successive canonical correlation 

coefficients 
11, , p  can be found. It turns out that the population canonical 

correlation coefficients 
11, , p   can be recast as the roots of the determinant 

equation 

                                               1 2det( ) 0XY YY XXXY
 

                              (6.2) 

This equation can be replaced by: 

                                           1 2det( ) 0XY YY XXXY
G D G r D

                             (6.3) 

1 1 1T T T
XX YY XYD XX D YY G XY

n n n
    

We also think of XXD , YYD  and XYG  as sample covariance matrices. 

However, due to dimensionality curse these are not consistent estimators of 
population covariance matrices, when the dimensions 1p  and 2p are both 

comparable to the sample size n . As a consequence, it is conceivable that the 
classical likelihood ratio statistics do not work well in the high dimensional case. 

Moreover, 
1

2 2 2
1 2, , , pr r r  are the eigenvalues of the matrix 

                            1 1
TXX XX XY YY XY

S D G D G                                          (6.4) 

Evidently, 1
XXD  and 1

YYD  do not exist when 1p n  and 2p n . For this 

reason we also consider the eigenvalues of the regularized matrix 

                                           1 1
TXY tX XY XY XY

T D G D G  ,                             (6.5) 
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where 
1

1 11
( )tX PD XX tI
n

   , t is a positive constant number and 
1pI  is 

a 1 1 p p  identity matrix. 

In addition to proposing statistics for testing we will also establish the limit of 
the ESD of regularized sample canonical correlation coefficients and central limit 
theorems (CLT) of linear functionals of the classical and regularized sample 
canonical correlation coefficients 

11 2, , , pr r r  , respectively. To derive the CLT 

for linear spectral statistics of classical and regularized sample canonical 
correlation coefficients, the strategy is to first establish the CLT under the 
Gaussian case, the entries of X are Gaussian distributed. In the Gaussian case, the 
CLT for linear spectral statistics of the matrix XYS  can be linked to that of an  

F -matrix, which was investigated in Bai and Silverstein (1995).  

We make the following assumptions: 
1. 1 1( )p p n  and 2 2 ( )p p n  with 1 1p c  and  2 2p c  , 1 2, (0,1)c c   as 

n   

2. 1,
, 1( ) p n

ij i jX X   and 2 ,
, 1( ) p n

ij i jY Y   satisfy 1/2
XXX W   and 1/2

YYY V  , where 

1 ,
1 , 1( , , ) ( ) p n

n ij i jW w w W     consists of i.i.d. real random variables { }ijW  

with 11 0EW   and 2
11| | 1E W  ; 2 ,

1 , 1( , , ) ( ) p n
n ij i jV v v V     consists of i.i.d. 

real random variables { }ijV  with 11 0EV   and 2
11| | 1E V  ; 1/2

XX , 1/2
YY  are 

Hermitian square roots of positive definite matrices XX  and YY  . 

3. XX DF H   a proper cumulative distribution function. 

By the definition of the matrix XYS , the classical canonical correlation 

coefficients between x  and y  are the same as those between w  and v  when w , 

v  are i.i.d. 
We now introduce some results from random matrix theory and free 

probability theory as presented by Voiculescu (1991). 

Definition 6.1: Denote the ESD of any n n  matrix A  with real eigenvalues 

1 2 n     

                                
1

( ) #{ : }A
iF x i x

n
  ,                       (6.6) 

where #{ }  denotes the cardinality of the set { } . 

Theorem 6.2: When the two random vectors x  and y  are independent and 
each of them consists of i.i.d Gaussian random variables, under Assumptions 1 
and 2, the empirical measure of the classical sample canonical correlation 
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coefficients 
11 2, , , pr r r  converges in probability to a fixed distribution whose 

density is given by 

                               1 1 2 2

1

( )( )( )( )
( )

(1 )(1 )

x L x L L x L x
x

c x x x



   


 

 ,        (6.7) 

1 2[ , ]x L L , and atom size of 2 1max(0, (1 ) / )c c  at zero and size 

2 1max(0,1 (1 ) / )c c   at unity, where 1 2 2 1 1 1 2| |L c c c c c c     and 

2 2 2 1 1 1 2| |L c c c c c c    .  

Here, the empirical measure of 
11 2, , , pr r r  is defined as in the ESD with i  

replaced by ir .  

Let us now introduce the test statistics. Under Assumption 1 and 
Assumption 3, if 1Y W  and 2X W  with 1 2p p  and both 1  and 2  

being invertible, then 1,XYS  which implies that the limit of ( )XYSF x  is a 

degenerate distribution. Thus, we consider the following statistics 

                                           
1

2

11

1
( ) .XY

p
S

n i
i

S xdF x r
p 

                            (6.8) 

In the classical CCA, the maximum likelihood ratio test statistics with fixed 
dimensions is 

                                            
1

2

1

log(1 )
p

n i
i

MLR r


  .                                 (6.9) 

Note that the density ( )x  has atom size of 2 1max(0,1 (1 ) / )c c   at unity. 

Thus, the normalized statistics nMLR  is not well defined when 1 2 1c c   ( 

because 2log(1 )x dx  is not meaningful). In addition, even when 1 2 1c c  , 

the right end point of ( )x , 2L , can be equal to one so that some sample 

correlation coefficients ir  are close to one. For example, 2 1L   when 1 2 1c c  . 

This in turn causes a big value of the corresponding 2log(1 )ir .  

Therefore, nMLR  is not stable.  

Here we would like to point out that the idea of testing independence between 
two random vectors x and y by the CCA is based on the fact that the lack of 
correlation between x and y is equivalent to independence between them when the 
random vector of size (p1 +p2) consisting of the components of x and y is a 
Gaussian random vector.  

In addition, it can be proved that 

                                                     01r( ) )T (HH
XY XY pG G O n                           (6.10) 



STATISTICS IN TRANSITION new series, Winter 2014 

 

129

ALGORITHM FOR THE PROCEDURE – “DOUBLE SPARSITY ALGORITHM” 

STEP 1. Preparation of the dataset 

Now we will extend our consideration to the case of n  consecutive 
observations. First, let us divide all variables into two subsets, i.e. focus on 1p  
input factors aX  1( 1, , )a p   and 2p  output factors Y  2( 1, , )p    with 
the total number of observations being n . All series of observations are 
standardized to have zero mean and unit variance. The data can be completely 
different or can be the same variables but observed at different times. First, one 
has to remove potential correlations inside each subset, otherwise it may interfere 
with the out-of-sample signal. To remove the correlations inside each sample we 
form two correlation matrices which contain information about in-the-sample 
correlations: 

1 1
,T TXX YY

n n
 XX YYD D  

STEP 2. Diagonalization 

The matrices are then diagonalized, provided 1 2,n p p , and the empirical 
spectrum is compared to the theoretical Bai, Silverstein (1995) result 

      
1 2

1
( ) ( )( )

2
x x L L x

x



  Re

2 2
1 1 1 1(1 ) (1 )L c L c     

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
STEP 3. Reconstruction 

One can then construct a set of uncorrelated unit variance input variables X̂  

and output variables Ŷ  
                           1 1ˆ ˆ

i j

T T
w i v j

i j

X W X Y V Y
nw nv

   

Figure 19. The spectrum of the single sparse matrices  and  when null 

hypothesis holds (i.e., there are no internal temporal correlations. The eigenvalues 
of ESD, which lie much below the lower edge of the spectrum, represent the 
redundant factors inconsistent with the null hypothesis) 



130             D. Kosiorowski, D. Mielczarek, J. Rydlewski, M. Snarska: Sparse methods … 

 

 

where V,U, a ,   are the corresponding eigenvectors and eigenvalues of XXD , 

YYD . 

Finally, we can reproduce the asymmetric 1 2p p  cross-correlation matrix 

G  between the Ŷ  and X̂ : 

                                                ˆ ˆTG XY . 

Under the null hypothesis of independence between X  and Y , the ESD 
should follow the distribution with density (see, Snarska 2012) 

2 2

1 2 1 2 2

Re ( )( )
( ) max(1 ,1 ) ( ) max( 1,0) ( 1)

(1 )

x s x s
x c c x c c x

x x
  


  

       
G

, 

where 1 2 1 2 1 2 1 22 2 (1 )(1 )x c c c c c c c c        are the two positive roots of 

the quadratic expression under the square root. It is easy to see the fact that in the 
limit n  at fixed 1p , 2p  all singular values collapse to zero as they should 

since there are no true correlations between X  and Y ; the allowed band in the 

limit 1 2, 0c c   becomes: 1 2 1 2| |, .x c c c c     When 1 2c c , the 

support becomes 1 1[0,2 (1 )]x c c   (plus a   function at 1x   when 

1 2 1c c  ),  while when 1 1c  , the whole band collapses to a   function at 

1x n  . For 1 2 1c c    there is an initial singularity of ( )x  1x   

diverging as 1/2(1 )x  . Ultimately, 1 0c   at fixed 2c , one finds that the whole 

band collapses again to a   function at 2x c . 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 Figure 20. Theoretical distribution of singular values for under validity of null 

hypothesis. The eigenvalues of ESD, which lie much below the lower edge of the 
spectrum, represent the redundant factors inconsistent with the null hypothesis 
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7. Conclusions 

A common application of the statistical procedures has changed business and 
the economy. Statistics have changed the ways we reason in a public debate, form 
our opinions, manage banking systems, perform interventions in a certain market, 
allocate energy stored in the capital between competing investments.  

The innovative nature of the outlined approach to big economic databases 
analysis is manifested in formation of a complete methodology for a robust 
analysis of sparse high-dimensional discrete data in the economy. Our approach is 
still being developed and we hope to obtain interesting results in the near future. 
We are convinced that our proposal could find several applications in the on-line 
economy and exploration of the official statistics databases.  
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